
Measure problem in cosmology

G. W. Gibbons and Neil Turok
DAMTP, Cambridge University, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

(Received 9 January 2007; published 13 March 2008)

The Hamiltonian structure of general relativity provides a natural canonical measure on the space of all
classical universes, i.e., the multiverse. We review this construction and show how one can visualize the
measure in terms of a ‘‘magnetic flux’’ of solutions through phase space. Previous studies identified a
divergence in the measure, which we observe to be due to the dilatation invariance of flat Friedmann-
Lemaitre-Robertson-Walker universes. We show that the divergence is removed if we identify universes
which are so flat they cannot be observationally distinguished. The resulting measure is independent of
time and of the choice of coordinates on the space of fields. We further show that, for some quantities of
interest, the measure is very insensitive to the details of how the identification is made. One such quantity
is the probability of inflation in simple scalar field models. We find that, according to our implementation
of the canonical measure, the probability for N e-folds of inflation in single-field, slow-roll models is
suppressed by of order exp��3N� and we discuss the implications of this result.
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I. INTRODUCTION

The problem of comparing different possible histories of
the Universe, and assigning a probability to each, is central
to theoretical cosmology. We cannot expect a fundamental
theory to predict precisely what we see today: at best, it
should predict an ensemble or ‘‘multiverse’’ of possible
universes, with the Universe we observe being a typical
member.

Of course there are many attitudes that one may take to
probability not only in the context of cosmology, but in
science more generally. The stance adopted in this paper is
that in practicing science we often adopt Bayesian methods
which make essential use of a priori probabilities (even if
one does not accept this, or has doubts about what these
probabilities mean, this is certainly a fair characterization
of much of the current observational literature).

In fact, following Laplace’s principle of indifference [1],
we often start with the least informative probability distri-
bution, i.e., a flat distribution, and then sharpen it in the
light of additional information. This is, as we see it, the
essence of the Bayesian approach. It requires a well-
defined a priori measure, i.e., one with finite total measure.

At the risk of falling into pedantry let us spell this out
more formally. We define the a priori probability P�U� to
be the probability that the Universe isU, according to some
fundamental theory. Likewise we define P�O� to be the
probability of making an observation O in any universe.
The joint probability that the Universe is U and that we
make an observation O is P�U \O�. The conditional
probability of making an observation O in a universe U
is P�OjU� (called the likelihood), and the conditional
probability that we are in the Universe U given that we
have made an observation O is P�UjO� (called the
a posteriori probability). It follows from elementary con-
siderations that

 P�UjO�P�O� � P�U \O� � P�OjU�P�U� (1)

whence the Cosmic Bayes’s Theorem [2] tells us that

 P�UjO� �
P�OjU�P�U�R

M P�OjU�P�U�dU
(2)

where the integral is over what we call the multiverse, M,
and dU is a measure on the multiverse. Equation (2) de-
scribes how the a priori probability P�U� is updated in the
light of observations.

In this paper, we define the multiverse M to be the set of
all possible universes, or, better, the set of all model uni-
verses. These are by definition disconnected from one
another. This differs from other popular interpretations in
which the multiverse is a connected spacetime containing
many causally disconnected regions and, roughly speak-
ing, probabilities are taken to be proportional to the num-
bers of such regions. This latter concept has been termed
the metauniverse [3,4]. It is not obvious to us that this
second meaning can be made quantitively precise in such a
way that the probabilities are well-defined. The basic prob-
lem is that the natural measure on spacetime,

R
d4x

�������
�g
p

, is
usually infinite in the scenarios being considered, and the
infinity is not removed by restricting attention to so-called
reheating surfaces. Much of the current literature on in-
flation appears to reflect this difficulty.

By contrast to Laplaces’s principle, one may regard a
proposal for the state of the Universe as some choice of
probability distribution function P�U� relative to the
a priori measure dU. It might possibly constitute an ‘‘ex-
planation’’ if derived from some underlying fundamental
theory which, again, must be well-defined to be mean-
ingful. Note that in this paper we are not setting out to
make a specific proposal for the Universe, i.e., we are not
advocating a specific formula for P�U�, but rather, as we
shall argue in detail later, we are adopting Laplace’s prin-
ciple of indifference and finding that indeed this is inade-
quate to favor inflation. A more specific, sharper
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probability distribution is required to explain inflation. One
may quantify the sharpness of a probability distribution by
defining (following von Neumann, Shannon and others) the
information

 I �
Z
M
P�U� ln�P�U��dU; (3)

which, after imposing the constraint
R
P�U�dU � 1, is

minimized by the uniform distribution P�U� � const, as
one can easily check by computing the first and second
variational derivatives and using P�U� � 0. The quantity I
measures the information (or lack of randomness) carried
in a typical realization of P�U�: the least information is
obtained if all possible outcomes are equally likely, and the
greatest if a single outcome is certain. The information
entropy S is then defined to be the negative of I, which is of
course maximized in the uniform distribution. As is well-
known, maximizing S under various additional constraints
including the conservation of energy yields the usual for-
mulae of statistical mechanics.

In this paper, we show that, with the canonical definition
of dU given by Hamiltonian dynamics, Laplace’s principle
does not typically predict inflation. Hence, even if a fun-
damental theory allows inflation, a sharper P�U� is re-
quired in order to explain why inflation actually
occurred. It remains as a challenge to fundamental theory
to explain how such a P�U�might arise. The predictiveness
of any particular proposal can be assessed from (3); what
we would be most happy with is a highly predictive theory,
whose predictions were consistent with observation. In fact
this idea can be taken further, as we have been reminded by
Don Page. If we regard a proposal P�U� as a hypothesis
then we may, given an appropriate measure on the infinite
dimensional set of hypotheses fP�U�g, adopt Bayesian
methods to evaluate their relative probabilities. We shall
not attempt this formidable task in this paper.

The ideas sketched above are not new, and many people
have pursued them before in some, largely qualitative, way.
In this paper we attempt, following [5], to make them
quantitative. In fact our own viewpoint was influenced in
part by trying to make some of Penrose’s arguments [6–8]
mathematically precise.

There are several additional problems peculiar to cos-
mology when attempting to construct a statistical theory.
First, there is the problem of general covariance. There is
no absolute notion of space or time in general relativity:
these are properties of each particular classical solution of
the field equations. Second, the solutions generically pos-
sess singularities in the past or the future, where the field
equations break down in finite time. Even if one makes the
drastic simplification of restricting attention to Friedmann-
Lemaitre-Robertson-Walker (FLRW) universes, i.e., so-
called minisuperspace, it is not obvious how to compare
different classical spacetimes which are solutions to the
same laws of physics. Finally, in theories like string or M

theory, where the low energy effective description involves
many additional fields, there may not even be a preferred
spacetime metric: one can change coordinates on the space
of fields (for example via Weyl transformations) in an
arbitrary way and physical results should not depend on
these choices.

In spite of these difficulties, the problem of constructing
sensible measures on the space of solutions is of undeni-
able importance to the evaluation of various cosmological
scenarios. Most of these scenarios focus on some subset of
classical solutions, for example, arguing that they are
‘‘generic’’ because they exhibit dynamical attractor behav-
ior. But to understand how predictive the proposals really
are, in the absence of any further information, we need to
quantify the extent to which the flat probability measure,
without any additional input, succeeds in narrowing down
the range of allowed classical solutions.

In recent times, the problem of the measure in cosmol-
ogy has grown hugely in importance. The claimed vast
‘‘landscape’’ of possible compactifications and moduli in
string theory seems to offer a truly bewildering range of
classical cosmologies [9]. When combined with recent
observations of dark energy, the landscape picture has
encouraged many physicists to pursue anthropic explana-
tions. However, the lack of an a priori measure on the
space of model universes is a serious flaw in such attempts,
as even the most ardent proponents will admit.
Nevertheless, remarkably little attention has been devoted
to constructing measures whereby the different possible
classical spacetimes within the multiverse can be com-
pared [10,11]. In a similar vein to the anthropic arguments,
a ‘‘top down’’ approach to cosmology has been proposed
by Hawking and Hertog [12], in which one imposes con-
straints on the state of the Universe today and attempts to
determine its most probable history, for example, by con-
straining the initial state to satisfy Hartle and Hawking’s
no-boundary proposal [13]. However, it is hard to judge the
success or otherwise of this approach without being able to
quantify the extent to which it narrows down the
multiverse.

Nearly two decades ago, Gibbons, Hawking and Stewart
[5] identified a natural measure on the set of classical
cosmological solutions. They argued that any such mea-
sure should satisfy the following requirements: (i) it should
be positive, (ii) it should depend only on the intrinsic
dynamics and neither on any choice of time slicing nor
on the choice of dependent variables, and (iii) it should
respect all the symmetries of the space of solutions without
introducing any additional ad hoc structures (e.g. ‘‘Planck
mass cutoffs’’) not arising from the field equations them-
selves. They showed that a measure satisfying all these
requirements arises naturally from the Hamiltonian struc-
ture of general relativity and that it can be used to count the
number of different solutions of the classical field equa-
tions in a well-defined way. Note that the set of all Cauchy
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data is unsuitable for this purpose because different
Cauchy data can yield the same classical solution, eval-
uated on a different time slice. The proposed measure
avoids this overcounting problem by counting each distinct
classical solution, in its entirety, only once.

One obvious application of such a measure on the multi-
verse is in determining the probability of inflation, i.e., how
likely is it that the Universe started out in an inflationary
state, within different models of the laws of fundamental
physics. This question is potentially an Achilles’ heel for
inflation: if inflation is itself highly improbable, then it
cannot be claimed to solve the classic cosmological fine
tuning puzzles, of large-scale homogeneity, isotropy, and
flatness. Initially, it seemed that the canonical measure did
indeed favor inflation [5], in simple inflationary models,
but more detailed investigations, in particular, by Hawking
and Page [14], identified a serious ambiguity. They found
that the canonical measure is infinite, and that both infla-
tionary and noninflationary solutions typically have infinite
measure. Unfortunately, this left the problem of whether
inflation is likely, or unlikely, unresolved. Since then, the
problem has not received much attention, although various
intuitive arguments, generally not satisfying the three
above-mentioned conditions, have been given for or
against inflation.

In this paper, we shall revisit the canonical measure,
showing that when treated with sufficient care, a finite
measure, still satisfying the Gibbons-Hawking-Stewart
conditions, can be obtained. In agreement with Hawking
and Page, we find the canonical measure is infinite.
However, we identify the divergence as being due to the
dilatation symmetry of flat FLRW universes, and we show
it is removed if one identifies solutions which cannot be
observationally distinguished. Concretely, we impose a
limit on the parameter known in the observational literature
as �k, measuring the ratio of the space curvature term in
the Friedmann equation to the square of the Hubble pa-
rameter. If all universes with j�kj smaller than some ob-
servational limit ��k � 1 are identified, then the
canonical measure becomes well-defined. Furthermore,
provided the limit on j�kj is imposed once the matter
fields have entered a phase of evolution in which the
expansion of the Universe acts adiabatically, i.e., as a
slow variation of parameters in the matter Lagrangian,
our measure reduces to the canonical measure on the
matter fields alone, and is an adiabatic invariant. In this
regime the measure becomes independent of the conjugate
‘‘angle’’ variable. This statement is independent of the
time, the values of the cosmological parameters, or indeed
the value of ��k when the cutoff is imposed. These good
properties motivate us to reconsider the probability of
inflation with various numbers of e-foldings, using the
proposed canonical measure. The probability of N e-folds
of inflation depends critically on the angle variable, and we
find that the probability of obtaining N e-folds of inflation

in simple inflationary models is suppressed by a factor of
exp��3N�. Since N > 50� 60 is typically required in
realistic models (depending on the efficiency of reheating),
it follows that inflationary solutions are, in fact, tremen-
dously rare in the space of classical solutions. We empha-
size these statements are independent of the details of the
cutoff imposed on the canonical measure.

Our conclusion is, of course, at variance with much of
the inflationary literature over the last two decades. It has
some resonance with the well-known arguments (see, e.g.,
Refs. [6–8,15]) that inflation cannot possibly solve the
classical cosmological puzzles for arbitrary initial condi-
tions because any physically permissible current state of
the Universe would, if run back in time, correspond to some
initial conditions, and also with the arguments of Hollands
and Wald [16] that any canonical measure would naturally
assign the same probability to deflation as to inflation,
since Einstein’s equations are time-reversal invariant.
Because the canonical measure is a measure on the set of
universes, independent of their time orientation, we do
indeed find this result: both inflation and deflation are
predicted to be exponentially rare phenomena among the
set of all classical solutions of the field equations.

The structure of this paper is as follows. In Sec. II we
review the construction of the canonical measure, clarify-
ing the geometrical structure in elementary terms and, in
particular, demonstrating that the measure is independent
of the choice of initial slice in the space of dynamical
variables (contrary to the apparent assertion of Hollands
and Wald on this matter [16]). In Sec. III, we discuss the
classical dynamics of simple scalar field models and we
compute the canonical measure for scalar field matter in
FLRW spacetimes with arbitrary spatial curvature. At face
value, the measure exhibits a divergence at large-scale
factor, i.e., in the flat space limit, but we argue that since
the scale factor is unobservable in this limit, one must
factor out dilatations from the result. We show that this
results in a sensible measure on the space of classical
solutions, i.e., one of finite total measure. In Sec. IV we
solve the classical field equations, identifying the solutions
undergoing N e-folds of inflation and computing the asso-
ciated measure. Section V compares our results with those
obtained in previous discussions, and explains why our
conclusions are so different from those reached on the
basis of intuitive reasoning from ‘‘chaos at the Planck
density.’’ Section VI concludes.

II. LIOUVILLE MEASURES AND MAGNETIC
FLUX

The principles behind the canonical measure are ex-
tremely simple. If one restricts attention to consistent (in
the technical sense) finite-dimensional truncations, so-
called mini-superspace models, then we are faced with a
standard problem in Hamiltonian mechanics, and it is
natural to bring to bear on the problem the standard tech-
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niques of statistical mechanics which have been used so
successfully in all other areas of physics.

The Einstein-matter equations provide a Hamiltonian
flow in a 2n dimensional phase space P, equipped with a
symplectic form ! which may be written in local Darboux
coordinates as

 ! �
Xn
i�1

dpi ^ dqi: (4)

The nth power of ! gives the Liouville volume element on
P

 

��1�n�n�1�=2

n!
!n � dnpdnq: (5)

However, this is not what we want. We want to describe the
set of distinct dynamical trajectories or, equivalently, the
set of classical initial conditions giving distinct histories. In
general relativity, the Hamiltonian H is constrained to
vanish so the trajectories all lie on a 2n� 1 dimensional
constraint submanifold

 C �H�1�0�: (6)

The set of classical trajectories is the Marsden-Weinstein
quotient, also sometimes called the reduced phase space.
This is the multiverse,

 M � C=R �H�1�0�=R; (7)

where R is the Hamiltonian flow. As Gibbons, Hawking
and Stewart showed [5] (see also [17]), a symplectic form
on the multiverse M is naturally inherited from !: one
simply chooses local coordinates in which pn �H , from
which Hamilton’s equations imply that qn � t, the time.
As a result, one has

 ! �
Xn�1

i�1

dpi ^ dqi � dH ^ dt; (8)

so that the restriction to the constraint surfaces, H � 0,
naturally yields a two-form on the space transverse to the
Hamiltonian flow, !C � !jH�0. We now construct a
measure on M by raising !C to the �n� 1�th power:

 �M �
��1��n�1��n�2�=2

�n� 1�!
!n�1
C : (9)

Gibbons, Hawking, and Stewart showed that the flux ob-
tained by integrating this form is positive if measured in the
correct sense, independent of slicing in phase space and
invariant under Hamiltonian flow. We shall review this
argument in more elementary terms below. Furthermore,
(9) is natural in the sense that it requires no new elements in
the theory other than those already present in the classical
equations of motion. By its construction, it is invariant
under any additional canonical symmetries. Hence, con-
ditions (i)–(iii) given in the Introduction are satisfied.

One can visualize the measure (9) as the ‘‘flux’’ of a
divergence-free ‘‘magnetic field.’’ In general coordinates
on phase space, the symplectic form ! is a covariant
second rank antisymmetric tensor field with components
satisfying

 !�� � �!��; (10)

where �; � � 1; . . . ; 2n, and det! � 0. The symplectic
form is closed,

 d! � 0; (11)

which implies

 @	�!��
 � 0; (12)

and Hamilton’s equations are

 V� � !��@�H ; (13)

with the summation convention, where !�� is the inverse
of !�� and the velocity on phase space, V� � �dx�=dt�.
Alternately, we may rewrite Hamilton’s equations as

 !��V� � @�H ; (14)

from which one obtains

 V�@�H � 0; (15)

so the flow V� lies in the surfaces H � const.
Now let us choose coordinates such that

 x2n �H : (16)

The closure condition, restricted to ‘‘spatial’’ indices, cor-
responding to directions tangent to the constraint manifold,
is

 @	a!bc
 � 0; (17)

where a; b � 1; . . . ; 2n� 1, and we have

 V2n � 0; (18)

since the Hamiltonian has no explicit time dependence.
Thus from (14), and the fact that all spatial derivatives of
H are zero, we have Va!ab � 0.

It is simplest to see what this means in the example n �
2, for which a, b, c run from 1 to 3. Define a magnetic field
by

 Ba �
1

2
�abc!bc; (19)

then because ! is closed, B is divergence-free,

 @aBa � 0: (20)

Moreover,

 �abcBbVc � 0; (21)

thus V is parallel to B. In these formulae, we have lowered
indices using the Kronecker delta, �ab. Now, elementary
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arguments using the divergence theorem establish the point
that the flux through some fixed surface is unchanged if the
surface is deformed while keeping its boundary fixed, and
unchanged if the surface is propagated forwards with the
flow. Note that we have introduced �ab and �abc, and are
dualizing only for convenience: we are merely implement-
ing the standard rules of exterior calculus in a particular
coordinate system and the key results, that the flux is
conserved and that the flow lies parallel to the magnetic
field are independent of the coordinate system and do not
require a metric.

The argument easily generalizes to higher dimensions,
with the magnetic field constructed by dualizing the �n�
1�th power of the Hamiltonian symplectic form. Let

 Ba �
1

2n�1�n� 1�!
�abcde...gh!bc!de . . .!gh: (22)

Then

 @aBa � 0 (23)

follows from the closure of ! and

 !	bc!de . . .!gh
 � �abcde...ghBa (24)

and so

 �abcde...ghBaVb � 0; (25)

which implies that

 B	aVb
 � 0; (26)

that is, Va is parallel to Ba.
We end this section with a final point. Since ! is closed,

it follows !C is also closed on C and that the measure on
the multiverse �M / !

n�1
C is also closed. Hence one can

always locally write �M � dA, with A some n� 2 form,
arbitrary up to ‘‘gauge transformations’’ A! A� d�.
However, the canonical construction gives more than
this: ! may be written as d�pidqi� globally. So there is a
natural definition of the ‘‘vector potential’’ A, allowing one
to reduce the n� 2 dimensional integral of �M over some
surface S to an n� 3 dimensional integral of A over the
boundary of S. The latter integral may then be regarded as
giving the integrated probability measure for all trajecto-
ries passing through S or any topologically equivalent
surface with the same boundary.

III. GRAVITY AND A SCALAR FIELD

In this section we consider a single minimally-coupled
scalar field � with potential V��� in a homogeneous and
isotropic (FLRW) universe. Generalizing the discussion to
additional scalar fields and other fields and fluids, or an-
isotropic cosmologies should be straightforward [18,19].
But the simplest case is interesting enough that we shall
devote the remainder of this paper to it. A version of this
model with two scalar fields, and its statistical properties,

was analyzed by Starobinsky from a different point of view
[20]. With the above-mentioned symmetry restrictions, the
line element is

 � N2dt2 � a2�t��ijdx
idxj; (27)

where �ij is a metric on a space of constant (three-
dimensional) scalar curvature k � 0 or�1. Choosing units
in which M2

Pl � 1=�8	G� � 1, the Einstein-scalar action
is

 S �
Z
dtN

�
�3a�N�2a02 � k� �

1

2
a3N�2�02

� a3V���
�
; (28)

where primes denote t derivatives.
Varying the action with respect to the lapse function N

yields the usual Friedmann equation

 H2 �
1

3

�
1

2
_�2 � V���

�
�
k

a2 ; (29)

where dots denote proper time derivatives, with d� � Ndt,
and H � _a=a is the expansion rate or Hubble parameter.
Varying with respect to � yields the scalar field equation

 

��� 3H _� � �V;�: (30)

Taking the time derivative of (29) and using (30) then
yields

 

_H � �
1

2
_�2 �

k

a2 : (31)

Finally, varying with respect to a yields a linear combina-
tion of (29) and (31). Equation (31) will be of particular
interest to our later discussion. For k � 0, the Hubble
parameter H never increases, so no classical trajectory
can cross a H � const hypersurface more than once.
Likewise, from (29), if V is non-negative, then for k � 0,
H can never change sign. This implies that no classical
trajectory can cross an a � const surface more than once.

We now turn to the Hamiltonian analysis. The canonical
momenta conjugate to a, �, and N are

 pa � �6a _a � �6a2H; p� � a3 _�; pN � 0;

(32)

and the Hamiltonian is

 H � N
�
�
p2
a

12a
�

1

2

p2
�

a3 � a
3V��� � 3ak

�
; (33)

which vanishes by the equation of motion for pN. We can
use this to eliminate one of the four canonical variables a,
pa, �, p�. Since the Hamiltonian is quadratic in both pa
and p�, either may be easily eliminated. Both choices have
some merit, as we shall discuss below.

The first choice, used in previous treatments, is to elimi-
nate pa. This has the advantage that it is easily generalized
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to many matter fields, whether or not they have minimal
kinetic terms. It proceeds as follows. From the vanishing of
(33) we obtain

 pa � �
���������������������������������������������������������������
6p2

�a
�2 � 12a4V��� � 36a2k

q
: (34)

The choice of sign will occur in many subsequent formu-
lae, but leads to no ambiguity. All it means is that at generic
values of the remaining variables a, �, and p�, there are
two possible solutions, representing an expanding or a
contracting universe.

It is now convenient to change noncanonical coordinates
to �, _�, and 
 � lna. The velocity of the flow in these
coordinates is easily obtained:

 Va � � _�;�3H _�� V;�;H�: (35)

The canonical two-form on the constraint manifold C,

 !C � �dpa ^ da� dp� ^ d��jH�0 (36)

is straightforwardly evaluated in the same coordinates,
 

!C � e3
��� _�=H�d _� ^ d
� �3 _�� V;�=H�d


^ d�� d _� ^ d��: (37)

Dualizing, we now construct the magnetic field Ba �
1
2 �abc!bc,

 �B�;B _�; B
� � e3
�� _�=H; 3 _�� V;�=H;�1�; (38)

where H � �
���������������������������������������������������
1
3 �

1
2

_�2 � V���� � ke�2

q

. One can check
that Ba is divergence-free, @�B� � @ _�B _� � @
B
 � 0.
As explained at the end of the last section, the magnetic
field is naturally expressed as the curl of a vector potential
A � pidq

i. Explicitly, we have

 �A�; A _�; A
� � e3
� _�; 0;�6H�; (39)

with H expressed in terms of �, _�, and 
 as above.
For the purposes of our discussion, however, a more

illuminating choice is to eliminate p�. This choice is
nice because now two of the remaining three variables a
and H have monotonic properties for k � 0 making it
simple to construct a surface S which every classical
trajectory crosses only once. From the Hamiltonian con-
straint H � 0 we obtain

 p� � �

�������������������������������������������������������
1

6
p2
aa

2 � 2a6V��� � 6a4k

s
: (40)

The square root again causes no problems: it just means the
scalar field can generically have a positive, or negative
velocity at each point (�, H, 
) in the classically allowed
domain. In fact, for this choice of variables and for simple
potentials which rise monotonically from a single mini-
mum (like�2 or�4), we find from (31) that for eachH and

 the range of � is bounded by the two roots of the

equation

 V��� � 3�H2 � ke�2
�: (41)

In the coordinates �, H, and 
, the velocity of the flow
is:

 Va � � _�; _H; _
�

� ��
����������������������������������������
6H2 � 2V � 6k=a2

q
; V � 3H2 � 2k=a2; H�;

(42)

and the canonical two-form (36) is

 !C � e3

�
�6dH ^ d
� 3

6H2 � 2V � 4ke�2
�������������������������������������������
6H2 � 2V � 6ke�2

p d


^ d��
6H�������������������������������������������

6H2 � 2V � 6ke�2

p dH ^ d�

�
:

(43)

Dualizing, the magnetic field is
 

�B�; BH; B
� � 6e3

�
�1;�

1

2

6H2 � 2V � 4ke�2
�������������������������������������������
6H2 � 2V � 6ke�2

p

;
H�������������������������������������������

6H2 � 2V � 6ke�2

p

�
; (44)

which is parallel to the flow (31) and, again, divergence-
free. The natural vector potential A � pidqi is found to be

 �A�; AH; A
� � e3
��
�������������������������������������������
6H2 � 2V � 6ke�2


p
; 0;�6H�:

(45)

The magnetic field we have calculated describes the flux
per phase space area of all classical trajectories. All that
remains is to choose a suitable surface S which the trajec-
tories each cross once. As mentioned following Eq. (43),
for k � 0, the Hubble parameter H is monotonically de-
creasing. Hence it makes sense to slice phase space on a
surface H � HS � const (or some mild deformation
thereof). To compute the flux through the surface we
must then integrate BH over the directions lying within
the surface, parameterized by � and 
, obtaining [21]

 

ZZ
3e3
 6H2

S � 2V � 4ke�2
�������������������������������������������
6H2

S � 2V � 6ke�2

q d�d
: (46)

The integral converges for negative 
 but diverges for large
positive 
: this is essentially the infinity identified by
Hawking and Page. However, a key point is that in the
limit of large 
, the Universe becomes spatially flat. In this
limit, the value of 
 is neither geometrically meaningful
nor physically observable. Our proposal for dealing with
this physical degeneracy of solutions is to identify all
universes which are indistinguishable on the chosen H �
HS slice. The natural dimensionless, geometrical measure
of the curvature of space is the ratio of the space curvature
term to the Hubble parameter term in the Friedmann
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equation, �k � �ke
�2
S=H2

S. Our proposal is to identify
universes for which j�kj is smaller than some bound ��k.
In doing so, we collapse the integral over large values of 
,
effectively introducing a cutoff in 
, given by e2
max �
1=���kH

2
S�. As we now show, if ��k is low enough and

HS small enough that the expansion of the Universe is
adiabatic as far as the matter fields are concerned, then
as far as some predictions are concerned, the cutoff depen-
dence disappears from the result.

We are left with an integral over a two-dimensional
surface with a boundary 
 � const. Stokes’ theorem,R

B� dS �
H

A� dl, along with Eqs. (29), (32), and
(45), and a � e
, further reduce the measure to

 2
Z
a3j _�jd� �

I
p�d�; (47)

which is nothing but the standard expression for the adia-
batic invariant [22] (see [23] for a recent derivation) for a
homogeneous field ��t� evolving in a time-dependent
background a�t�. The result (47) could have been antici-
pated at the outset by expressing ! � d�pada� p�d��,
and noting that the first term does not contribute when a �
const. It was necessary, however, to work through the
intermediate steps as we have done in order to explicitly
study the integral over 
 and show there is no additional
surface term. Note that the a3 factor in (47) is essential to
the derived measure being conserved. One may, in the k �
0 case, eliminateH from (29) using (30) and thereby obtain
a closed second order differential equation for �. This
gives an autonomous first order system in the (�, _�) plane.
However, this is not a Hamiltonian system as can be seen
from the fact that it possesses an attractive fixed point.
Therefore one may not use the simple measure d�d _�.

Now, let us justify our claim that any dependence on
��k disappears from the probability distribution for cer-
tain quantities, provided HS is taken sufficiently low that
the expansion of the Universe is adiabatic as far as the
matter fields are concerned. The point is that in this regime
the scalar field oscillates rapidly, with frequency m� H,
and its stress energy is accurately described by a perfect
fluid with zero pressure. The evolution of the scale factor
a�t� then becomes a background function of time, inde-
pendent of the phase of the scalar field oscillation. We can
then define the Hamiltonian for the matter field alone,

 H � �
1

2

p2
�

a3�t�
� a3�t�V���; (48)

in which a�t� is treated as a background variable. When the
scalar field is oscillating about the minimum of V���, we
can approximate the potential as 1

2m
2�2. Using this we can

calculate the adiabatic invariant (47), obtaining

 

I
p�d� � 2	m�1H� � 2	J: (49)

The angle variable canonically conjugate to J is then found

to be

 � � tan�1

� p�
m�a3�t�

�
; (50)

which obeys the following equation of motion:

 

_� � �m�
3

2

_a
a

sin2�: (51)

In the regime of low H where the canonical measure
reduces to an adiabatic invariant, it becomes independent
of �. (A similar conclusion about the behavior of the
measure at late times was reached by Starobinsky in his
early work on inflationlike models [20].) It follows that the
canonical measure for � loses its cutoff dependence in this
regime. As we shall show in detail in the next section, for a
universe which has undergone a substantial amount of
inflation, � must necessarily lie in an exponentially narrow
range. Once inflation is over, and the expansion of the
Universe may be treated as adiabatic, from (51) one can
show that the separation of two nearby trajectories in �
rapidly tends to a constant. Hence if we estimate the range
of � corresponding toN e-folds of inflation, near the end of
inflation, this estimate will remain valid for as long as the
expansion (or contraction) of the Universe may be treated
as adiabatic. This justifies our claim that our calculated
probability for N e-folds of inflation becomes independent
of the cutoff ��k in the late Universe.

In contrast, the canonical measure for the scale factor a
(or equivalently �k) is strongly cutoff-dependent. To see
this, note that up to a constant, J is just ��a3 where �� is
the effective density of matter contributed by the scalar
field oscillations. Defining �� � ��=�3H

2� � 1��k,
Friedmann’s equation (29) yields

 �� � 1�
k

�aH�2
; (52)

which, for fixed H � HS, tends to unity for large a. The
canonical measure, d���a3� then yields the probability
distribution

 

Z ac

0
d���a3� /

Z ac

amin

d
�
a3

�
1�

k

�aHS�
2

��

/
Z 1�k��k

0
d
�

��

j�� � 1j3=2

�
(53)

where amin � 0, H�1
S for k � �1,�1 and the upper cutoff

ac � H�1
S ���k�

�1=2. The resulting distribution favors flat
universes, as Hawking and Page pointed out [14], but the
result is dominated by the cutoff ��k. Note, however, that
from our point of view we are not using the canonical
measure as a physical theory which makes predictions,
rather we are using it as a framework for assessing how
predictive theories are. What we can conclude, however, is
that from this point of view, a flat universe is not so
surprising.
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Let us illustrate these remarks with the simple infla-
tionary model V��� � 1

2m
2�2, with m� 1 in Planck

units. We start with the spatially flat case, k � 0.
Figure 1 shows the evolution in the first set of variables,
�, _�, 
. The upper panel is the classic plot [24,25] show-
ing the attractor behavior in the (�, _�) plane. The lower
panel shows the projection onto �, 
, showing how the
scale factor grows in the various solutions. As the set of
trajectories rise in 
, they become more and more tightly
twisted about the 
 axis. Notice, in particular, how all the
solutions which have inflated for an extended period con-
verge on a particular late-time oscillation phase. The
dashed lines show a suitable measure surface S: the surface
H � HS � const is an ellipse in the (�, _�) plane, and a
cylinder in the full three-dimensional space. Our prescrip-
tion amounts to cutting the cylinder on a surface 
 �
const, and integrating over the flux entering the cylinder
below the cut. Since the magnetic field is divergence-free,

this flux equals that leaving the cylinder on its upper cut
surface 
 � const. The total flux is given by a line integral
of the vector potential around the ellipse. We have chosen
HS to be the Hubble constant near the end of inflation,
when the slow-roll approximation fails. As argued above,
the resulting measure on the phase of the scalar field
oscillation � becomes independent of the cutoff as HS is
reduced to still lower values.

Figure 2 shows the trajectories in the (�, H) plane. As
time runs forward from S in an expanding universe, all the
trajectories run down in H and bounce back and forth
between the two boundaries H � �m�=

���
6
p

an infinite
number of times. Running time backwards from S (red
curves), the trajectories run to higher H and generically
end up kinetic dominated. We will quantify this statement
precisely in the next section.

IV. SLOW-ROLL INFLATION

We would like now to analytically estimate the measure
(47) in models of slow-roll inflation. Slow-roll inflation
requires that the derivatives of V��� are small: for k � 0,
the equations simplify and may be solved analytically as an
expansion in derivatives of V���, as follows. From
Eqs. (31) and (43), with k � 0, we find

 H2 �
V
3
�

2

3

�
dH
d�

�
2
: (54)

Slow-roll inflation requires the dominance of the first term
on the right-hand side. Provided we have a potential with a
minimum and no local maximum, we can just iterate this
equation to find the slow-roll solution which inflates all the
way back to the Planck scale. We find this solution to be

FIG. 1 (color online). Set of classical trajectories for the infla-
tionary model with V � 1

2m
2�2 and k � 0, in the coordinates

(�, _�, 
), where 
 � lna. The upper panel shows the projection
onto the (�, _�) plane, and the lower panel shows the projection
onto the (�, 
) plane. The dashed lines indicate the projection of
the measure surface S, which takes the form of an elliptical
cylinder and which each trajectory crosses once. The parameters
used were m2 � 0:05, HS � 0:1.

FIG. 2 (color online). The set of trajectories in the (�, H)
plane for V��� � 1

2m
2�2 and k � 0, and the same parameters as

in Fig. 1. The measure surface S is taken at H � 0:1, and the
trajectories plotted are equally spaced in � on that surface. Only
the trajectories with positive _� on the measure surface are
shown: those with negative _� are obtained by mirror reflection.
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HSR��� �

����
V
3

s �
1�

1

12

�V;�
V

�
2
�

1

288

�
�13

�V;�
V

�
4

� 16
�V;�
V

�
2 V;��
V
�

1

3456

�
213

�V;�
V

�
6

� 432
�V;�
V

�
4 V;��
V
� 160

�V;��
V

�
2

� 64
V;�
V

V;���
V

�
� . . .

�
(55)

where we have implicitly assumed inflation rather than
deflation. From the Friedmann equation (31) one sees
that the sum of the subleading terms in this formula are
due to the kinetic energy of the scalar field: one has _� �
2�dH=d��.

The inflationary trajectory (55) is just one solution of the
theory, and it has measure zero. What we are interested in
is counting all of the solutions, and assessing how much
inflation occurs in each one. This is very straightforward to
do. It is convenient to takeHS to be the value of the Hubble
constant near the end of inflation, just before the slow-roll
approximation breaks down. The measure (56) then takes
the simple form

 

Z
4d�a3

��������dHd�
�������� (56)

where the slope is calculated for each trajectory crossing
HS and the limits of the � integral are given by Eq. (41).

Let us now calculate the number of e-foldings of expan-
sion which have occurred as we trace the field evolution
back in time, with the scalar field rolling back up the hill to
some earlier value � which we shall take to be positive.
The number of e-foldings is just N �

R
d�H. From (54)

and the Friedmann Eq. (31) with k � 0, we find

 

dN
d�
�

H����������������������
6H2 � 2V
p ; (57)

which is an exact equation and does not assume the slow-
roll condition. Second, let us consider perturbing around
the slow-roll solution to (54), given in (55). Setting H !
HSR � �H, we find to first order

 

d�H
d�

�
3H�H����������������������

6H2 � 2V
p � 3

dN
d�

�H; (58)

or

 

d�H
dN

� 3�H: (59)

This remarkably simple equation is again exact and valid
for any inflationary potential V���. (Similar equations
were derived, for example, in Ref. [26].) As we track the
solution back in time, the deviation ofH from the slow-roll
solution grows with the number of e-foldings as exp�3N�.
When the deviation in H becomes large, the solution
departs from slow roll. This occurs when �H becomes of

the same order as the first correction in (55), i.e., when the
kinetic energy becomes significantly larger than that in the
slow-roll solution. If �H is positive, as we follow the
solution back in time, the kinetic energy blueshifts and
quickly overwhelms the potential energy so the solution
traces back to a kinetic-dominated solution with � diverg-
ing to�1. If �H is negative, the kinetic energy falls away
to zero and the scalar field motion is turned around by the
sloping potential. Again, tracking the solution back in time,
the solution becomes kinetic dominated and the scalar field
diverges to�1. Slow-roll inflation occurs on the boundary
between these two behaviors.

The condition for slow roll to break down is

 �H � �HSe3N �

�
H �

����
V
3

s �
SR
�N� � C�N�; (60)

where �HS is the deviation evaluated on our measure
surface S, near the end of inflation, and C�N� is a relatively
weak function of N.

For large N our perturbed solution is very close to the
slow-roll solution on S, and we can perform the integral
(56) to obtain the integrated probability for N or more e-
folds of inflation,

 P�N� �
�HS

N
�
C�N�e�3N

N
; with N �

Z
S
d�

��������dHd�
��������:

(61)

This is the main result of this section. For example, if V �
m2�2=2, from (55) we find HSR � �m�=

���
6
p
��

�1� 1=�3�2� � . . .� and from (57), N � �2=4. Hence
C�N� � m=

����
N
p
�1�O�1=N�� at large N. We take the mea-

sure surface to be at the value of H where the slow roll
approximation fails: from (55) we see this condition reads
� � 1 in Planck units, which leads to H �m. The nor-
malization factor N � m and we obtain P�N� �
N�1=2 exp��3N�, up to a numerical factor.

Figure 3 shows the tuning needed to obtain a large
number of inflationary e-folds. If we follow a trajectory
back in time, to higher values of H, then the inflationary
trajectory nestles close to the classical boundary H ����������
V=3

p
. The corresponding initial value of � on the surface

H � HS is given by (55). The series converges rather
slowly but a very precise value is easily obtained by a
numerical ‘‘shooting’’ procedure. If the initial � is greater
than the critical value, then the trajectory hits the boundary,
� reverses direction and ends up in kinetic domination,
withH / exp��

��������
3=2

p
��. If, on the contrary, the initial� is

smaller than the critical value, the trajectory diverges from
the boundary and becomes kinetic dominated with H /
exp�

��������
3=2

p
��.
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V. CURVED UNIVERSES

In the last section, we focused on flat universes because
we found that the canonical measure possesses a diver-
gence in the flat limit. Many of our arguments apply
equally well for negatively curved universes (k � �1),
but for positively curved universes the good monotone
properties of H and a do not persist. Nevertheless, for
the purposes of our discussion all that we really need is
that the spatial curvature has a modest effect when j�kj is
small. This is obviously true but for the purposes of com-
pleteness, we exhibit the detailed behavior of the classical
trajectories in the (�, H) plane for nonzero k. Figure 4

shows the negatively curved case, with a modest but non-
negligible value of the spatial curvature at the measure
surface, and Fig. 5 shows a similar picture for a positively
curved universe. In both cases, it is apparent that the spatial
curvature makes little difference to the kinetic-dominated
trajectories when the Hubble parameter is large, since the
scalar kinetic energy scales as a�6 compared to a�2 for the
space curvature term. At lower values of H, the spatial
curvature quickly dominates over the oscillations of the
matter field, whose density scales as a�3. Notice the non-
monotonic behavior of H in the positively curved case.
This has been analyzed in detail by Hawking and Page
[14].

VI. COMPARISON WITH PREVIOUS
DISCUSSIONS

The most recent published discussion of these issues is
in the papers of Hollands and Wald [16,27], and the re-
sponse by Kofman, Linde and Mukhanov [28]. As we have
already mentioned, because our measure is time-reversal
invariant, it does support Hollands and Wald’s claim that
deflation should be equally likely to inflation. As we have
already mentioned, Hollands and Wald’s discussion seems
to criticize the canonical measure �M on the grounds that
it is hypersurface-dependent but as we have discussed in
detail, this criticism does not apply to our situation, in
which the surface H � HS � const is crossed once and
only once by each classical trajectory.

Kofman et al. argue that inflationary dynamics is ‘‘def-
initely not’’ measure preserving because energy and en-
tropy are created during inflation. However, the relevant
energy is, for us, the total Hamiltonian H , which is always
zero. Furthermore, the microscopic dynamics is
Hamiltonian, and if one starts in a definite initial state,
the fine-grained entropy is always zero. It is true that
inflation is a nonadiabatic process, generating coarse-

FIG. 4 (color online). Same as Fig. 2, but for an open universe
with �k � 0:25 on the measure surface H � HS.

FIG. 5 (color online). Same as Fig. 2, but for a closed universe
with �k � �0:25 on the measure surface H � HS.

FIG. 3 (color online). Illustration of the tuning needed to
create the inflationary solution as one follows � backward in
time from a measure surface H � HS. Trajectories which � is
too large on the measure surface encounter the classical turning
point H �

����������������
V���=3

p
, turn around and end up kinetic dominated.

Trajectories in which the initial � is too small fall behind the
inflationary solution and also head towards kinetic domination.
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grained entropy. But the microscopic dynamics is measure-
preserving and time-reversal invariant in that its definition,
and indeed the definition of the multiverseM, does not pick
out a particular direction of time.

More specifically, Kofman et al. assume ‘‘chaotic’’ ini-
tial conditions in which a closed universe is born with
roughly Planckian energy density in the scalar field kinetic
energy, gradient energy, and potential energy. The assump-
tion of equipartition seems to us hard to justify, since it is
by no means clear that there has been time for any sort of
equilibration process. Kofman et al. argue that a gradient-
or kinetic-dominated closed universe would collapse in a
Planck time and hence should be ignored. But, even if one
insists upon considering a closed universe, as is well
known, spatial inhomogeneities can allow an open universe
to form within it via a process akin to bubble nucleation.
Their argument does not exclude negatively curved, or
nearly flat solutions which are kinetic dominated at early
times. In fact, we have found such solutions to dominate
the canonical measure. Finally, Kofman et al. quote a
formula for the probability for creation of a universe
‘‘from nothing’’ which involves an ad hoc sign flip of the
usual formula for the Euclidean action. According to the
usual formula, the most probable universe in fact has the
lowest allowable value of V���, not the highest. So this
argument again seems unconvincing to us.

Finally, Kofman et al discuss the ‘‘attractor’’ behavior
illustrated in the upper plot of Fig. 1. They give an ad hoc
measure which assumes Planckian initial energy density
and a uniform distribution for the angle � between the
initial value of (�, _�) and the � axis. They argue that all
but 1�O�m� of the trajectories undergo inflation from the
Planck era. Since m is of order 10�6 in realistic models,
they argue that inflation is virtually inevitable. However,
they have omitted in their measure the a3 factor in (47),
and this means that the probability of inflation they esti-
mate will depend very sensitively on which circle centered
on the origin in (�, _�) space one chooses to evaluate it.
Kofman et al. also consider imposing their measure at the
end of inflation, and conclude that the probability is sup-
pressed by O�m�. Hence they claim that even if one uses
the late-time measure, the probability of inflation is
O�10�6�. This estimate does not agree with our
calculations.

As we have seen, the probability ofN e-folds of inflation
in the canonical measure is roughly exp��3N�, indepen-
dent of the cutoff ��k or the value ofHS. For 60 e-folds, a
typical minimal number for realistic models, we find a
probability of approximately exp��180�. In the m2�2

model, the probability of inflation running all the way
back to the Planck density is much smaller than this,
approximately exp��m�2� � exp��1012�. This may be
compared to the probability one obtains from quantum
cosmology [13] if one adopts the usual sign for the
Euclidean action, i.e., with probability / exp��SE� and

SE � �24	2=V���. Comparing a Planck-scale instanton,
with ��m�1, with an instanton yielding only one e-fold
of inflation, with �� 1, one finds that the probability of
Planck-scale inflation is � exp��m�2�, which is paramet-
rically of the same order as our classical result.

VII. CONCLUSIONS

We have developed the canonical measure for homoge-
neous, isotropic universes and, we hope, clarified its geo-
metrical structure. We applied this measure to simple
inflationary models and found it to be divergent, in agree-
ment with Hawking and Page. However, we identified the
source of the divergence as being due to the geometrical
and physical degeneracy of solutions which are spatially
very flat, i.e., for which j�kj � 1. Our proposal for re-
moving the divergence is to identify universes which can-
not be observationally distinguished, i.e., for which j�kj is
smaller than a critical value. For this purpose, it was
convenient to work in coordinates �, H, and a in which
the limit is easily imposed. The resulting integral over the
scale factor amay then be performed, leading to an integral
over the matter variables alone. We have shown that the
resulting measure, when evaluated for low Hubble constant
HS on the measure surface, reduces to an adiabatic invari-
ant for the matter fields. In particular, it is independent of
the conjugate angle variable. It is this angle variable which
becomes exponentially focussed during inflation. Hence
we find that the probability of inflation, evaluated with the
canonical measure, is exponentially small, and this result is
very insensitive to the cutoff.

Had we instead chosen to implement our prescription at
a very large value of HS, one for which many e-folds of
inflation are possible, we would have found, on the con-
trary, a strong dependence of the results on the cutoff
parameter ��k. One could choose to live with this con-
clusion, and indeed if HS is chosen large enough, and ��k
small enough, one would find that most classical trajecto-
ries inflate. But there are two reasons for being suspicious
about the conclusion. First, the inferred probability mea-
sure will be strongly cutoff dependent, allowing no firm
conclusions to be drawn. Second, we find it hard to justify
why, if one adopts a time-dependent measure, the decision
as to whether universes are or are not geometrically distinct
should be made at the Planck time, rather than today. These
arguments suggest that some new ingredient or dynamical
principle is needed in the theory, in order to explain why
inflation began.

On the other hand, in an anthropic, or ‘‘top down’’
approach to cosmology, the idea is to select universes on
the basis of what they would be like at low H, not at their
beginning. In that case, it seems clear that the appropriate
measure should be a late-time measure like the one we
have used, not an early one. The same statement would
apply to any approach based on computing the probability
of asymptotic ‘‘out’’ states.
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Even though we have argued that the measure we have
developed is reasonable, and fulfils the conditions origi-
nally proposed by Gibbons, Hawking, and Stewart, we
have no argument that it is unique or even physically
relevant. It seems to be a perfectly satisfactory a priori
measure, that is, an unbiased estimator of our ignorance.
However, its status as such is rather different from proba-
bility distributions which have arisen as a result of some
equilibration process. In our case, there is no obvious
physical mechanism which allows different members of
the ensemble to interact, and without such interactions, the
notion of equilibration is not relevant. What the canonical
measure does is allow one to discuss in a quantitative way
how different proposals for the big bang, or the beginning
of the Universe, cut down the space of classical trajectories
and hence make predictions about the state of the Universe
today.

The fact that the canonical measure, with what seems a
sensible resolution of its divergence, strongly disfavors
many e-folds of inflation, poses a serious puzzle for infla-
tionary theory. It is important, we believe, for inflationary

theory to explain why the kinetic-dominated trajectories
which we have found to overwhelmingly dominate the
canonical measure are somehow excluded. Indeed, the
measure we have calculated is generous to inflation in
that we have assumed spatial homogeneity and isotropy,
and the canonical measure gives equal weight to every
distinct classical solution, even those with very high po-
tential energy density early on. The main conclusion we
draw from this work is that the question of why or how
inflation started remains a deep mystery, and a challenge
for fundamental theory. Until that question is answered, we
should remain cautious about claiming that cosmology’s
classic puzzles are ‘‘solved.’’
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