
Age-dependent decay in the landscape

Sergei Winitzki
Department of Physics, University of Heidelberg, Germany

(Received 28 December 2007; published 6 March 2008)

The picture of the ‘‘multiverse’’ arising in diverse cosmological scenarios involves transitions between
metastable vacuum states. It was pointed out by Krauss and Dent that the transition rates decrease at very
late times, leading to a dependence of the transition probability between vacua on the age of each vacuum
region. I investigate the implications of this non-Markovian, age-dependent decay on the global structure
of the spacetime in landscape scenarios. I show that the fractal dimension of the eternally inflating domain
is precisely equal to 3, instead of being slightly below 3, which is the case in scenarios with purely
Markovian, age-independent decay. I develop a complete description of a non-Markovian landscape in
terms of a nonlocal master equation. Using this description I demonstrate by an explicit calculation that,
under some technical assumptions about the landscape, the probabilistic predictions of our position in the
landscape are essentially unchanged, regardless of the measure used to extract these predictions. I briefly
discuss the physical plausibility of realizing non-Markovian vacuum decay in cosmology in view of the
possible decoherence of the metastable quantum state.
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I. INTRODUCTION

According to today’s accepted cosmological data, the
universe is now undergoing accelerated expansion with an
approximately constant Hubble rate Hnow. However, mod-
els of string theory suggest that this accelerating state may
be merely a metastable vacuum that is destined, after a long
time, to decay via quantum tunneling into other states with
different values of H. The recently developed paradigm of
‘‘string theory landscape’’ [1] involves a very large number
of metastable vacua, corresponding to local minima of an
effective potential in field space. The value of the potential
at each minimum determines the effective Hubble rate in
the corresponding vacuum. A similar scenario combining
inflationary evolution and tunneling was proposed earlier
in Ref. [2] under the name of ‘‘recycling universe.’’ In all
these scenarios, the universe becomes a ‘‘multiverse,’’ that
is, an infinite ensemble of large, causally disconnected
spatial regions. Some of these regions contain galaxies
and stars, while other regions are undergoing inflation
and generating new vast domains of space. Each spatial
domain may be in a metastable vacuum state with a suffi-
ciently long decay time, so that reheating can occur and the
standard cosmological evolution can proceed before the
transition to a different vacuum state.

The theory allows us, in principle, to determine the set of
possible vacua but does not predict our position in the
landscape with certainty. After many transitions, the posi-
tion of our observable patch of the universe in the land-
scape becomes random. Nevertheless, one would like to
explain the present value of the cosmological constant and
possibly other observables. Therefore one attempts to cal-
culate the probability of being in a vacuum of a given kind,

for a ‘‘typical’’ observer. It is notoriously difficult to for-
mulate an unambiguous and well-behaved measure on the
set of all possible observers such that the typical observers
are selected without bias; see e.g. [3,4] for a recent dis-
cussion and Refs. [5–8] for reviews of the proposals of
observer-based measure.

In this paper I study a different aspect of the measure
problem. All currently proposed measures are based on the
assumption that the decay of a metastable state proceeds
independently of the individual age of that state. In other
words, it is assumed that the random process of transitions
between different states in the landscape is a Markov chain.
Markovian transition probabilities are determined only by
the current state and have no memory of previous transi-
tions. (The ‘‘memory’’ effect due to bubble collisions [9]
does not modify transition probabilities.) Vacuum decay
proceeds through bubble nucleation and is normally de-
scribed via the nucleation rate per unit 4-volume [10,11],

 ��4D� � O�1�H4 exp
�
�SI �

�

H2

�
; (1)

where SI is the relevant instanton action and H is the
Hubble rate of the parent vacuum (I use the Planck units
throughout the paper). The transition rates between differ-
ent metastable vacua can be considered (in principle)
known in a given model of the landscape. For a fixed 3-
volume V, the probability of nucleating no bubbles after
time t is exponentially small, / exp����4D�Vt�.

A statistical description of evolution in the landscape
can be obtained [2,12] by considering the fraction f��t� of
the comoving volume occupied by bubbles of type � at
time t. One can approximate the transition to a different
vacuum as a series of random nucleation events, each event
resulting in an instantaneous conversion of a volume H�3

�
of vacuum type � into the same volume of vacuum type �.
The rate of this conversion per unit time, denoted ��!�,
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can be computed according to Eq. (1) with appropriate
normalization factor,

 ��!� � O�1�H� exp
�
�S�!� �

�

H2
�

�
: (2)

Defining for convenience ��!� � 0, one then writes the
master equation describing the evolution of f��t�,

 

df�
dt
�
X
�

���!�f� � ��!�f��: (3)

This equation can be solved with initial conditions f��0�.
Some measure prescriptions based on the comoving distri-
bution were proposed in Refs. [13–15].

Another useful distribution is the 3-volume V��t� of
spatial regions within bubbles of type � at time t. The
evolution equation for V��t� differs from Eq. (3) by the
volume expansion factors,

 

dV�
dt
� 3H�V� �

X
�

���!�f� � ��!�f�� (4)

 �
X
�

M��V�; (5)

where the matrix M�� is defined by

 M�� �

�
3H� �

X
�

��!�

�
��� � ��!�: (6)

The volume-weighted master equations are used in
volume-based measure prescriptions (e.g. Refs. [12,16]).

All the existing measure prescriptions depend on the
properties of the late-time behavior of the distributions
f��t� and V��t�. The late-time asymptotics of the solutions
of Eqs. (3) and (4) are always exponential. For instance, the
volume distribution has the late-time asymptotics V� /
c�e

�t, where � > 0 is the dominant eigenvalue of the
matrix M��. The values of the coefficients c� are deter-
mined by the right eigenvector of M�� corresponding to
the eigenvalue �.

Recently, Krauss and Dent [17] called attention to the
fact that the decay of metastable states becomes subexpo-
nential at very late times. In typical quantum-mechanical
metastable systems in d-dimensional space, the probability
of not decaying (the ‘‘survival probability’’) initially de-
creases exponentially as e��t, where � is the decay rate,
but eventually starts falling off as t�d after a (very long)
crossover time T 	 5��1 ln�E=��, where E is the energy
difference between the metastable state and the final stable
state. Effectively, the tunneling rate for all transitions
between states goes to zero as ��t� / t�1 after a (state-
dependent) crossover time. It is important to note that the
transition dynamics depends on the ‘‘age’’ of the current
state, i.e. on the time elapsed since the last transition. With
this modification, the transition process becomes a non-
Markov random walk, and Eqs. (3) and (4) no longer apply.

In particular, the late-time asymptotics of the bubble dis-
tributions f��t� and V��t� are no longer purely exponential.
For this reason it is interesting to investigate the implica-
tions of the non-Markov transitions for the measure calcu-
lations, which depend in an essential way on the late-time
behavior of f��t� and V��t�.

In this paper I study the evolution of the landscape
assuming that the late-time asymptotic of the survival
probability becomes subexponential at a state-dependent
crossover time. The main results of this first study are as
follows. I show that the fractal dimension of the inflating
domain is exactly equal to 3, while it is always slightly
below 3 in Markovian models. Then I develop an explicit
non-Markovian description of the transition dynamics in
terms of a master equation that is nonlocal in time. Using
that equation, I derive the late-time asymptotics of the
volume distributions V��t� using the proper time coordi-
nate t. The results show explicitly, within a controlled
approximation, that the volume ratios V��t�=V��t� ap-
proach a constant at late times and are approximately the
same as those computed within the Markovian situation,
except for the volume in bubbles of type 0 having the
largest Hubble rate H0 � max�H�. The bubbles of type
0 now entirely dominate the volume of the universe at a
fixed time t, whereas their volume fraction was large but
finite in Markovian scenarios. These results (obtained us-
ing the proper time gauge) applied to landscapes where a
single vacuum type has the largest Hubble rate of all
available vacuum types. I also show that the comoving
volume distributions remain essentially unchanged in the
non-Markovian regime. This suggests that the results ob-
tained in any measure prescription (whether volume-based
or worldline-based) do not need any modification in view
of the modified late-time decay. I conclude with a brief
discussion of the viability of the non-Markovian assump-
tion in the cosmological context.

II. NON-MARKOVIAN SIERPIŃSKI CARPET

I begin by examining the global structure of the space-
time undergoing non-Markovian vacuum decay. A particu-
lar version of the random Sierpiński carpet, or ‘‘inflation in
a box,’’ was considered in Ref. [18] as a drastically sim-
plified toy model mimicking the global geometry of such a
spacetime. In this model, time elapses in discrete steps, and
the space is reduced to a two-dimensional square domain
0< x, y < 1, where x, y are the comoving coordinates. The
entire initial Hubble-size domain is assumed to be initially
inflating. To imitate inflation during one time step, one
subdivides the initial inflating square into N 
 N equal
subsquares of size N�1 
 N�1; at the next step, each
subsquare will again have the Hubble proper size. Then
one randomly marks some of the smaller squares as ‘‘ther-
malized,’’ assuming that each Hubble-size inflating square
continues inflation with a probability q (where 0< q< 1)
and thermalizes with probability 1� q, independently of
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all other squares. The selection of thermalized squares
concludes the simulation for one time step. At the next
time step, the same procedure of subdivision and random
thermalization is applied to each Hubble-sized inflating
square, while the ‘‘thermalized’’ squares do not evolve
any further (see Fig. 1). This process is continued indef-
initely and generates a fractal set of measure zero consist-
ing of points that never enter any thermalized squares
(called the ‘‘eternal points’’ in Ref. [19] where rigorous
definitions are given). This set represents the eternally
inflating subdomain of the spacetime. Under the condition
N2q > 1, the fractal dimension of the eternally inflating
domain is � � 2� lnq= lnN > 0, and future-eternal infla-
tion occurs with a nonzero probability [18].

As formulated, the model is Markovian since the ther-
malization probability at each step is independent of the
age of the inflating square. The probability of remaining in
the inflationary regime (the ‘‘survival probability’’) after t
time steps is qt � e��t, where� � ln1

q . Let us now modify
this toy model by assuming that the survival probability is
given by a function S�t� that interpolates between the
initially exponential falloff S�t� � e��t for t� T and
the power-law asymptotic S�t� � S0t�p for t T, where
p is a fixed constant and T is the crossover time. We would
like to compute the fractal dimension of the set of eternal
points in this non-Markovian model.

Let us denote by X�t� the probability of the presence of
at least one eternal point within an inflating square at time
t. The quantity X�t� can be computed explicitly, but it is
sufficient for the present purposes to obtain the asymptotic
value of X�t� at t!1. Since the thermalization probabil-
ity per step goes to zero at late times, the value of X�t�
approaches 1 as t! 1. More precisely, X�t� is the nonzero
solution of the equation

 1� X�t� � p�t� � �1� p�t���1� X�N
2
: (7)

An approximate solution of this equation for p�t� � 1 is
1� X � p�t�. Since p�t� ! 0 as t! 1, we have X�t� !
1. Hence the average number of inflating squares contain-
ing at least one eternal point at a late time t is � S�t�N2t,
while the linear size of each square is N�1. So the fractal
dimension of the eternally inflating set is

 � � 2� lim
t!1

lnS�t�
lnN�t

� 2� lim
t!1

ln�S0t
�p�

t lnN
� 2: (8)

It can be shown that the eternally inflating domain consists
of an infinite merged cluster when it is formed as a random
Sierpiński carpet with fractal dimension 2. It is important
to note that the eternal set still has measure zero because
every comoving point will reach thermalization with
probability 1.

By analogy, one can investigate the eternally inflating
domain in a three-dimensional space and conclude that its
fractal dimension is 3. A quick argument leading to this
conclusion consists of estimating the growth of the 3-
volume of the inflating domain as V�t� / e3Htt�p in the
regime of power-law decay at late times. A domain grow-
ing as V�t� / e�Ht is interpreted as a lacunary fractal with
dimension � [18,20], regardless of subexponential correc-
tions. Therefore, the fractal dimension of the inflating
domain is always equal to 3 in the non-Markovian case.
This is only a small correction to the results obtained in
typical scenarios of eternal inflation where the fractal
dimension is very slightly below 3 (see, for instance,
Refs. [20,21]). Therefore, the global geometry of the
spacetime is not significantly modified in these scenarios
even if the late-time decay is subexponential.

III. EVOLUTION IN A NON-MARKOVIAN
LANDSCAPE

The next issue is whether the results of applying the
various landscape measure proposals are modified when
non-Markovian decay is assumed. In this section I derive
the suitably modified versions of Eqs. (3) and (4) and
obtain their late-time asymptotics. Since all the different
measure proposals require computing the late-time behav-
ior of these same evolution equations, the results of the
present calculation will be equally relevant to every mea-
sure proposal.

To describe the evolution of spacetime in a landscape
scenario with non-Markovian transitions, one needs to
specify the transition rate ��!��t� between vacua � and
� as a function of the age t of the parent vacuum �. The
precise form of ��!��t� will be model-dependent except
for the properties ��!��t� � ��!� � const for t < T�!�,
where T�!� is the crossover time, and ��!��t� ! 0 for
t T�!�. For simplicity I will assume below that the
crossover time T�!� � T is independent of � and �.
Without this technical assumption, the analysis will be
more complicated without yielding significantly different
results. If transitions �! � have different crossover times
T�!�, the results of the present analysis will be approxi-
mately applicable at sufficiently late times t such that t
T � max�;�T�!�.

Since transition probabilities depend on the age, it is not
sufficient to consider the probability distributions f��t� and
V��t� mentioned above. One needs to introduce more de-

inflating regions

thermalized regions

FIG. 1 (color online). First steps in the construction of a
random Sierpiński carpet with N � 5 and q � 5=6.
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tailed distributions that include information about the times
of the previous transitions.

A. Volume distributions

I first consider the volume distribution. Assume for
convenience that there is a single initial bubble of type
�0 formed at time t � 0 with unit volume, and that we are
interested in describing only the evolution of the interior of
the initial bubble and any bubbles nucleated in it. (The case
of several initial bubbles is a straightforward extension.)
Let V��t0; t�dt0 denote the volume at time t of bubbles of
type � that were formed at an earlier time between t0 and
t0 � dt0. By definition, we set V��t0; t� � 0 for t0 > t. The
volume remaining from the initial bubble could be in-
cluded in V�0

�t0; t� as a contribution of the form

��t0�V
�0�
�0 �t�, but it is technically more convenient to ex-

clude the initial bubble from V��t0; t� and to account for its
volume V�0��0 �t� separately. The quantity V�0��0 �t� represents
the proper volume that remains from the initial bubble and
has not decayed by time t. The volume V�0��0 �t� of the initial
bubble grows with the rate 3H�0

and decreases due to
nucleation of other bubbles:

 

dV�0��0 �t�
dt

� 3H�0
V�0��0 �t� �

X
�

��0!��t�V
�0�
�0 �t�: (9)

Integrating Eq. (9) with the initial condition V�0��0 �0� � 1,
we find

 V�0��0 �t� � exp�3H�0
t�S�0

�t�; (10)

 S��t� � exp
�
�
Z t

0

X
�

��!��t0�dt0
�
: (11)

The auxiliary function S��t� is the survival probability of a
bubble of type � and age t.

The evolution equation for V��t0; t� accounts for the
growth of volume at rate 3H�, age-dependent decay into
bubbles of different kinds, and age-dependent nucleation
of zero-age bubbles of kind � from other bubbles (includ-
ing the original bubble):
 

@V��t0; t�
@t

� 3H�V��t0; t� �
X
�

��!��t� t0�V��t0; t�

� ��t� t0�
Z t

0
d~t0

X
�

��!��t� ~t0�V��~t0; t�

� ��t� t0���0!��t�V
�0�
�0 �t�: (12)

The factors ��t� t0� account for the fact that bubbles
nucleated at time t have zero age at that time and therefore
contribute to the distribution V��t0; t) only at t0 � t.

Noting that V��t0; t� with t � t0 is decoupled from other
V��t0; t�, we have (for t > t0)

 V��t0; t� � V��t0; t0� exp�3H��t� t0��S��t� t0�: (13)

It remains to determine the function V��t0; t0� � U��t0�.
Integrating Eq. (12) in t over an infinitesimal interval
around t � t0 and using Eq. (13) and the condition
V��t0; t� � 0 for t < t0, we obtain a closed system of
integral equations for U��t�,

 U��t� �
X
�

Z t

0
d~t0U��~t0�e

3H��t�~t0�S��t� ~t0���!��t� ~t0�

(14)

 � ��0!��t�e
3H�0

tS�0
�t�: (15)

It remains to determine the asymptotic behavior of the
functions U��t�.

1. Markovian regime

I first consider times t before the crossover time scale,
0< t < T. At these times, the behavior of the system is
(approximately) Markovian, and one expects to recover the
standard equations (4). In Eq. (15) we may approximately
set

 ��!��t� ~t0� � ��!� � const; (16)

 S��t� ~t0� � exp���t� ~t0����; (17)

where we denoted by �� �
P
���!� the total decay rate of

the vacuum type � in the Markovian regime. Then Eq. (15)
is rewritten as

 U��t� �
X
�

��!�
Z t

0
d~t0U��~t0�e

�3H������t�~t0�

� ��0!�e
�3H�0

���0
�t: (18)

Although this system of equations appears to be nonlocal
in time, it can be reduced explicitly to a Markovian system.
We pass to new variables

 V��t� �
Z t

0
d~t0U��~t0�e�3H������t�~t0� � ���0

e�3H�0
���0

�t:

(19)

The quantity V��t� represents the total volume inside bub-
bles of type � at time t integrated over the bubble ages and
also including the volume of the initial bubble. The varia-
bles U��t� are expressed through V��t� as

 U��t� � e�3H�����t@t�e��3H�����tV��t��

� _V� � �3H� � ���V�: (20)

Hence the volumes V��t� satisfy the differential equation

 

_V � � �3H� � ���V� �
X
�

��!�V� �
X
�

M��V� (21)

with the initial condition V��0� � ���0
, which is equiva-

SERGEI WINITZKI PHYSICAL REVIEW D 77, 063508 (2008)

063508-4



lent to Eqs. (4); the matrix M�� is defined by Eq. (6). The
late-time asymptotic of solutions is exponential,

 V��t� � c�e
�t; (22)

where � is the largest eigenvalue of the matrix M��. It is
important to note that � > 3H� � �� for all �.

The eigenvalue � and the corresponding eigenvectors of
M�� can be estimated explicitly under some technical
assumptions. To be specific, let us denote by H0 and H1

the first and the second largest values among all the H�,
and let us assume that the nucleation rates are small,

 ��!� � H0 �H1 for all �;�: (23)

Since the nucleation rates are typically exponentially
small, one can disregard terms of higher order in ��!�.
Then the matrix M�� can be represented as a diagonal
matrix ����3H� � ��� with a small perturbation of order
��!�, and the dominant eigenvalue is found by standard
perturbation theory as

 � � 3H0 � �0 �
X
��0

��!0�0!�

3H0 � 3H�
�O��3

�!��: (24)

The second-order term in � will play a role below.
The coefficients c� in Eq. (22) are proportional to the

components of the (right) dominant eigenvector r�0 of
M��, so that c�=c� � r�0=r�0. The ratios of components
of the eigenvector r�0 can be found approximately as

 

r�0

r00
�

�0!�

3H0 � 3H�
�O��2

�!��; � � 0: (25)

It is useful to compute also the absolute normalization of
the coefficients c�, which will yield an explicit late-time
asymptotic V��t� � c�e�t as a function of the initial con-
ditions V��0� � ���0

. The time-dependent solution V��t�
can be decomposed as

 V��t� �
X
n

vnr�ne�nt; (26)

where �0; �1; . . . and r�0; r�1; . . . are the eigenvalues and
the corresponding (right) eigenvectors of M��. The late-
time behavior of V��t� is dominated by e�0t, where �0 � �
is the largest eigenvalue.

The coefficients vn are found by decomposing the initial
condition vector V��0� in the basis fr�ng,

 V��0� �
X
n

vnr�n: (27)

The coefficients vn are computed as the products of the left
eigenvectors l�n, n � 0; 1; . . . of M�� with the initial con-
dition vector V��0� � ���0

,

 vn �
X
�

l�nV��0� � l�0n; (28)

where we assumed that the dual bases fl�ng and fr�ng are

normalized,

 

X
�

l�mr�n � �mn: (29)

We are interested only in the coefficients V�0 correspond-
ing to the dominant eigenvalue � � �0, so v0 � l�00. The
vector l�0 is determined perturbatively under the assump-
tion (23) through the ratios

 

l�0

l00
�

��!0

3H0 � 3H�
�O��2

�!��; � � 0: (30)

Hence, a suitable normalization of the eigenvectors is

 r00 � 1; r�0 �
�0!�

3H0 � 3H�
�O��2

�!��; � � 0;

(31)

 l00 � 1; l�0 �
��!0

3H0 � 3H�
�O��2

�!��; � � 0:

(32)

Now we may compute explicitly

 c� � v0r�0 � r�0l�00: (33)

The full solution U��t� can be written as

 U��t� �
X
n

l�0nr�n��n � 3H� � ���e�nt; t < T:

(34)

The late-time (but still Markovian) behavior of U��t� is

 U��t� � r�0l�00��� 3H� � ���e�t: (35)

Although the absolute values of the coefficients c�
depend on the initial conditions, the ratios c�=c� do not.
This is the standard property of Markovian models: the
late-time asymptotics do not depend on the initial
conditions.

2. Non-Markovian regime

Having computed the early-time behavior of U��t�, I
now consider the asymptotics of U��t� at late times t for
which the survival probabilities S��t� are subexponential.
Since the decay rate is the logarithmic derivative of the
survival probability, it follows that ��!��t� / t�1 at those
times. To simplify calculations, I assume that

 S��t���!� � R��t���!� for all �; (36)

where the function R��t� describes the transition from the
Markovian to the non-Markovian regime as

 R��t� �
�

exp����t�; t < T;
exp����T��

T
t �
p�; t > T;

(37)

where T is the crossover time and p� > 0 are constants of
order 1. (For the cited examples of subexponential decay
with S��t� / t�3 one will have to set p� � 4.) The as-
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sumption of a common time profile R��t� and a common
crossover time T, independent of the vacuum type � and of
the decay channel �! �, may be insufficiently precise in
some scenarios. Here I employ this technical assumption as
a first step towards a more complete calculation.

Let us first determine the ansatz for the asymptotics of
U��t� by examining Eq. (15). Since U��t� receives contri-
butions from all the subexponentially decaying states � �

� according to Eq. (15), the late-time asymptotics ofU��t�
must grow at least as fast as the fastest-growing function
among e3H�tR��t� for all �. Hence, the exponential part of
the asymptotic is U��t� / e

~�t, where ~� is not less than 3H0

and H0 is the largest available value among H�. However,
the function U��t� cannot grow faster than e3H0t, i.e. as e~�t

with ~� > 3H0, because in that case the integral in line (14)
is dominated by ~t0 � t (recently nucleated bubbles) where
the survival probabilities S��t� ~t0� are Markovian. So the
Markovian calculation leading to Eq. (18) still holds and
yields the contradictory result ~� � � � 3H0 � �0 < 3H0.
Hence, ~� � 3H0. We need to allow for the possibility that
U��t� contains also a subexponential asymptotic, U��t� /
e3H0tQ�t�, where Q�t� is a subexponential function decay-
ing not faster than R��t� at t T. (Below I will show that
Q�t� / R0�t�, but at this point the behavior ofQ�t� is not yet
determined.) Thus, the late-time asymptotics of U��t� are
of the form

 U��t� � q�e
3H0tQ�t�; t > T; (38)

while the Markovian behavior was determined above in
Eq. (34). The task at hand is to determine the coefficients
q� and the function Q�t� for the non-Markovian asymp-
totics (38).

Let us define the auxiliary quantities

 W��t� �
Z t

0
dt0U��t0�e3H��t�t0�R��t� t0�

� ���0
e3H�tR��t�; (39)

so that Eq. (15) becomes

 U��t� �
X
�

��!�W��t�: (40)

We will first determine the asymptotics of the quantities
W��t� for t T.

The definition of W��t� involves an integral over t0 that
needs to be estimated. It is convenient to estimate it sepa-
rately for � � 0 and � � 0. For � � 0, the function
U��t0� grows as e�t0 until t0 � T; subsequently U��t0�
grows even faster, as e3H0t. This function is multiplied by
a decay factor e�3H�t0R��t� t0� that never compensates
the growth of U��t0� if � � 0 because �� 3H�  �� for
� � 0. Therefore, the integral over t0 is dominated by the
contribution near the upper limit t0 � twhere R��t� t0� is
Markovian while U��t� / e3H0t. One obtains the asymp-
totic estimate

 W��t� �
q�Q�t�e3H0t

3H0 � 3H� � ��
; � � 0; (41)

where the term / e3H�tR��t� can be disregarded since it is
exponentially smaller at late times.

Estimating the quantity W0�t� requires somewhat more
work. One needs to split the integral in the definition of
W��t� into three subintervals �0; T�, �T; t� T�, and �t�
T; t� where different factors in the integrand have either
Markovian or non-Markovian behavior. These three inte-
grals are estimated as follows. The first integral,

 

Z T

0
dt0U0�t0�e

3H0�t�t0�R0�t� t0�; (42)

is dominated by the contribution of t0 � 0 because U0�t0�
in the Markovian regime grows as e�t0 , while � < 3H0.
Using Eq. (34), we find

 

Z T

0
dt0U0�t0�e

3H0�t�t0�R0�t� t0�

� e3H0tR�t�
X
n

vnr0n
�n � 3H0 � �0

3H0 � �n
: (43)

The sum in the last line can be estimated without actually
computing all the eigenvectors r0n by noting that 3H0 �
�n  �0 for n � 0, and thus the factor

 

�n � 3H0 � �0

3H0 � �n
� �1�O���!��; n � 0: (44)

For n � 0 this factor is negligible,

 

�� 3H0 � �0

�0
� O�H�1

0 ��!��; (45)

where we used Eq. (24). By splitting off the n � 0 term
from the sum in Eq. (43), one now obtains

 

X
n

vnr0n
�n � 3H0 � �0

3H0 � �n
� �

X
n�0

vnr0n: (46)

The last sum can be evaluated using Eq. (27),

 V0�0� �
X
n

vnr0n � v0r00 �
X
n�0

vnr0n � �0�0
; (47)

and we find

 

X
n

vnr0n
�n � 3H0 � �0

3H0 � �n
� v0 � �0�0

: (48)

Hence, the expression (43) is estimated as

 e3H0tR0�t��v0 � �0�0
�: (49)

The integral over the second interval,

 

Z t�T

T
dt0U0�t0�e

3H0�t�t0�R0�t� t0�; (50)

involves both U0�t0� and R0�t� t0� in the non-Markovian
regime. We find
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Z t�T

T
dt0U0�t0�e

3H0�t�t0�R0�t� t0�

� q0e
3H0t

Z t�T

T
dt0Q�t0�R0�t� t0�: (51)

Since both R0�t� and Q�t� are decaying functions, we may
estimate the integral in Eq. (51) as the sum of the contri-
butions from intervals of order T at the two ends t0 � T
and t0 � t� T,

 q0e
3H0t�R0�t�Q�T�O�T� �Q�t�R0�T�O�T��: (52)

This precision is sufficient since these terms will not play a
significant role in the final result.

The integral over the third interval involves the
Markovian R0�t� t0� and is dominated by t0 � t,

 

Z t

t�T
dt0U0�t0�e3H0�t�t0�R0�t� t0� �

q0

�0
Q�t�e3H0t; (53)

where we disregarded e��0T � 1. (Note that �0T  1.)
Putting together the contributions of the three intervals

as well as the last term in Eq. (39), we obtain

 W0�t� � e3H0tR0�t�v0 � q0e
3H0t��1

0 Q�t�

� q0e3H0tR0�t�Q�T�O�T�; (54)

where we disregarded

 Q�t�R0�T�O�T� � q0e3H0t��1
0 Q�t� (55)

because

 R0�T�O��0T� � e��0TO��0T� � 1: (56)

Finally, we substitute the ansatz (38) and the estimates
(41) and (54) into Eqs. (40) for U��t�. In the limit t T,
we may divide through by the factor e3H0tQ�t� and obtain a
system of equations for q� and Q�t�,

 q0 �
X
�

��!0

q�
3H0 � 3H� � ��

; (57)

 

q� �
X
�

��!�
q�

3H0 � 3H� � ��

� �0!��v0 � q0Q�T�O�T��lim
t!1

R0�t�
Q�t�

; � � 0:

(58)

This is an inhomogeneous linear system for fq�g.
Let us consider the possible values of limt!1R0�t�=Q�t�

that show whether Q�t� is asymptotically dominant over
R0�t�. Since Q�t� in any case does not decay faster than
R0�t�, there are only two possibilities: either the limit is
zero or it is nonzero. I will now show that this limit must be
nonzero.

If limt!1R0�t�=Q�t� � 0, we rewrite Eqs. (57) and (58)
as

 q� �
X
�

��!�
q�

3H0 � 3H� � ��
; � � 0; 1; . . .

(59)

Passing to auxiliary variables

 s� �
q�

3H0 � 3H� � ��
; (60)

we find

 3H0s� �
X
�

M��s�: (61)

Since the largest eigenvalue of M�� is � < 3H0, it follows
that 3H0 is not an eigenvalue of M��. Hence, the only
solution of the homogeneous system (59) is q� � 0. This
contradicts the assumption that q�e3H0tQ�t� is the leading
asymptotic of U��t�. Therefore, Q�t� decays exactly as
R0�t� at late times.

Since Eq. (58) depends only on the ratio Q�T�=Q�t�, the
normalization of the Q�t� could then be adjusted such that
limt!1R0�t�=Q�t� � 1. The value Q�T� is of order e��0T

due to the continuity requirement

 U��T� � q�e3H0TQ�T� � c�e3�T: (62)

Therefore, the term q0Q�T�O�T� in Eq. (58) is exponen-
tially small and can be neglected. We note, however, that
its magnitude depends on the initial conditions through the
coefficient c� 	O��0�, which introduces, strictly speak-
ing, an exponentially small dependence on initial condi-
tions, of order O��0T�e��0T .

Finally, we rewrite Eqs. (57) and (58) through the var-
iables s� as

 3H0s� �
X
�

M��s� � v0�0!�: (63)

This is an inhomogeneous system of equations with a
nondegenerate matrix, and so the solution is unique. It
follows that all s� are of order v0��!�, so an approximate
expression for the solution is readily found as

 s0 �
v0

�0

X
�

��!0�0!�

3H0 � 3H�
; (64)

 s� �
v0�0!�

3H0 � 3H�
; � � 0: (65)

The corresponding values of q� (neglecting higher orders
of ��!�) are

 q0 � v0

X
�

��!0�0!�

3H0 � 3H�
; (66)

 q� � v0�0!�; � � 0: (67)

We note that the solution depends on the initial bubble
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through v0 only in the overall normalization; the ratios
q�=q� are independent of v0.

Having determined the auxiliary quantities U��t�, we
can now compute the non-Markovian volume distribution
V��t� as

 V��t� �
Z t

0
dt0U��t0�e3H��t�t0�S��t� t0�

� ���0
e3H�0

tS�0
�t�: (68)

For � � 0, the integral in Eq. (68) is dominated by t0 � t,
which yields a term / e3H0t, so the second term in Eq. (68)
is negligible. Hence, by setting Q�t� � R0�t� and q� �
v0�0!� one obtains the estimate

 V��t� �
v0�0!�

3H0 � 3H� � ��
R0�t�e

3H0t; � � 0: (69)

We note that the ratios of volumes V��t�=V��t� are inde-
pendent of the initial condition parameter v0 and of time,
indicating a ‘‘stationarity’’ of the solutions V��t� with � �

0. Moreover, these ratios are equal to the ratios obtained in
the Markovian regime,

 lim
t!1

V��t�
V��t�

�
c�
c�
; �; � � 0: (70)

The imprecision in the above equality is exponentially
small, of order O��0T�e��0T , as noted before. [To simplify
calculations, we also carried an imprecision of order
��!�=�H0 �H1� in the expressions for c�, but Eq. (70)
also carries that imprecision. This limitation is due to the
approximations adopted in the present paper.]

It remains to compute V0�t�. For � � 0, the estimation
of the integral in Eq. (68) proceeds similarly to the argu-
ment leading to Eq. (54), except that R0�t� is replaced by
S0�t� which decays slower. The result is

 V0�t� � e3H0t�v0S0�t� � q0��1
0 Q�t��: (71)

Since at large t

 Q�t� � R0�t� � S0�t�
�0!��t�
�0!�

� S0�t�; (72)

the dominant asymptotic for V0�t� for t T is

 V0�t� � e3H0tv0S0�t�: (73)

B. Discussion

We will now interpret the results of the calculation in the
previous section. Since Q�t� � S0�t� at late times, the
volume V0�t� within bubbles of type 0 grows asymptoti-
cally faster than all other V��t� for � � 0,

 lim
t!1

V0�t�
V��t�

/ lim
t!1

S0�t�
R0�t�

� 1; � � 0: (74)

This indicates that the 3-volume at time t is entirely

dominated by the bubbles of type 0, which we have labeled
as those having the largest Hubble rate H0 � max�H�.
Moreover, since the integral in Eq. (68) for � � 0 is
dominated by t0 � 0, it follows that almost all of the
volume in bubbles of type 0 at time t is in the very old
regions of type 0. These regions of type 0 either belong to
the original bubble (if �0 � 0), or were nucleated early on
(if �0 � 0) and, by chance, have remained without decay
for almost all of the time t. This dominance does not
depend on the initial conditions and is due to the fact that
nonexponential decay makes the nucleation of other types
of bubbles less likely in very old regions. The absolute
dominance of bubbles of type 0 will set in after time T.
This is different from the Markovian situation1 where
bubbles of type 0 dominate with a finite (but very large)
ratio,

 lim
t!1

VMarkov
0 �t�

VMarkov
� �t�

�
c0

c�
�

3H0 � 3H�

�0!�
 1: (75)

Thus the qualitative picture of the distribution of volume in
space has changed due to the non-Markovian decay, but the
change is not drastic. This conclusion is similar in spirit to
that obtained in Sec. II, where the fractal dimension of the
eternally inflating domain was modified from 3� ", where
"� 1, to exactly 3.

On the other hand, the 3-volumes V��t� within other
types of bubbles � � 0 grow proportionally to each other,
and the ratios V�=V� are almost the same (up to exponen-
tially small corrections) as those obtained in a Markovian
calculation. Therefore, any measure prescription that de-
pends on the asymptotic ratios of volumes, V�=V�, will
give unchanged predictions as long as one asks about the
volumes of bubbles of subdominant types (� � 0). Since
the bubbles of type 0 (presumably, with a Planck-scale H0)
are not especially interesting observationally, one can con-
clude that a possible non-Markovian decay has no effect on
predictions obtained via any measure prescriptions based
on volume ratios.

The considerations in the present paper are limited to
proper time gauge and to landscape scenarios satisfying the
assumptions (23). The methods developed here are appli-
cable to landscapes of any type, and future work will show
whether the conclusions hold in more general cases.

1The 3-volume is not a gauge-invariant quantity, and state-
ments about dominance of 3-volume at fixed time depend
sensitively on the choice of the time variable [18]. In particular,
in Markovian models the 3-volume is not dominated by fastest-
expanding bubbles if one chooses the e-folding time � � lna as
the time coordinate. A similar gauge dependence is expected in
the non-Markovian case. The present calculation focuses on the
effects of non-Markovian decay, which are arguably more pro-
nounced in the proper time gauge.
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C. Comoving distributions

I now turn to considering the comoving distribution. One
can define the distribution f��t0; t�dt0 as the fraction of
comoving volume at time t in bubbles of type � that were
formed at an earlier time between t0 and t0 � dt0. As
before, we set f��t0; t� � 0 for t0 > t; the volume remain-
ing from the initial bubble is not included in f��t0; t� but
accounted for separately as the function f�0��0 �t�. The for-
malism and the equations for the distribution f��t0; t� are
quite similar to those developed above for the volume
distribution V��t0; t� except for the absence of the volume
growth factors H�.

Instead of writing out the equations and the solutions for
f��t0; t�, a simple consideration suffices to show that non-
Markovian effects are irrelevant for the distributions of
comoving volume. The comoving volume fractions f��t�,
defined regardless of age, exponentially quickly become
constant because the total comoving volume is conserved,
and the dominant eigenvalue of the relevant Markovian
matrix is equal to zero. The nucleation of bubbles will be
always dominated by new bubbles rather than by ‘‘aged’’
comoving volume, simply because the comoving fraction
of the aged volume quickly goes to zero. In fact, the aged
comoving volume has a smaller nucleation rate,
��!��t� ! 0 for t! 1, and therefore plays an even less
significant role in nucleation of new bubbles as in
Markovian models. This is in contrast to the situation
with the volume-weighted distributions, where the aged
volume is rewarded by an exponentially large extra growth
factor e3H0t compared with the new volume that grows
slower, as e�3H0��0�t. Therefore, the non-Markovian decay
law will introduce only a vanishingly small correction to
the predictions obtained through comoving-volume mea-
sure prescriptions.

IV. IS AGE-DEPENDENT DECAY
COSMOLOGICALLY RELEVANT?

A subexponential asymptotic at late times is a generic
feature of quantum-mechanical systems. This feature can
be understood heuristically as follows [17]. Decay is due to
the spreading of the wave function away from the initial
metastable state. However, the wave packet keeps spread-
ing even after tunneling out of the initial domain. If the
evolution proceeds without any wave function collapse due
to measurements, the tail of the outgoing wave packet will
reach back to the initial state. Since the spreading is a
power-law process (the root mean square uncertainty in
position grows proportionally to time), there will be a
power-law tail of the wave packet that overlaps with the
initial domain. Hence, the probability of remaining in the
initial state has a power-law late-time asymptotic. These
considerations apply to tunneling processes in field theory
as well because tunneling occurs essentially along a one-

dimensional path in field space, corresponding to the in-
stanton solution.

On the technical level, a necessary condition for the
existence of the subexponential asymptotic is that the
Hamiltonian of the system must be bounded (either from
below or from above). An elementary consideration is as
follows. The probability of remaining in the metastable
state j i is

 P�t� � jh jeiĤtj ij2; (76)

where Ĥ is the total Hamiltonian of the system. Let us
assume that the spectrum of Ĥ is bounded from below, say
by E � E0. Using the spectral decomposition,

 Ĥ �
Z 1
E0

EP̂EdE; (77)

where P̂E is an orthogonal projector onto the subspace of
energy E, we find

 h jeiĤtj i �
Z 1
E0

eiEth jP̂Ej idE �
Z 1
�1

eiEt	�E�dE;

(78)

where, by definition, the function 	�E� identically vanishes
for E< E0. Because of the nonanalyticity of 	�E� at E �
E0, the Fourier transform of 	�E� necessarily has a power-
law asymptotic / t�d at t! 1, where the power d is
determined by the order of the (upper) nonzero derivative
of 	�E� at E � E0.

I conclude with some general comments regarding the
plausibility of the age-dependent decay in cosmological
landscape scenarios. The subexponential asymptotic was
obtained by a quantum-mechanical consideration without
regard for gravitational effects. However, gravitation plays
a central role in vacuum decay [10]. Since the assumption
of a bounded Hamiltonian is important, while the
Hamiltonian for general relativity is unbounded, it is not
immediately clear that the subexponential late-time decay
will be manifest also when the effects of gravity is taken
into account.

Another relevant consideration is the influence of mea-
surements and decoherence on the vacuum decay. The
power-law asymptotic of the survival probability holds
only if the evolution of the wave function of the metastable
system is unitary and proceeds according to the Schrdinger
equation. The power-law decay can occur only if no wave
function collapse takes place during that evolution.
Therefore, a direct observation of the power-law decay is
possible only if the metastable system as well as any decay
products are perfectly isolated and do not have any possi-
bility of interacting with any environment at least until
times t	 T. It is clear that such a perfect and long-lasting
isolation is impossible in practice. Any realistic metastable
system and its decay products will interact with an environ-
ment long before the crossover time T. After an interaction,
the wave function will effectively collapse back to the
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initial metastable state, and the effects of the slow spread-
ing of the wave packet will be removed.

However, one needs to be careful when applying
quantum-mechanical considerations in the cosmological
context. Since the potential observers of vacuum decay
are inside the decaying field configuration, it is unclear
whether they are able to effect a collapse of the wave
function of the entire Hubble patch around them. Several
points of view are possible. One could assume that a
‘‘measurement’’ of the field in the false vacuum state
already occurs if sufficiently many gravitationally interact-
ing macroscopic bodies are present. In that case, the wave
function of the decaying field is continuously collapsing
back to the false vacuum configuration, and so it would
appear that all vacuum decay is entirely inhibited due to the
quantum Zeno effect (QZE), whereby a metastable system
does not collapse when continuously measured. This con-
clusion appears implausible. On the other hand, it is hard to
implement a measurement of the field values on cosmo-
logical superhorizon scales by any causal system. Hence,
one could assume that ‘‘measurements’’ are absent until a
tunneling event is completed and a causally autonomous

Hubble-size bubble of true vacuum is formed. Then one
finds that the late-time decay asymptotic is indeed relevant
to describing the landscape dynamics. Alternatively, one
can suppose that measurements due to gravitationally in-
duced decoherence are effectively ‘‘performed’’ only on
super-Hubble time and distance scales, as is the case in the
decoherence of primordial quantum fluctuations in an in-
flationary universe [22–25]. In this case, the QZE sets in
only if the Hubble time is smaller than the time scale of
onset of the exponential decay law. In principle, the QZE
time scale can be estimated in a particular model of vac-
uum decay.

Presently, I merely summarized possible viewpoints on
the relevance of decoherence, the quantum Zeno effect,
and subexponential decay to cosmological evolution of
false vacuum. More work is needed to clarify this funda-
mental issue.
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