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The process of identifying a time variable in time-reparameterization invariant theories results in great
ambiguities about the actual laws of physics described by a given theory. A theory set up to describe one
set of physical laws can equally well be interpreted as describing any other laws of physics by making a
different choice of time variable or clock. In this article we demonstrate how this ‘‘clock ambiguity’’ arises
and then discuss how one might still hope to extract specific predictions about the laws of physics even
when the clock ambiguity is present. We argue that a requirement of quasiseparability should play a
critical role in such an analysis. As a step in this direction, we compare the Hamiltonian of a local
quantum field theory with a completely random Hamiltonian. We find that any random Hamiltonian
(constructed in a sufficiently large space) can yield a ‘‘good enough’’ approximation to a local field theory.
Based on this result we argue that theories that suffer from the clock ambiguity may in the end provide a
viable fundamental framework for physics in which locality can be seen as a strongly favored (or
predicted) emergent behavior. We also speculate on how other key aspects of known physics such as gauge
symmetries and Poincare invariance might be predicted to emerge in this framework.
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I. INTRODUCTION

In attempts to find a physical description of the Universe
one has to address many issues forced upon us by consis-
tency with quantum mechanics. A well-known example is
an aspect of time that arises in the quantization of gravity.
In any theory with time-reparameterization invariance,
including Einstein gravity, quantization schemes tend to
produce theories in which time is not fundamental, being
only recovered after some split of the superspace is per-
formed to identify a time parameter or a ‘‘choice of clock.’’
In [1] it was argued that the freedom to choose a clock
leads to profound ambiguities in the physics that emerges.
In this article we study the implications of taking these
ambiguities seriously. Specifically, we consider the fact
that the clock ambiguity implies that completely random
choices of unitary evolution of the physical systems are on
an equal physical footing. A detailed derivation and dis-
cussion of the clock ambiguity is presented in Sec. II of this
article.

We examine the possibility that the clock ambiguity is a
fundamental characteristic of physical laws, which forces
us to regard other crucial properties of the physical world
such as space, locality, gravity, gauge symmetries, and
cosmology as emergent and approximate. In Sec. III we
consider how one might best set up the problem so that the
emergence of these properties could be studied and
understood.

To test the viability of these ideas we compare a random
Hamiltonian with that of a local field theory in Sec. IV.
Remarkably, we find that in sufficiently large spaces any
random Hamiltonian appears to give a sufficiently good
approximation to a local field theory to account for the
viability of local field theory as a description of the ob-
served physical world. Note that our starting point is an

arbitrary random Hamiltonian (not an arbitrary
Hamiltonian density). We make no initial assumption
about the existence of space, locality, etc. We are claiming
that these properties can quite generally be seen as emer-
gent from a random Hamiltonian.

A priori, placing all possible Hamiltonians on an equal
footing seems to be hopelessly in conflict with standard
approaches to physics. Certainly one possible outcome of
this work is to cause the abandonment of at least one of the
assumptions that go into stating the clock ambiguity. We
discuss this possibility in Sec. II B, but note that this out-
come would be significant, in that our assumptions are ones
that are widely used in quantum cosmology.

Taking the clock ambiguity at face value, it would seem
that extracting the known physical laws from a situation
where all possibilities for those laws are initially given
equal weight would involve eliminating most of those
possibilities for one (probably anthropic) reason or another.
Thus we feel our result from Sec. IV is extremely interest-
ing. It shows that good approximations to local field theo-
ries can be found very generically in randomly chosen
Hamiltonians. We take this as an indication that a frame-
work for fundamental physics with the clock ambiguity
rooted firmly in its foundations may not be nearly as
problematic as it first seems. We feel our work offers a
strong motivation for taking such a framework seriously
and making further efforts to explore its ultimate viability.

II. THE CLOCK AMBIGUITY

A. Statement of the clock ambiguity

Here we review the clock ambiguity as discussed in [1].
Our starting point is a standard approach to time in quan-
tum gravity whereby time is defined internally [2]. Any
time-reparameterization invariant theory (including gen-
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eral relativity) has the property that the Hamiltonian is zero
[3] and the reparameterization can be viewed as a gauge
transformation generated by the first-class constraint H. In
a covariant approach to quantization this feature is imposed
as a constraint equation,

 Hj i � 0; (1)

on physical states j i in a ‘‘superspace’’ that includes both
matter and metric degrees of freedom. Time evolution is
regained by identifying some degree of freedom (or ‘‘sub-
system’’) as the ‘‘clock’’ and evaluating correlations be-
tween the rest of the Universe and the state of the clock
subsystem. For example, several classic papers on quantum
cosmology [4–9] use the cosmic scale factor a as the clock
degree of freedom.

This approach gives a practical way forward when con-
sidering time in quantum gravity, but it also makes intuitive
sense. The process of identifying a subsystem of the world
as a clock and noting the passage of time in terms of
correlations with the clock subsystem gives a good opera-
tional picture of how we actually work with time in real-
istic situations.

In order to describe the clock ambiguity we assume the
superspace may be taken to be discrete and finite. Although
continuous quantities (fields, the metric, and spacetime
itself ) are usually used to described physics, observations
do not rule out the idea that these continuous quantities are
just approximations to a system that is fundamentally
discrete and finite. (This fact has been used by others
seeking a discrete and finite fundamental description of
physics; see, for example, [10–16].) Assuming discrete-
ness and finiteness will make our mathematical manipula-
tions simple.

Formally, if S designates the superspace, then the iden-
tification of a clock subsystem involves designating the
clock (C) and ‘‘rest’’ (R) subspaces of S so that

 S � C � R: (2)

Let

 fjtiiCg (3)

be a basis which spans the clock space (eigenstates of the
time operator in the language of Isham [17]) and let basis

 fjjiRg (4)

span R. The tensor product of the of the bases spanning C
and R spans S, so any state j iS in superspace can be
written

 j iS �
X
ij

�ijjtiiCjjiR; (5)

where �ij are the expansion coefficients. One can the sum
up the j’s for a fixed time (fixed i) to get the states

 j�iiR �
X
j

�ijjjiR: (6)

One can then rewrite Eq. (5) as

 j iS �
X
i

jtiiCj�iiR: (7)

The state j �ti�iR of subsystem R at time ti is determined
by conditioning (projecting) on clock state jtiiC, giving
[18]

 j �ti�iR � j�iiR: (8)

So far we have just summarized a standard approach to
time in quantum gravity using a formal discrete notation
that will be useful in what follows.

Now we present the argument from [1] that suitably
changing the choice of clock subsystem can lead to a
description of an arbitrary system experiencing arbitrary
time evolution.

To start with, we note that all the information about the
state and the time evolution is contained in the �ij’s of
Eq. (5). We will show that by choosing different clock
subsystems we can get arbitrary �ij’s, which will then
correspond to arbitrary states undergoing arbitrary time
evolution.

It will be helpful to relabel the tensor product basis for S
used in Eq. (5) with a single index. This involves defining
some mapping k�i; j� that uniquely assigns an index k to
each pair �i; j� so one can write

 jk�i; j�iS � ji�k�iCjj�k�iR: (9)

Then one can write

 j iS �
X
k

�kjkiS; (10)

where

 �k � �i�k�;j�k�; (11)

where the functions i�k� and j�k� simply invert the mapping
k�i; j�. In this notation, arbitrary �ij’s corresponds to arbi-
trary �k’s.

But arbitrary �k’s are easy to attain through a change of
basis. To see this, suppose one starts with a particular
vector given by Eq. (5), or equivalently Eq. (10), and would
like to demonstrate an alternative choice of clock describ-
ing a specific different state and time evolution. The goal is
to construct a new set of subsystems

 S � C0 � R0 (12)

and the appropriate bases in C0 and R0 so that

 j iS �
X
ij

�ijjtiiC0 jjiR0 ; (13)

where the �ij’s give the required information about the
state and its time evolution (just as �ij did for the original
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case). The first step is to use the same function k�i; j�
discussed above to construct

 �k � �i�k�;j�k� (14)

and then consider a new vector in the superspace

 j 0iS � �kjkiS (15)

(note that here the original superspace basis fjkiSg is used).
Now consider a unitary [19] transformation M that trans-
forms j iS into j 0iS:

 M j iS � j 0iS (16)

(it should be always possible to find at least one such
transformation). Operating on both sides of Eq. (16) with
M�1 gives

 j iS �M�1j 0iS �
X
k

�kM�1jkiS: (17)

If one then defines a new basis

 jki0S �M�1jkiS; (18)

one gets

 j iS �
X
k

�kjki0S: (19)

The desired C0 and R0 subsystems are constructed using the
inverse of the mapping function k�i; j� (the same one used
above) to give

 ji�k�; j�k�i0S � jiiC0 jjiR0 � jki
0
S (20)

leading to

 j iS �
X
ij

�ijjiiC0 jjiR0 (21)

which is the desired result.
Basically we have used the fact that while a different

state evolving under a different Hamiltonian would seem to
correspond to a different state j 0iS in superspace, it could
just as well be seen as the same state in superspace ex-
pressed in a different basis (corresponding to a different
subdivision of the system into clock and rest subspaces).
We have used j 0iS as well as the mapping function k�i; j�
to explicitly demonstrate how such a new basis can be
constructed for S.

The implication of our result is that given that all pos-
sible clocks corresponding to all possible time evolutions
can be demonstrated to exist, a physicist trying to interpret
j iS from scratch is equally likely to try any one of these
clock subsystems, thus placing all possible types of evolu-
tion on an equal footing. Specifically, a single state in
superspace can be interpreted as any initial state evolving
under any Hamiltonian.

B. Discussion

The result in Sec. II A is radical, but it seems to be an
inevitable consequence of standard ideas about quantum
gravity. One could take the standard model of particle
physics (or one’s favorite extension thereof), combine it
with gravity, and construct the corresponding superspace.
Then someone else could come along using the exact same
rules of interpretation you use, but by merely choosing a
different clock could come up instead with a world de-
scribed by the old O�3� model of weak interactions, the
minimal supersymmetric standard model, technicolor, or
something wildly different from any of these.

It is important to emphasize that the clock ambiguity is
not equivalent to the statement that it is possible to choose
terrible clock subsystems (for example, a firefly) by whose
measure the evolution of the Universe appears highly
irregular (although the clock ambiguity does incidentally
include these cases). The most important implication of the
clock ambiguity is that it also includes a multitude of
arbitrarily good clocks which describe the Universe evolv-
ing under very well defined and ‘‘sensible’’ physical laws.
The clock ambiguity tells us that there is nothing about the
form of superspace nor the state which we choose in super-
space to give a preference of one set of physical laws over
another, no matter how hard we may try at the outset to
build such a preference into the formalism.

One possible response to our analysis is that one or
another of our assumptions is wrong. For example, perhaps
there is something truly precious about the continua we use
to construct theories of fundamental physics, and our dis-
crete and finite treatment misses some key point. One
could also choose to reject the superspace formalism out-
right as is done, for example, by Banks et al. in [20].

One might also object that we should not be allowed
freedom to choose a clock subsystem arbitrarily but should
stubbornly stick to the one originally designated. That
objection seems to run up against commonly held views
in quantum cosmology. For example, in ‘‘eternal inflation’’
[21] the system in some regimes is completely dominated
by quantum fluctuations. Which combination of some
‘‘fundamental’’ states and operators in superspace ends
up representing actual semiclassical observables (includ-
ing time) will depend strongly on which piece of the wave
function one is looking at (or which quantum fluctuations
one is following). The idea that one must dig through a
more formally constructed space to select observables
based on their actual behavior is widely used. See, for
example, [22] and also [23,24]. Indeed, in our analysis in
the previous section it is not just the clock but all observ-
ables that are changed when going from one picture to
another.

One might even question the use of the covariant ap-
proach—the alternative being the fixing of the original
reparameterization symmetry at the classical level by im-
posing a gauge condition, i.e., a choice of reference time.
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While such a choice of an external time is suitable for the
study of subsystems, with negligible interaction with the
environment (that would naturally set such a reference) it
presents no advantage when dealing with the Universe as a
whole. In fact, in this case, the absence of external refer-
ence and subsequent arbitrariness in the choice of gauge,
we believe, is analogous to the arbitrariness in the choice of
clock subsystem of Sec. II A. An early discussion of this
point of view can be found in [25]. However, these authors
chose a framework that was too restrictive to expose the
full clock ambiguity.

The original paper on the clock ambiguity [1] gives
further discussion of the objections that might be raised
about our formalism, and gives responses to these. Also,
Isham’s review [17] (especially Sec. 6.2) gives a good
account of some pros and cons of this formalism (although
Isham does not use our assumption of discreteness and
finiteness).

Our main position on all of this is that the clock ambi-
guity is a very important topic. If careful consideration of
the clock ambiguity leads to rejection of some of the
starting assumptions, we feel that would be a significant
outcome since these assumptions are currently widely
accepted, especially by those who work with quantum
cosmology.

The rest of this paper focuses on another possible out-
come, namely, that the formalism used above really does
describe fundamental physics. In that case, the clock am-
biguity is something we need to face head on. We inves-
tigate possible ways forward under that assumption.

III. USEFUL CONDITIONS FOR FINDING A GOOD
CLOCK

A. Overview

The clock ambiguity seems to leave us very little to work
with. Can a fundamental physical theory that appears to put
all possible states evolving under all possible Hamiltonians
on an equal footing make any concrete statements about
the nature of physical laws? If the clock ambiguity is a real
feature of fundamental physics, then the fact that the world
is so understandable in terms of specific physical laws must
mean that there really must be a way forward.

In this section we consider some possible ways prefer-
ences for specific physical laws could emerge in this
picture. We continue the approach developed in [1], where
fundamental aspects of our experience as observers are
identified and considered as selection criteria in choosing
our Hamiltonian and state from among all possible ones.

This approach seems to fall under the broad category of
‘‘anthropic reasoning’’(as used, for example, in [26–29]),
but as emphasized in [1] and developed further in [30], our
approach should be seen as a natural application of the
conditional probability analysis that underlies most appli-
cations of theoretical physics to actual observations.
Probably the most controversial aspect of anthropic rea-

soning (and rightly so in our view) involves attempts to
incorporate general ‘‘physical conditions necessary for
life’’ as conditions in conditional probability statements.
We do not believe that we (or any other physicists) really
know the general physical conditions necessary for life, so
we refrain from speculating on those here. Instead, we
consider what appear to be general features of our interac-
tion with the rest of the Universe. These features are just as
essential to inanimate observers (such as automated data
acquisition systems) as they are to us.

If this picture is to succeed, we expect to eventually
reach the point where more familiar conditions are applied
(such as observations of the electron mass fixing its value
in quantum electrodynamics). However the current picture
is so far removed from that stage that we only emphasize
here more exotic conditions that could offer a glimmer of
hope that some sort of preference for specific physical laws
could emerge.

B. Time independence of the Hamiltonian

A striking aspect of the clock ambiguity is that it gives
no a priori preference for evolution under a time indepen-
dent Hamiltonian. In the notation of Sec. II, the
Hamiltonian should generate steps between adjacent dis-
crete times. Specifically,

 j �ti�1�iR � �i@�ti�1 � ti�H�ti�j �ti�iR: (22)

But since j �ti�1�iR and j �ti�iR are just defined separately
by the �i�1;j’s and �i;j’s, respectively [see Eqs. (6) and
(8)], and since the clock ambiguity allows one to consider
on an equal footing all possible �i�1;j’s, regardless of the
values of the �ij’s, there is no a priori reason to assume any
particular relationship between H�ti� and H�ti�1�.

Certainly the constancy of the laws of physics over time
appears to be a critical part of our experience as observers.
We count on such constancy to learn about our environ-
ments (both with our minds, and through genetic evolution)
and reap the benefits from the knowledge we gain. So there
seems to be hope that this aspect of our existence as
observers could be related to (approximate) time indepen-
dence of H, but at this point do not have a quantitative
analysis to offer.

C. Hermiticity of the Hamiltonian

In contrast to the time dependence of the Hamiltonian,
the self-adjoint property of H is realized in a straightfor-
ward way. In standard quantum mechanics the Hamiltonian
is taken to be Hermitian in order to ensure that time
evolution is unitary. Unitary evolution allows wave func-
tions normalized to unit total probability to remain so
normalized as time evolves. As emphasized by Isham
[17], the formalism we use here makes explicit use of
conditional probabilities. For example, you could calculate
the probability of measuring a particle at position x given
that the clock is in state jtiiC. To do this you would project
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onto the jtiiC state and normalize the answer so that the
total probability assigned to all possible outcomes of the
measurement (given the time projection) is unity. The
overall normalization of the wave function before projec-
tion is unimportant when formulating conditional
probabilities.

One way to put this is that given that only conditional
probability questions will be posed, all possible time evo-
lutions will be treated in a way that makes them effectively
unitary. Any nonunitary aspect of the �ij’s will drop out of
the final analysis.

D. Quasiseparability and locality

1. Overview

Our experience in the Universe is characterized by the
fact that we are minuscule subsystems of the Universe that
are able to survive and even thrive with respect to our
interactions with the rest of the Universe. We are able to
keep our interactions with the rest of the Universe from
destroying us for a period of time (with luck, several
decades). Furthermore, the state of the rest of the
Universe can be accounted for in a highly simplified man-
ner that allows us to model the rest of the Universe with our
tiny little brains in a way that usually is sufficient for our
survival: even though a bus has many more microscopic
physical degrees of freedom than our brains, on average we
manage to model the behavior of those degrees of freedom
sufficiently well to avoid being hurt by the bus, and even to
utilize it for transportation. Planets, stars, and galaxies
(with vastly more internal degrees of freedom than a bus)
are even easier to handle.

This behavior is extremely different from that which
these various subsystems (galaxies, stars, planets, buses,
and us) would experience under evolution given by an
arbitrary Hamiltonian. In the most general case one would
not expect the interactions between these subsystems to be
particularly weak or predictable. In fact, there would be no
reason to expect the interactions to be at all subdominant to
these subsystems’ self-interactions. The generic result
would seem to be subsystems that are rapidly torn apart
by their interactions with the rest of the Universe in a
manner that prevents them from keeping any identity as
subsystems.

In this section we note that the observed peaceful coex-
istence of subsystems reflects the quasiseparable nature of
the Hamiltonian that actually governs our world. We take
the point of view that the quasiseparability is sufficiently
important (and sufficiently nongeneric) that it should be
taken as a key condition to impose as we search among all
arbitrary Hamiltonians for ones that might be relevant to
the physical world we experience.

We then note that the quasiseparability we actually
experience is closely related to the locality that is mani-
fested by the fundamental physical laws we observe. We
then speculate on the degree to which imposing the quasi-

separable requirement on arbitrary Hamiltonians could
strongly favor local physics, perhaps even sufficiently
strongly to favor Hamiltonians approximating local quan-
tum field theories with local gauge symmetries and gravity.

2. Locality

In our experience, the key to the quasiseparable nature of
our world is the locality of physics. As long as we occupy
different locations from the buses, planets, stars, and gal-
axies, we have a reasonable shot at not being destroyed by
them. Formally, this locality comes about because
Hamiltonians that describe known physics take the form

 H �
Z

H �x�d3x: (23)

This is certainly very far from the most general case. A
general Hamiltonian would allow arbitrary interactions
between matter at any two points. Even within the local
formalism, there are two long-range forces: gravity and
electromagnetism. The overall neutrality of the Universe
cuts back greatly on the impact of electromagnetism, and
the overall (homogeneous and isotropic) state of the
Universe limits the impact of the long-range gravitational
forces between objects. Also, the time scale for gravity to
have its full impact (such as earth’s orbit decaying and
plunging us into the sun) is long compared to time scales
that interest us.

The critical role locality plays in realizing the quasise-
parability that is so important to us leads us to speculate
that locality could turn out to be a ‘‘generic’’ way for
quasiseparability to emerge as one sifts through arbitrary
Hamiltonians. It could be that when quasiseparability is
sought that optimizes the evolution of small successful
observers it tends to naturally lend itself to interpretation
in a ‘‘local’’ language. Since locality is a crucial piece of
the construction of quantum field theory, perhaps one could
even use arguments such as these ‘‘derive’’ quantum field
theory as a foundation of our understanding of matter.

A key part of locality is the definition of space and of
distances between points in that space. A more general
realization of these features will come about if one allows
distances in the space to be defined in terms of an arbitrary
metric gij. When one sifts through random systems and
selects out ones that exhibit locality, presumably many
more examples will turn up with complicated metrics
than with simple ones. Such a tendency toward nontrivial
spatial metrics might lay the groundwork for Einstein
gravity to emerge in this picture.

3. The speed of light

Another key aspect of known physics is the bounding of
all speeds by the finite speed of light. In the picture we
describe here, if we enforce locality then propagation
speeds should be finite (but not necessarily equal) in all
directions. At each point, and in each direction, there will
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be a maximum propagation speed experienced by certain
degrees of freedom. Perhaps it will turn out to be natural to
define all other propagation speeds relative to this maxi-
mum speed.

The more quantitative analysis of Sec. IV suggests an
interesting perspective on the emergence of full Poincare
invariance, which we discuss briefly in Sec. IV E.

E. Spin statistics and gauge symmetry

If Poincare invariance and locality do indeed emerge in
this picture, presumably this will lead to the emergence of
field operators in various representations of the Lorentz
group. Since the spin statistics relation is understood to be
a consequence of locality [31,32], the critical role of local-
ity in our picture should enforce the usual spin statistics
relation.

Since one can argue that gauge symmetries are neces-
sary for the consistency of massless spin one fields (see, for
example, [33] and Chap. 8 of [34]), the random appearance
of some massless spin one fields might be all it takes for
gauge symmetries to emerge in this picture [35]. One
possible outcome is that the probabilities for the emer-
gence of particles in different representations of the
Lorentz group lead to preferences of particular gauge
symmetries over others.

F. The arrow of time and the state of the Universe

The statistical foundations of the thermodynamic arrow
of time make it natural to associate the arrow of time with
special (low entropy) initial conditions of the Universe.
This point was first made in a modern cosmological con-
text by Penrose [36]. Starting with Boltzmann [37], some
physicists have been interested in a cosmological picture
with an eternal equilibrium state that occasionally fluctu-
ates so as to produce a region of (temporarily) low entropy.
The regions of increasing entropy associated with these
fluctuations then become candidates to describe our world
[1,15,30,38,39]. In general this picture is believed to suffer
from the ‘‘Boltzmann brain’’ problem [37,39,40], whereby
small fluctuations containing only one observer for a brief
moment dominate the predictions. One of us has argued in
[30,39] that the Boltzmann brain problem could be re-
solved by a period of cosmic inflation, and that the reso-
lution of the Boltzmann brain problem is in fact one of the
key attractive features offered by inflation.

We find it interesting to compare the picture developed
in this paper with Boltzmann’s ‘‘fluctuation from equilib-
rium’’ picture. Formally, one might think that since we
consider a finite system there should be quasiperiodic
recurrences of the sort that were considered in [15,39].
However, just because a subsystem C has ‘‘good clock’’
behavior for a sufficiently long period to describe our
observations does not mean it would be a good clock
over a complete set of clock states jtiiC that span C. It is
quite possible that most realistic depictions of our Universe

in this formalism would involve the breakdown of the
‘‘good clock’’ behavior at some point outside of the ob-
served domain [17,20,41–43]. That would make it hard to
define Boltzmann’s fluctuating equilibrium state over
‘‘eternity’’ (or in other words, a complete recurrence
time). This is an intriguing point, especially since in the
Boltzmann picture it seems a bit of a waste to have time
well defined over the extremely long equilibrium period
when it is of no real use to us without a thermodynamic
arrow.

Still, it is quite possible that something similar to the
arguments in [39] will apply in formalism described in this
paper. In that case the need for a thermodynamic arrow of
time will not only play a key role as a condition for
searching for realistic clocks, it will also play a critical
part in biasing the initial conditions of the observed
Universe toward those that were subject to an early period
of inflation.

G. Dimensionality of space, classicality, and other
considerations

There are a number of other factors that could have an
important impact on the selection of a good clock. For
example, the term ‘‘classicality’’ is often applied to the
various combinations of phenomena (including the domi-
nance of quantum path integrals by saddle points and the
stability of a measurement apparatus after a quantum mea-
surement). More generally, one needs spacetime itself to
behave in a classical manner to accurately describe the
world we see around us. Many of the phenomena associ-
ated with classicality have already been mentioned in this
section (for example, the emergence of space, locality, and
the thermodynamic arrow of time). It is possible that
requiring additional aspects of physics that lead to classical
behavior produces additional constraints in the sort of
analysis envisioned here.

Also, in a picture where space is emergent, one naturally
wonders if there are any preferences for one number of
space dimensions over another. Several ideas along these
lines have been been put forward over the years (see, for
example, [44]). We will return briefly to this issue in
Sec. IV E, but so far we do not yet feel we have a compel-
ling argument that a particular number of space dimensions
would be favored.

IV. SEARCHING FOR A FIELD THEORY IN A
RANDOM HAMILTONIAN

A. Overview

In Sec. III we considered possible ways forward to
extract meaningful physics out of quantum gravity, despite
the clock ambiguity described in Sec. II. There is clearly
far to go if that approach is to really bear fruit. In this
section we take a ‘‘reverse engineered’’ approach and ask
to what extent the known laws of physics might match on
to a random Hamiltonian.
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The critical point of comparison is the eigenvalue spec-
trum: We draw a Hamiltonian at random by choosing a
random clock. If its eigenvalue spectrum matches one
corresponding to that of the standard model of particle
physics, then we are ‘‘done’’ in the sense that there is
nothing in principle stopping us from carefully identifying
the requisite field operators, observables, etc., that describe
the theory in the usual way in terms of the eigenstates ofH.
We do not know how easy this would be in practice, but we
do not believe it would run into any issues of principle.

Having stated our approach, we discuss (in the next
section) some general results from the theory of random
Hamiltonians. Then, in Sec. IV C we consider the eigen-
value spectrum of a free field theory (as a first step toward
the eigenvalue spectrum of a full interacting theory). In
Sec. IV D we attempt a comparison between the field
theory spectrum and that of a random Hamiltonian.
Although at first glance comparison seems futile, we sug-
gest an intriguing way forward which appears to hold
considerable promise.

B. Properties of random Hamiltonians

There is an extensive literature on random Hamiltonians
(see [45,46] and references therein). The basic idea is to
select each matrix element of the Hamiltonian from some
distribution and look at the ensemble that emerges. It turns
out that a wide variety of such random Hamiltonians end
up obeying the ‘‘Wigner semicircle rule’’
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dE
�

�
2NH
�EM

���������������������
1�

�
E
EM

�
2

s
jEj<EM;

0 otherwise:

(24)

(We derive this in Appendix A for the Gaussian case.) Here
EM is the maximum eigenvalue and NH is the size of the
random Hamiltonian. One can wonder if there might be
subtleties in the process of generating random
Hamiltonians through the ‘‘choice of clock’’ process that
do not generate eigenvalue spectra of exactly this form.
Thus we consider a slightly generalized form

 

dN
dE
�

�
a NHEm
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1�
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E
EM

�
�
�
�
jEj<EM;

0 otherwise:
(25)

So we can see how possible variations on the standard form
might affect our final results. An illustrative example from
this class of functions is depicted in Fig. 1.

C. Density of states of a free field theory

Ideally, at this point we would write down a formula for
dN=dE for the standard model of particle physics and
compare it with Eq. (25). Since we do not know this
function, we seek some initial insights by considering
dN=dE for a free field theory. We are not aware of prior
calculations of this quantity either, but in 1� 1 dimensions

we show in Appendix B that

 

dN
dE
�

1

4
���
3
p
E

exp
�
�

���������
2E

3�k

s �
; E	 �k; (26)

for a free boson. The quantity �k reflects the fact that we
have regulated the field theory by putting it in a box of size
L � 2�=�k. A similar expression is also found for free
fermions. Thus, we consider in this case the following
generalization,

 

dN
dE
�
B
E

exp
�
b
�
E

�k

�
�
�
; (27)

for large E, which for b � 1=2 contains, as special cases,
the 1� 1 expressions of Appendix B and the higher di-
mensional generalization proposed by Verlinde in [47,48].
When both Fermi and Bose fields are combined, the den-
sity of states is dominated by the Bose fields which is why
Eq. (27) reflects the Bose form. An illustrative example of
this type of function is shown in Fig. 2.

D. Analysis

The forms of Eqs. (25) and (27) (also depicted in Figs. 1
and 2) are dramatically different. At first look this suggests
that finding a field theory by randomly choosing a clock
(and thus generating a random Hamiltonian) is a very
unrewarding endeavor. At best, only Hamiltonians on
highly exponentially suppressed tails of the random distri-
bution might give the needed eigenvalue spectrum. It is
perhaps not surprising that the ‘‘conditions for a good
clock’’ discussed in Sec. III would seek out atypical cases.
Still, the striking difference between these two functional
forms seems to indicate how extremely selective these
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FIG. 1. A plot of the density of states for a random
Hamiltonian as given by the Wigner semicircle rule. [We plot
Eq. (24) with EM � 1 and NH � 1000.]
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conditions would have to be in order to allow this whole
approach to succeed.

However, there might be a much easier way forward
from here. The key is to consider the fact that we only
actually explore dN=dE of the Universe in some relatively
narrow range of energies �E around a mean energy E0 (the
‘‘energy of the Universe’’). Given this, we can ask if
Eqs. (25) and (27) can look similar in that particular range
of energies.

We start with Eq. (25), the generalized form of the
Wigner semicircle result

 

dN
dE
�

�
a N
Em

�
1�

�
E
EM

�
�
�
�
jEj<EM;

0 otherwise;
(28)

and the generalized form of the free field theory result
[Eq. (27)]

 

dNF
dE

�
B
E

exp
�
b
�
E

�k

�
�
�
: (29)

We attempt to equate these two equations order by order in
a Taylor expansion around E0.

First we note that we are not trying to consider gravity at
this point. As discussed in Sec. III D 2 gravity could poten-
tially emerge through deeper insights into the emergence
of locality (and thus a metric). Without gravity, we can
assume in this very simpleminded comparison that the
overall zero point of E does not have any physical meaning
(it just causes an unobservable overall phase shift in the
time evolution). Thus we allow a zero point shift ES when
comparing the Wigner and free field theory expressions.
Specifically we relate ER, the energy in the Wigner random
Hamiltonian expression [Eq. (25)], to EF, the energy in the
free field theory expression [Eq. (27)], according to

 ER � EF � ES: (30)

We keep Eq. (29) unchanged and absorb the shift into
Eq. (25) to give
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jEj<EM;

0 otherwise:
(31)

We then Taylor expand each of the expressions for the
density of states around the central energy E0. Expanding
the generalized Wigner formula [Eq. (31)] gives
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�
;

(32)

where 1=Q � ��E0 � ES�=EM�
� � 1. In turn, the field the-

ory formula [Eq. (27)] gives
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�
:

(33)

Demanding equality at 0th order and solving the result-
ing expression for NH leads to

 NH �
B
a
EM
E0

�
1�

�
E0 � ES
EM

�
�
�
��

exp
�
b
�
E0

�k

�
�
�
: (34)

This expression is completely dominated by the exponen-
tial (even though we will soon argue that the quantity in
square brackets is extremely small). Thus 0th order equal-
ity of the two densities of states just sets the size of the
space of the random Hamiltonian to be some specific
exponentially large number. It seems reasonable to regard
Eq. (34) as a fundamental relation in our formalism. We
note that since data only give an upper bound on the field
theory regulator �k, Eq. (34) should really be seen as
giving a lower bound on NH.

Requiring equality between the free field and the gener-
alized Winger expression at first order (as well as at zeroth
order) leads to

 � ��
E0

E0 � ES

�E0�ES
Em
��

f1� 
E0�ES
EM
��g
� �b

�
E0

�k

�
�
: (35)

The right-hand side is expected to be an exponentially
large quantity (the ratio of the energy of the Universe field
theory regulator �k). To achieve equality for Eq. (35)
requires the quantity in square brackets to be exponentially
close to unity. This leads to

 ES � E0 � EM�1� "�: (36)
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FIG. 2. A plot of the field theory density of states given by
Eq. (27) (using B � b � 1, � � 1=2, and �k � 0:001).
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Here " [equal to the quantity in curly brackets in Eq. (35)]
must be exponentially small [determined implicitly from
Eq. (35)] and must be positive (by the nature of the Wigner
formula). Also, one must have

 ES > E0; (37)

in order to get the overall sign right. It seems reasonable to
also take Eq. (35) as a fundamental relation for our scheme,
giving the value of the shift energy ES.

Since we are considering a finite system, there will be a
finite gap �G between energy eigenvalues which can be
estimated by

 �G �

�
dNR
dE

��������E0

�
�1
�

�
dNF
dE

��������E0

�
�1

�
E0

B
exp

�
�b

�
c
E0

�k

�
�
�
: (38)

Comparing this gap with the field theory regulator gives

 

�G
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�
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�k
1

B
exp

�
�b

�
E0

�k

�
�
�
: (39)

This suggests that as long as we set �k small enough to
respect the phenomenological successes of continuum field
theory, any effects due to the finiteness of the random
Hamiltonian are exponentially suppressed and are unlikely
to be unobservable. Similar arguments suggest that random
fluctuations in density of states due to specific realizations
of the random Hamiltonian will be highly subdominant,
although we have not exhaustively investigated this
question.

It is also irresistible to note that Eq. (36) includes E0, the
energy of the Universe, in the energy offset. In the absence
of a specific notion of how gravity emerges in this picture it
is really too early to speculate, but we cannot help but
wonder if this offset might end up offering an interesting
insight into the cosmological constant.

Equality of the two densities of states at second order
gives

 

1

�
�b

�
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�k

�
�
� �� 1� �; (40)

where we have also used the conditions of equality at
zeroth and first order [Eqs. (34) and (35)]. The left-hand
side of Eq. (40) is generally an extremely large number (the
ratio of the energy of the Universe to the k-space regulator
of the field theory). The right-hand side is definitely of
order unity. Clearly one cannot expect to impose exact
equality at second order. Specifically, the second order
difference between the two densities of states is given by
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where we have dropped subdominant terms as well as
factors of order unity to reach the final line. This leads to
possible fractional corrections to the density of states given
by
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� �E
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�
2
�O���E�3�; (42)

and we label the second order piece as

 �2 �

��
E0

�k

�
� �E
E0

�
2
: (43)

Now we consider the overall size of �2. We take E0 to be
the energy of the observed Universe, namely,
 

E0 � �cR
3
H  �H

2
0m

2
P�H

�3
0 � m2

PH
�1
0


1019 GeV

10�42 GeV
mP � 1061mP � 1080 GeV; (44)

where RH is the Hubble length, H0 is the Hubble constant
today, and mP  1019 GeV is the Planck mass. We have
chosen the zero point of the energy as the point with zero
particle excitations, so E0 in Eq. (44) is the correct value to
use in the field theory density of states. Taking care of the
contribution of the dark energy to this estimate could lead
to O�1� correction factors that do not concern us here.

The quantity �k gives the scale of discreteness for the
field theory. The fact that so far we have no evidence for
discreteness suggests some pretty low upper bounds on �k.
We consider one value of �k given by the current bound on
the photon mass �k � m�  10�25 GeV [49,50]. We also
consider �k � H0  10�42 GeV, the wave number of a
wave the size of the observed Universe.

The quantity �E should give the range of energy eigen-
values over which we expect field theory to a give good
representation of physics. That is, the range over which we
hope the two densities of states will coincide to a good
approximation. Physically, a lower bound on �E is set by
the shortest time �t over which we successfully model
observed phenomena using field theory. The two are re-
lated by

 �E �
@

�t
(45)

We can look to ultrahigh energy cosmic rays (�t�1 
1011 GeV) or the highest energy elementary particle ac-
celerators (�t�1  103 GeV) to set values of �t [51]
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Table I gives the values of �2 which correspond to a
selection of different values for the quantities in Eq. (43)
mentioned in the above discussion. The upshot is that as
long as � � 1=2 (the value given in our formula for 1� 1
and also in Verlinde’s suggested generalization to higher
dimensions) the second order fractional correction to the
density of states is very small (�2  10�8 or even �2 
10�24:5). This small deviation between the free field theory
and Wigner formula might account for interactions seen
within the context of field theory or perhaps yet-to-be-
observed deviations from field theoretical behavior in the
real physical world. Also, the field theory density of states
assumes a Minkowski space, so deviations of the real
spacetime from the Minkowski form will show up as
discrepancies in this analysis. (We do not yet have a
calculation of any of these phenomena.) Also, we note
that the small values of �2 encourage us to believe that
contributions from the higher order terms in �E will be
even smaller for the values of �E that are of interest.

We have thus shown that it is possible to find ‘‘field-
theory-like behavior’’ in the density of states of any ran-
dom Hamiltonian. The key is to only look for equivalence
between the field theory and the random Hamiltonian over
a finite range of energy eigenvalues �E. Specifically, we
have shown that for sufficiently large spaces [NH set by
Eq. (34)] the offset energy (ES) can be suitably chosen
[using Eq. (35)] so that the field theory and random den-
sities of states are identical to zeroth and first orders and
only differ by a small amount [given by �2 from Eq. (43)]
at second order.

Figs. 3 and 4 give an illustration of how the two densities
of states can be made to coincide over a finite range of
energies, despite their radically different overall shapes

depicted in Figs. 1 and 2. For this illustrative example we
have chosen a � 2=�, EM � 10, B � 1, b � 1, � � 1=2,
and �k � 0:001. For these parameters solving Eq. (34)
gives NH � 2:15� 1021 and solving Eq. (35) implicitly
gives ES � 11:9533, which we use for these plots.

TABLE I. Value of �2 for different choices of the exponent �
in Eq. (29), field theory regulator �k, and observable energy
range �E. As long as � � 1=2, �2 takes on small values,
suggesting the random Hamiltonian is giving a good approxi-
mation to the field theory and also validating the Taylor expan-
sion.

� �k �E �2

1=2 m� � 10�25 GeV 1 TeV 10�24:5

1=2 m� � 10�25 GeV 1011 GeV 10�16:5

1=2 H0 � 10�42 GeV 1 TeV 10�16

1=2 H0 � 10�42 GeV 1011 GeV 10�8

1 m� � 10�25 GeV 1 TeV 1028

1 m� � 10�25 GeV 1011 GeV 1036

1 H0 � 10�42 GeV 1 TeV 1045

1 H0 � 10�42 GeV 1011 GeV 1053

2 m� � 10�25 GeV 1 TeV 10133

2 m� � 10�25 GeV 1011 GeV 10141

2 H0 � 10�42 GeV 1 TeV 10167

2 H0 � 10�42 GeV 1011 GeV 10175

−2 −1.5 −1 −0.5
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

20

(E−E
S
)/E

M

dN
/d

E

Random
Free Field
E

0

FIG. 3. This figure plots curves for dNR=dE and dNF=dE from
Eqs. (27) and (31), respectively. Eqs. (34) and (35) have been
imposed to cause the zeroth and first order terms in Taylor
expansions to be equal at E0 (marked by the vertical line). The
point of coincidence is chosen to be close to the edge of the
circle, as discussed around Eq. (36), but for easier viewing the
value of " (which measures the proximity to the circle edge) in
this plot is much larger than the exponential small values
discussed in the text.
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FIG. 4. The same plot as Fig. 3 but zoomed in to show more
detail where the curves coincide.
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E. Discussion

Our results suggest the following picture: A physicist
analyzes a state in superspace by choosing a clock sub-
system at random, resulting in the particular story about the
time evolution of the rest of the space which is associated
with that clock. The physicist then poses the question
‘‘how well can this time evolution accommodate tiny ob-
server subsystems such as ourselves?" The idea here is that
the clock choices that maximize the viability of observer
subsystems give laws of physics more likely to be the ones
we observe (assuming we are ‘‘randomly selected’’ ob-
server subsystems found in our superspace).

By the arguments of Sec. III B clocks which give
Hamiltonians which are (at least approximately) time in-
dependent should be favored. Since separability is very
helpful to observer subsystems, the laws of physics which
maximize separability, namely, local field theory, are the
ones that are most favored by this selection process. The
results from the previous subsection tell us that any random
Hamiltonian can be interpreted as a local field to a very
good approximation. Thus the search for separability ap-
pears to predict the emergence of local field theory.

One then must go about analyzing the implications of
the deviations from a free field theory represented by �2

and terms higher order in �E. We speculate that the goal of
optimizing a local interpretation (and thus good separabil-
ity) will be very significant in interpreting these deviations
from free field theory. We expect it to lead to allocations of
these deviations among a variety of corrections to the
simple ‘‘free field in Minkowski space’’ starting point.
These corrections include deviations from Minkowski
space (nontrivial metrics), the allocation of degrees of
freedom among different particles with the spin statistics
relation imposed (as usual) by the need for locality, as well
as interactions between the different particles. As argued in
Sec. III B, this analysis also might be expected to reveal
emergent gauge symmetries. We also note that while the
approach of Sec. IV D was to set the free field and random
densities of states precisely equal at zeroth and first order,
optimizing the overall interpretation of the random matrix
as an interacting field theory with gravity might involve
slightly relaxing strict equality at those orders.

A very interesting issue is the degree to which the
process of assigning local interpretations to the �2, etc.,
results in any predictive power. Perhaps this process could
eventually be understood to give some very powerful pre-
dictions about particle content, symmetries, etc., based on
the same sort of statistical arguments that operate to give
arbitrary random Hamiltonians a unique spectrum given by
the Wigner semicircle [52].

One intriguing direction is to consider the role of
Poincare invariance in this picture. In our analysis,
Poincare invariance has an impact on the form of the
density of states of a field theory due to its role in defining
the dispersion relation of free particles. It is possible that

local theories that have dispersion relations inconsistent
with Poincare invariance will not exhibit the good behavior
under the Taylor expansion noted in this paper. For ex-
ample, they may manifest the exponentially large second
order ‘‘corrections’’ seen in some cases discussed above
(see, for example, the � � 1 and � � 2 cases in Table I). It
is conceivable that such considerations could lead to a
sharp preference for Poincare invariant physics, a possibil-
ity we are currently actively investigating.

When setting up this analysis, we introduced extra pa-
rameters to produce generalized forms of the density of
states for free field theory and a random Hamiltonian (these
parameters are a, �, �, B, b, and �). These parameters
were introduced to evaluate the robustness of our analysis.
At the broad level of our current discussion which is
focused on the degree to which random Hamiltonians can
approximate a local field theory, the only one of these
parameters that seems to matter is �. The other parameters
show up in the equations, but changing their values does
not change our main points.

We expect the number of space dimensions to enter
through the parameter b in the field theory density of states
[Eq. (29)]. The lack of sensitivity to b in our current
discussion means we have yet to uncover any factors that
would prefer one number of space dimensions over an-
other. As discussed in Sec. III G, other considerations
might lead to such a preference.

V. SUMMARY AND CONCLUSIONS

We are used to doing physics by stating the physical
laws which we believe may be true, and then calculating
predictions based on those laws in order to test them
against observations of the physical world. The clock
ambiguity appears to completely undermine this approach
to physics. In time-reparameterization invariant theories
such as Einstein gravity, the process of identifying a time
variable creates the clock ambiguity. Even if one carefully
sets up the system to reflect a particular set of physical
laws, the exact same state in superspace can be viewed
from the point of view of a different time variable or clock
which causes the system to exhibit completely different
laws of physics.

A reasonable response to this observation is to reject one
or more of the assumptions that go into demonstrating the
clock ambiguity. To this end we have carefully identified
these assumptions in this paper, and we have argued that
rejecting any of these assumptions would be an interesting
development since the assumptions we used are widely
accepted among physicists.

Most of this article has focused on the possibility that the
clock ambiguity is a central feature of fundamental phys-
ics, a feature that we are going to have to learn to live with.
We first considered the type of analysis that might allow
some concrete predictions about the physical world to
emerge, despite the profound ambiguities introduced by
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the choice of clock. Specifically, we envisioned an ap-
proach where the fact that we are tiny subsystems of the
entire Universe which are able to survive and thrive plays a
key role in selecting the type of physical laws we observe.
We argued that laws of physics that allow subsystems to do
well will preferentially be those that are observed and
analyzed by such subsystems.

We identified a number of features of physical laws that
would promote the success of small subsystems, and gave
special attention to quasiseparability of the Hamiltonian.
This is the feature that allows small subsystems to interact
much more strongly among themselves than with their
environment and thus keep their identities.
Quasiseparability also allows subsystems to successfully
model their environment based on a simple set of collective
coordinates without knowing much about every single
degree of freedom. We noted that, in our experience, it is
the locality of the laws of physics that leads to the quasi-
separability on which we so heavily depend, and we argued
that local physics (as expressed by local field theories)
seems to be the optimal way of achieving maximal
amounts of quasiseparability.

In order to probe this line of thinking in a more quanti-
tative manner, we investigated the extent to which a local
quantum field theory could be approximated by a com-
pletely random Hamiltonian. Remarkably, we discovered
that if the random Hamiltonian is constructed in a large
enough space it can always approximate a free local field
theory to a sufficient degree. Here ‘‘sufficient’’ means part
of the spectrum of eigenvalues (or density of states) can
coincide with that of a free field theory over a range of
eigenvalues. The range of eigenvalues, centered on E0, the
energy of the observed Universe, need only be sufficient to
reproduce all observed phenomena that we believe are
explained by local field theories. This is very different
from matching the full eigenvalue spectrum of a field
theory. For example, the field theory ground state on which
so much of the formal construction of field theory is based
is not part of the spectrum at all. Nonetheless, such an
approximation to a true field theory may be sufficient to
account for the success of field theoretic models of the
physical world.

Initially our picture seemed to be one in which one
would reject an enormous fraction of all possible clock
subsystems based on the inappropriateness of the corre-
sponding Hamiltonian evolution. We thought that surely
conditions such as quasiseparability must be very far from
universal. Our result that good approximations to field
theory can always be found in sufficiently large random
Hamiltonians changes this story considerably. It now ap-
pears that any random Hamiltonian can be optimized for
quasiseparability by constructing a local field theoretic
interpretation. In this sense local field theories might ac-
tually be seen as a prediction.

Many questions still remain. How well is the possible
time dependence of the Hamiltonian constrained in our

picture? Is there some further optimization process that can
lead to concrete predictions about gauge symmetries,
Poincare invariance, general relativity, etc.? We have
speculated along these lines, but so far we do not have
concrete results. Still, we find it intriguing that local field
theories are much easier to come by than we initially
expected. We feel this result offers hope that a framework
for fundamental physics which suffers from the clock
ambiguity may in the end prove viable.

One of us has argued elsewhere [39] that statistical
arguments offer a much more powerful approach to cos-
mological initial conditions than the more traditional ap-
proach of making an ad hoc statement of preference. It is
possible that eventually the statistical approach to laws of
physics described in this paper could achieve that sort of
standing. While the outcome is still far from clear, we feel
the results in this paper motivate a further investigation of
this possibility.
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APPENDIX A: DERIVATION OF THE WIGNER
SEMICIRCLE DISTRIBUTION

We consider an ensemble of random Hermitian NH �
NH matrices representing the possible Hamiltonians that
describe the evolution of states arising in different choices
of clock. As we argue in Sec. IV, when comparing a
random Hamiltonian with the laws of physics as we
know them the key point of comparison is the eigenvalue
spectrum.

In the limit of large matrices, the eigenvalue spectrum
(or density of states) approaches a unique form. As an
illustration, Fig. 5 shows a histogram of the eigenvalues
of a 1000� 1000 Hermitian matrix where the real and
imaginary parts of each matrix element were drawn from
a normal distribution of width �E. As NH becomes larger,
the fluctuations settle down and the eigenvalue spectrum
(or density of states dN=dE) approaches the form given by
the ‘‘Wigner semicircle rule’’ [Eq. (24)].
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A derivation of this result (see, for example, [45]) starts
by considering a random Gaussian distribution of the
matrix elements of H with flat measure dN

2
HH over the

N2
H real variables ReHij, ImHij to form the partition func-

tion,

 Z �
Z
dN

2
HHe��1=2�2� trH2

: (A1)

The partition function is then conveniently rewritten in
terms of independent variables (the NH eigenvalues Ei of
H and the elements of the matrix U that brings H to
diagonal form �) by inserting 1 �

R
dU��UHUy �

���2�E�, where ��E� is the Fadeev-Popov determinant
of Vandermonde form

Q
i<j�Ej � Ei�. Integrating over H

first and then factoring out the U integration,

 Z �
Z Y

i

dEi�
2�E�e

��1=2�2�
P
i

E2
i
; (A2)

which has a stationary point at Ei � 2�2P0
j
�Ei � Ej�

�1. In

the large NH limit, a continuous distribution of eigenvalues
can be taken instead,

 Ei �
�������
NH

p
E�i=NH�; (A3)

spread over the interval ��EM;EM� with variance �2 �
E2
M=N and density dN=dE such that

 

1

NH

Z EM

�EM
dE

dN
dE
� 1: (A4)

The stationary condition is now

 

1

2
E �

Z EM

�EM
dE0

dN
dE0

E2
M

2NH

1

E� E0
; (A5)

solved by the Wigner semicircle distribution:

 

dN
dE
�

�
2NH
�E2

M

�������������������
E2
M � E

2
q

jEj<EM;

0 otherwise:
(A6)

APPENDIX B: DENSITY OF STATES FOR A FREE
FIELD THEORY

Here we discuss an example in which the density of
states can be computed analytically: a massless free field
theory in 1� 1 dimensions with coordinates ��; t�. In this
case the degeneracy of states at a given energy level can be
obtained by studying the appropriate generating function.

1. Bosons

Let us first consider a boson confined to an interval of the
spacial dimension, � 2 
0; ��. The resulting free theory
has a discreet spectrum, with mode decomposition of the
form,

 � �
X0

n2Z

1���
n
p ane�int sinn�; (B1)

and states with arbitrary occupation number Nn for each
mode, jN1; N2; � � �i, with energy E � �k

P
n�1nNn (the

energy eigenvalue spacing �k equals one in the present
case).

The generating function for this system is given by

 ZB � tr e�E �
X1
E�1

dEz
E; (B2)

where we have defined z � e�, dE is the degeneracy of
states of energy E (the quantity we are interested in), and
the trace is taken over the state space.

On the one hand, an exact expression is available for ZB,

 ZB �
Y
n�1

X
Nn�0

�zn�Nn �
Y
n�1

1

1� zn
� z��1=24�	�
�; (B3)

where 	 stands for the Dedekind function and 
 � �=2�i.
On the other, dE is easily expressible, from Eq. (B2), as a
contour integral,

 dE �
1

2�i

I ZB�z�

zE�1 dz: (B4)

By noting that the integrand in Eq. (B4) is sharply peaked
around z � 1 the integral can be estimated by a saddle
point approximation. The value of Z�z! 1� can be de-
duced from the Hardy-Ramanujan formula that exploits the
modular property of the Dedekind function (	��1=
� �
��i
�1=2	�
�),
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FIG. 5. A histogram of the eigenvalues of a 1000� 1000
Hermitian matrix where the real and imaginary parts of each
matrix element are drawn from a normal distribution of zero
mean and width �E.
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1

ZB�z�
�

�����������
�2�
logz

s
z��1=24�q�1=12� 1

ZB�q
2�
; q� e�2�

2= logz�;

(B5)

and realizing that z! 1 corresponds to q! 0 and that
ZB�0� � 1. Therefore, the large E asymptotic behavior of
dE is found by considering the following approximation to
Eq. (B4),

 dE �
1

2�i

I 1

zE�1

��������������
� logz

p
e���

2=6 logz�dz: (B6)

The integrand has a stationary point at logz �
��=

�������������������
6�E� 1�

p
(z� 1 for large E) that readily gives the

asymptotic value of dE:

 dE �
dN
dE
�

1

4
���
3
p
E

e
���������������
�2E=3�k�
p

�; E	 �k; (B7)

where we have reinserted, to facilitate the generalization of
this formula, the spacing between energy eigenvalues �k
(equal to 1 in this case due to the interval of � chosen).

In the case of a compactified spacial dimension, i.e.,
imposing periodicity at the boundaries, the left- and right-
moving modes become independent, and the generating
function is, therefore, a product of the two factors (Z �
jZBj2).

2. Fermions

Let us consider now a free fermion  in 1� 1 dimen-
sions with right(left)-moving components  ����,

  �
 �
 �

� �
; (B8)

and choose, for example, periodic boundary conditions
 � �  � at � � 0 and �. The mode expansions are

  � �
X0

n2Z

bne�in�t���; (B9)

and the space of states is labeled by the occupation num-
bers of each mode as in the bosonic case jN1; N2; � � �i (with
energy E �

P
n�1nNn) except that each N can only be

either 0 or 1. The generating function in this case is

 ZF � tr e�E �
X
E�1

dEzE; (B10)

for which there is also an exact expression,

 ZF �
Y
n�1

�z0 � zn� �

���
2
p

z�1=24�

�����������
�2�
�
	�
�

s
; (B11)

where �i, i � 1 � � � 4 are the Jacobi theta functions.
Considering the modular property (�2��1=
� ����������
�i

p

�4�
�) we find

 ZF�z� �

���
2
p

z�1=24�
q��1=24�

Y
r�1=2

�1� q2r�; q � e�2�
2= logz�:

(B12)

Using the same method as in the bosonic case (focusing in
the z! 1, q! 0 limit) we obtain an asymptotic expres-
sion suitable to obtaining the large E behavior,

 ZF�z� 1� �
���
2
p

e���
2=12 logz�: (B13)

Thus,

 dE �
1

2�i

I ���
2
p

zE�1 e���
2=12 logz�dz: (B14)

The stationary point at logz � ��=2
�������������������
3�E� 1�

p
yields in

this case

 dE �
dN
dE
�

1

2�3�k��1=4�E�3=4�
e
�������������
�E=3�k�
p

�; E	 �k;

(B15)

where we have reinserted the eigenvalue spacing �k in the
final step as in the bosonic case.

As mentioned in the previous subsection, a compactified
spacial direction implies the right- and left-moving modes
are independent, and therefore, the generating function
becomes the product of the two corresponding factors.

We note that the exponent in the fermion density of
states [Eq. (B15)] is a factor of

���
2
p

smaller than for the
Bose case [Eq. (B7)]. For the huge exponents that concern
us in this article this makes the fermion density of states
highly subdominant versus the Bose case at the same
energy.

3. Bosonization

Notice that for both fermions and bosons the density of
states grows exponentially with the square root of the
energy. This leads us to the following question: is the
dominant contribution to the density of states coming
from states with many modes singly excited (given that it
is the only possibility for fermions)?

The similarity in the behaviors of the density of states
for bosons and fermions can be traced to the close relation
between bosons and fermions in the particular case of 1�
1 dimensions that leads to the concept of bosonization.

The rule that relates the left-moving part of a boson field
��z� and the left-moving component of a fermion  �z� is

  � ei�; (B16)

where we have switched to complex-plane variables
��; t� ! �z; �z� defining z � �ei� (i log� � t) for later con-
venience. Now we take into account the mode expansions,

 ��z� �
X
anz�n;  �z� �

X
brz�r��1=2�; (B17)
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to express the creation operators in the following way:

 an �
1

2�i

I �

z�n�1 ;

br �
1

2�i

I  

z�r��1=2�
�

1

2�i

I ei�

z�r��1=2�
:

(B18)

And through Eq. (B16) we obtain

 br �
1

2�i

I ei�

z�r��1=2�
�

1

2�i

X
m

I �iPp apzp�m
m!z�r��1=2�

: (B19)

The implications of Eq. (B19) can be illustrated by the
following example: take a singly excited fermionic state of
energy E � 10,

 b�10��1=2�j0i �
1

10!

I �a�1z�
10

z11 �
1

5!

I �a�2z
2�5

z11 �
1

2!

I �a�5z
5�2

z11 �
I �a�10z

10�

z11 j0i

�

�
1

10!
�a�1�

10 �
1

5!
�a�2�

5 �
1

2
�a�5�

2 � a�10

�
j0i �

1�������
10!
p jn1 � 10i �

1�����
5!
p jn2 � 5i � jn10 � 1i; (B20)

it is equivalent to a linear combination of multiply excited bosonic states of levels given by the divisors of E. In the last line
of Eq. (B20) we used normalized states jni � mi � 1����

m!
p �ayi �

mj0i.
In general, a highly energetic singly excited fermionic state brj0i is equivalent to a bosonic state of singly excited bosons

contaminated by small components of high multiplicity.
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