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We study the dynamics of false vacuum bubbles. A nonminimally coupled scalar field gives rise to the
effect of negative tension. The mass of a false vacuum bubble from an outside observer’s point of view can
be positive, zero, or negative. The interior false vacuum has de Sitter geometry, while the exterior true
vacuum background can have geometry depending on the vacuum energy. We show that there exist
expanding false vacuum bubbles without the initial singularity in the past.
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I. INTRODUCTION

Can a false vacuum bubble expand within the true
vacuum background? Or, is an expanding false vacuum
bubble always inside the horizon of a black hole from an
outside observer’s point of view? If there was a dynamical
spacetime foam structure in the very early universe [1], the
detailed structure and evolution will depend on the cosmo-
logical constant. In the context of a bubble nucleation and
dynamics, this phenomenon may be described as follows.
A true vacuum bubble can always be nucleated somewhere
within the false vacuum background as well as a false
vacuum bubble nucleated within the true vacuum bubble
background. Some bubbles may expand while some bub-
bles collapse. Some of them may be connected by worm-
holes. Then the whole spacetime may have a complicated
vacuum or spacetime structure due to the above processes.
Earlier works [2–5] show that the unbound solution rep-
resenting an expanding false vacuum bubble does not exist
because the solution for the junction equation cannot cover
all ranges of r. To obtain an expanding false vacuum
bubble, the mass of the bubble should be over some critical
value. To the observer in the exterior spacetime, the ex-
panding false vacuum bubble will be inside the black hole
horizon. Only to the observer inside the bubble will it
appear to expand from a very small size to infinity.
However, these bubbles start from an initial singularity.
Moreover, there is a puzzle that the entropy of the expand-
ing false vacuum region is greater than the entropy of the
black hole surrounding it [5–7]. Are these descriptions
always true? With nonminimal coupling we will show
that the unbound solutions representing expanding false
vacuum bubbles can exist. On the other hand, the idea of

the string theory landscape has a vast number of metastable
vacua [8]. One of the intriguing features of this landscape
is to understand a de Sitter universe or tunneling processes
in the landscape [9]. Our motivation is an attempt to solve
some of these questions within the framework of the
classical theory of gravity.

The dynamics of the boundary wall of a spherically
shaped false vacuum bubble surrounded by true vacuum
regions was originally studied in Refs. [10] at the final
stage of the true vacuum bubble nucleation in old inflation
[11], and was studied systematically in Refs. [2,3] as an
attempt to create a universe in the laboratory by quantum
tunneling. They considered the case of interior de Sitter
spacetime and exterior Schwarzschild spacetime divided
by a thin wall (or domain wall). In Ref. [12] the dynamics
of matter distribution that may contaminate a false vacuum
bubble was considered. The case of interior de Sitter and
exterior Schwarzschild–de Sitter spacetime was studied in
Ref. [4], where they examined the instability of false
vacuum bubbles. The case of interior de Sitter spacetime
and exterior Schwarzschild–anti-de Sitter spacetime in
relation to AdS/CFT correspondence was considered in
Ref. [5]. The case of a charged false vacuum bubble with
interior de Sitter spacetime and exterior Reissner-
Nordström–anti de Sitter spacetime with arbitrary dimen-
sion was considered in Ref. [13]. The possibility of the
creation of a universe out of a monopole in the laboratory
was investigated in Ref. [14], where they have considered
the classical and quantum thin-wall dynamics of a mag-
netic monopole. They have examined the stability of a
spherically symmetric self-gravitating magnetic monopole
in the thin-wall approximation, modeling the interior
false vacuum as de Sitter spacetime and the exterior as
the Reissner-Nordström spacetime as in Ref. [15].
Recently the classification scheme for the possible evolu-
tion of a vacuum wall in the Schwarzschild–de Sitter
geometry was constructed [16]. In addition, there have
been studies on the attempts to create a universe in the
laboratory [17].
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As for the false vacuum bubble formation, Lee and
Weinberg [18] have shown that gravitational effects make
it possible for bubbles of a higher-energy false vacuum to
nucleate if the vacuum energies are greater than zero. The
oscillating bounce solutions, another type of Euclidean
solution, have been studied in Refs. [6,19,20]. On the other
hand, Kim et al. [21] have shown that there exists another
decay channel which is described by the false vacuum
region of the global monopole formed at the center of a
bubble in the high temperature limit. The Hawking-Moss
transition [22], as another way of vacuum decay, describes
the scalar field jumping simultaneously at the top of the
potential barrier. Recently this process has been interpreted
in terms of a thermal transition [19,23]. It has been shown
that the false vacuum bubble can be nucleated within the
true vacuum background due to a nonminimally coupled
scalar field or other similar coupling terms [24]. The
quantum nucleation of the vacuum bubble was also studied
[25]. In Ref. [26], they found an analytic expression for the
tunneling amplitude and studied the tunneling between
arbitrary (anti-)de Sitter spacetimes in arbitrary spacetime
dimensions. The interesting models for bubble collisions in
the very early universe are also discussed [27].

In this paper we use the metric junction conditions,
which were developed in Ref. [28], to analyze the dynam-
ics of a false vacuum bubble in the theory with nonminimal
coupling. There are two types of boundaries related to this
formalism. One is a ‘‘boundary surface’’ which is a surface
that has the stress-energy tensor S�� � 0 [29]. The process
of star collapsing is a well-known example involving a
boundary surface [30]. The other is a ‘‘surface layer’’
which is a thin layer of matter where S�� � 0 [31]. In
this case S�� is related to the discontinuity of the extrinsic
curvature of the surface. In this framework we classify the
cosmological behaviors from the viewpoint of an observer
on the domain wall and find a solution with multiple
accelerations in five dimensions in the Einstein theory of
gravity [32]. In the context of the brane cosmology, after
Randall and Sundrum’s interesting proposal [33], the junc-
tion conditions have become one of the methods describing
the inflationary cosmology on the brane [34].

Our approach to obtain junction conditions is based on
the method of variational principle by Chamblin and Reall

[35]. Barcelo and Visser have obtained the generalized
junction conditions using a different approach [36].

The plan of this paper is as follows. In Sec. II we present
the formalism for the junction conditions in the Einstein
theory of gravity with a nonminimally coupled scalar field.
In Sec. III we study the dynamics of false vacuum bubbles
using the junction conditions. In Sec. IV the bubble wall
trajectories in the exterior bulk spacetime are analyzed
according to the mass of the false vacuum bubble.
Finally, we summarize and discuss our results in Sec. V.

II. THE JUNCTION CONDITIONS WITH A
NONMINIMALLY COUPLED SCALAR FIELD

In this section we consider a thin wall as a surface layer
partitioning bulk spacetime into two distinct four-
dimensional manifolds, M� and M�, with boundaries
�� and ��, respectively. To obtain the single glued mani-
fold M �M�

S
M�, we demand that the boundaries

are identified as follows:

 �� � �� � �; (1)

where the thin-wall boundary � is a timelike hypersurface
with unit normal n�.

Let us consider the action
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where Stw is a Nambu-Goto–type action on the wall given
by �

H
�
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�h
p

d3xÛ���, � � 8�G, and g � det g��. The
second term on the right-hand side of the above equation is
the boundary term [37] with a nonminimally coupled
scalar field. U��� is the scalar field potential, R denotes
the Ricci curvature of spacetime in M,K is the trace of the
extrinsic curvature of �, the term ��R�2=2 describes the
nonminimal coupling of the field � to the Ricci curvature,
and � is a dimensionless coupling constant.

We now vary the action to obtain Israel junction con-
ditions. The case of minimal coupling has been considered
in Ref. [35].

Varying the nonminimal coupling term in the bulk M,
we get
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and varying the scalar field action, we get
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The variation of the boundary term with a nonminimal coupling gives
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and the variation of the wall action gives
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The bulk Einstein equations are

 R�� �
1
2g��R � �T��; (7)

where R�� is the Ricci tensor and T�� is the matter energy-
momentum tensor,
 

T���
1
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�
r��r���g��

�
1
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�
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�
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The corresponding scalar field equation on the bulk is
written by

 

1�������
�g
p @��

�������
�g
p

g��@��� � �R��
dU
d�
� 0; (9)

with a boundary condition at the thin wall,

 n��r��� � 2K��� � �
dÛ
d�

: (10)

Here we adopt the notations and sign conventions of
Misner, Thorne, and Wheeler [38].

The modified Lanczos equation due to a nonminimally
coupled scalar field is given by
 

�1� ���2
	���K��� � �K�h��� � 2���n��r���h��

� �Ûh�� (11)

where

 �K� � lim

!0

K��� � ��� 
� � K��� � ��� 
�: (12)

The sign arises because we have chosen the convention
that n� points towards the region of increasing �. The �� is
the location of the hypersurface. The signs ��� and ���
represent exterior and interior spacetime, respectively.

After Eq. (10) is substituted in Eq. (11), the junction
conditions become
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��K
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Actually, the second term on the right-hand side of Eq. (13)
vanishes because d��

d� and d��
d� vanish in the exterior and in

the interior spacetime of the wall, respectively.
In order to find the gravitational field and the motion of a

wall, we must first find two sets, both inside and outside of
the wall, of solutions of the bulk Einstein equation and
scalar field equation. So, if the bulk solutions are given, we
only need to match the junction conditions to determine the
motion of the wall. In the next section, we will only
consider the junction equations because bulk solutions
are easily given; the bulk solution of M � 0 is already
known in Ref. [24], while the case for M � 0 corresponds
to the Schwarzschild solution because of Birkhoff’s theo-
rem [39]. For the case of M< 0, the mass of a false
vacuum becomes effectively negative, which is possible
due to nonminimal coupling.

III. DYNAMICS OF A FALSE VACUUM BUBBLE

For applications of the modified junction equations on
the false vacuum bubble, the bulk spacetime geometry for
the inside ��� and outside ��� of the wall have a spheri-
cally symmetric spacetime,

 ds2 � �H	�R�dT2 �
dR2

H	�R�
� R2d�2; (14)

where

 H� � 1� A�R
2 and H� � 1� A�R

2 �
2GM
R

;

(15)

and M is the mass or the total energy of a false vacuum
bubble. The constant A is related to a cosmological con-
stant; A � � �

3 � �
8�G

3 � for de Sitter spacetime, A � 0

for Minkowski spacetime, and A � � �
3 � �

8�G
3 � for
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anti-de Sitter spacetime. Since we consider a false vacuum
bubble, �� >��.

We take the energy-momentum tensor T�� as the form

 T�� � S������ � �regular terms�; (16)

where S�� � �h���xi; � � ��� and  is the positive
surface energy density, or surface tension, of the wall
without nonminimal coupling. For bubble walls  is a
constant having the same value at all events on the timelike
surface [2,40]. Note that the stress-energy tensor of the
surface S�� can be defined as the integral over the thick-
ness, 
, of the surface � in the limit as 
 goes to zero,

 S�� � lim

!0

Z ���


���

T��d�: (17)

Then, Û �  because the internal structure of the wall is
neglected in the thin-wall limit and h�� � h�i � 0.

To keep the analysis as simple as possible, we take the
position of a false vacuum in the potential as zero, that is,
�� � 0 (see Ref. [24]). In this case Eq. (13) becomes

 �1� ���2
��K

�i
j � K

�i
j � �4�G�ij: (18)

By spherical symmetry, the extrinsic curvature has only
two components, K�

� � K�
� and K�

� . The junction equation
is related to K�

� , and the covariant acceleration in the
normal direction is related to K�

� .
We introduce the Gaussian normal coordinate system

near the wall,

 dS2 � �d�2 � d�2 � �r2��; ��d�2; (19)

where g�� � �1 and �r��; ��� � r���. It must agree with the
coordinate R of the interior and exterior coordinate sys-
tems. The angle variables can be taken to be invariant in all
regions. In this coordinate system the induced metric on
the wall is given by

 dS2
� � �d�

2 � r2���d�2; (20)

where � is the proper time measured by an observer at rest

with respect to the wall and r��� is the proper radius of �.
The following relation is satisfied:

 d�2 � H	�R�dT2 �
dR2

H	�R�
: (21)

In these treatments, the condition becomes
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or more generally
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where � � 2c
r

������������������
_r2 �H�

p
. Hereafter c denotes �2

�. We are
using the dot notation to refer to derivatives with respect to
�. 
	 are �1 if the outward normal to the wall is pointing
towards increasing r, and �1 if it is pointing towards
decreasing r [13,41]. There are parameter regions where
both 
� and 
� are positive in all ranges of r. This situation
is similar to the case of the evolution of a true vacuum
bubble. In earlier works, a sign change of 
	 was needed to
cover all ranges of r for the solution. This is because the
positive signs for 
	 covered only partial ranges of r; thus
the interesting unbound solutions were excluded. To obtain
an expanding false vacuum bubble, the mass of the bubble
should be greater than some critical value. These bubbles
start from an initial singularity. The second term on the
right-hand side of Eq. (23) can be interpreted as the nega-
tive tension of the wall due to a nonminimal coupling term.

After squaring twice, Eq. (22) can be written in the form

 

1
2 _r2 � Veff�r� � 0; (24)

where the effective potential is
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(26)
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Equation (24) formally coincides with the equation de-
scribing one-dimensional motion of a unit-mass particle
moving in the corresponding potential Veff with zero total
energy. The properties of the trajectory of the wall can be
read off directly from the shape of Veff . In the next section
we will discuss the details of trajectories of the wall.

IV. THE BUBBLE WALL TRAJECTORIES

In this section we consider the bubble wall trajectories
according to the mass of a false vacuum bubble in the
exterior bulk spacetime. The modified junction equations
with nonminimal coupling determine the trajectories.
From the shape of Veff we can obtain the behavior of
solutions without solving the equations exactly. We con-
sider only bubble solutions without black holes. In other
words, we consider the size of a false vacuum bubble larger
than the black hole horizon.

A. The case of M � 0

This case is related to the results in Ref. [24]. If a false
vacuum bubble can be nucleated within the true vacuum
background without changing the exterior spacetime, the
surface density becomes negative and/or the junction con-
ditions themselves need to be modified. Our results show
how the surface tension as well as junction conditions are
modified by nonminimal coupling. From now on, we scale
the dimension of a vacuum energy density to M4, that of 
to M3, that of G to M�2, that of r to M�1, and that of c to

M2, to make all terms in Eq. (24) dimensionless. For the
sake of simplicity, we take �c � 0:1, � � 0:033, and
A� � A� � 0:0025. In this case the effective potential
function is Veff�0� �

1
2 at r � 0, and there exist only ‘‘un-

bound’’ solutions. We consider three particular cases: case
1, where the interior as well as the exterior spacetime is
de Sitter; case 2, with the interior false vacuum as de Sitter
and the exterior as flat Minkowski spacetime; case 3, with
the interior false vacuum as de Sitter and the exterior as
anti–de Sitter spacetime. The shapes of the effective po-
tential as a function of r are shown in Fig. 1. These figures
indicate only unbound trajectories are possible. That is, the
bound and monotonic trajectories do not appear as classi-
cal solutions.

We see that the allowed minimum size of a false vacuum
bubble is diminished as � is decreased. So, if the radius of a
nucleated false vacuum bubble is greater than the allowed
minimum size, then the false vacuum bubble can expand
within the true vacuum background. These expanding
bubbles have no initial singularity, as we can see from
Fig. 1. So it is possible to create a universe by an expanding
false vacuum bubble nucleated by a proper mechanism.

B. The case of M> 0

In this case the mass of the false vacuum bubble is taken
as a constant parameter. The portion of the potential is
inherently restricted since the allowed region of r from
Eq. (25) is given by

FIG. 1. The effective potential Veff for various � in the case of M � 0. The time evolution of the wall can be interpreted as the
motion of a particle coming from infinity, reflecting at the barrier, and then going back to infinity. The three curves are (i) the dotted
curve: � � 0:10; (ii) the dashed curve: � � 0:15; and (iii) the solid curve: � � 0:20, in (a), (b), and (c). Figure (d) indicates the
potential with a different background at � � 0:20. There exist only unbound solutions.
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�

2GM�1� �1� ��c�2��1� ��c�2

1
4�

22�1� ��c�2 � �1� �1� ��c�2���1� ��c�2A� � A��

�
1=3
: (27)

In the case ofM> 0, we consider three particular cases:
case 1, with the interior spacetime as de Sitter and the
exterior as Schwarzschild–de Sitter; case 2, with the in-
terior as de Sitter and the exterior as Schwarzschild space-
time; case 3, with the interior as de Sitter and the exterior as
Schwarzschild anti–de Sitter spacetime. For these cases
massive bubbles can be formed in the early universe. These
cases have been studied by many authors in the pure
Einstein theory of gravity [2–5]. However, there are differ-
ent features between their models and ours. One is related
to the sign of 
	. Unlike previous works, unbound solu-
tions are allowed in our model since there are parameter
regions where both 
� and 
� are positive in all ranges of
r. Note that there is the restricted region of r as in Eq. (27).
The other is related to the junction equation (24). Our
approach is somewhat different from their work. We con-
sider the case of positive as well as zero mass. It seems
inappropriate that the case of zero mass is applied in their
formalism. We can consider the junction equation regard-
less of the mass. The shapes of the effective potential as a
function of r are shown in Fig. 2. In these cases, the false
vacuum bubble can also expand within the true vacuum
background.

C. The case of M< 0

The case of a negative mass bubble is allowed in this
framework. In this case we assume that the geometry of

outside spacetime with spherical symmetry is similarly
written by Eq. (14). These objects are considered in differ-
ent contexts in Refs. [42].

In the case of M< 0, we consider three particular cases:
case 1, with the interior spacetime as de Sitter and the
exterior as Schwarzschild, with negative mass, de Sitter;
case 2, with the interior as de Sitter and the exterior as
Schwarzschild spacetime; case 3, with the interior as
de Sitter and the exterior as Schwarzschild–anti-de Sitter
spacetime. Although the case of negative mass is physi-
cally unclear, since it does not satisfy the positive energy
condition, it still gives rise to the solutions of the Einstein
equations. So, we proceed to analyze the case of M< 0.
The shapes of the effective potential as a function of r are
shown in Fig. 3. There also exist expanding false vacuum
bubbles.

Here we discuss again the term which can be interpreted
as the negative tension of the wall. This effect is different
from earlier works [2–5]. In Fig. 4, we see that the magni-
tude of the negative tension of the wall, �, due to a non-
minimal coupling term is a constant only in the case of
M � 0. In other cases, the magnitudes approach the value
in the case of M � 0 as r is increased. On the other hand,
the magnitude is increased as r is decreased in the case of
M< 0 and decreased as r is decreased in the case of M>
0. Unlike other cases, there exist bound solutions in a
narrow range of r in the case of M< 0, although we are
not interested in this. In Fig. 4 we take only unbound

FIG. 2. The effective potential Veff for various � in the case of M> 0. The three curves are (i) the dotted curve: � � 0:10; (ii) the
dashed curve: � � 0:15; and (iii) the solid curve: � � 0:20, in (a), (b), and (c). There exist only unbound solutions.
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solutions. ro denotes the allowed minimum size of a false
vacuum bubble in this framework.

V. SUMMARY AND DISCUSSIONS

In this paper we have shown that there can be an ex-
panding false vacuum bubble within the true vacuum back-
ground. We have presented the formalism for the junction
conditions with nonminimal coupling in Sec. II.

In Sec. III we have studied the dynamics of a false
vacuum bubble using the modified junction conditions.
The nonminimal coupling term can be interpreted as the
negative tension of the wall in the junction conditions. In

this treatment the mass of a false vacuum bubble from an
outside observer’s point of view can be positive, zero, or
negative. The solutions in our model do not have black
holes. In other words, the size of a false vacuum bubble is
larger than the black hole horizon. The mass of a false
vacuum bubble has been treated as a parameter in this
work.

In Sec. IV, the bubble wall trajectories in the exterior
bulk spacetime are analyzed according to the mass of false
vacuum bubbles. We have obtained the behavior of solu-
tions in various cases. In this framework there are parame-
ter regions where both 
� and 
� are positive in all ranges
of r. This situation is similar to the case of the evolution of
a true vacuum bubble. In the case of M � 0, we have
considered three particular cases: case 1, where the interior
as well as the exterior spacetime is de Sitter; case 2, with
the interior false vacuum as de Sitter and the exterior as flat
Minkowski spacetime; case 3, with the interior false vac-
uum as de Sitter and the exterior as anti–de Sitter space-
time. In these cases only unbound trajectories are possible.
In the case M> 0, we have considered three particular
cases: case 1, with the interior spacetime as de Sitter and
the exterior as Schwarzschild–de Sitter; case 2, with the
interior as de Sitter and the exterior as Schwarzschild
spacetime; case 3, with the interior as de Sitter and the
exterior as Schwarzschild–anti de Sitter spacetime. In
these cases also, only unbound trajectories are possible.
The portion of the potential is inherently restricted since
the allowed region of r is given by Eq. (27). For the case of
M< 0, there also exist expanding false vacuum bubbles.
These objects are considered in different contexts in
Ref. [42].

FIG. 4. The magnitude of the negative tension of the wall, �,
due to a nonminimal coupling term in the spacetime with differ-
ent mass sign. Here ro denotes the allowed minimum size of a
false vacuum bubble.

FIG. 3. The effective potential Veff for various � in the case of M< 0. The three curves are (i) the dotted curve: � � 0:10; (ii) theh
dashed curve: � � 0:15; and (iii) the solid curve: � � 0:20, in (a), (b), and (c). There exist unbound solutions as well as ‘‘bound’’
solutions.
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In earlier works on the expanding false vacuum bubbles
[2–5], they have the initial singularity in the past. In
Ref. [24], it was shown that a false vacuum bubble can
be nucleated within the true vacuum background due to a
nonminimally coupled scalar field. In order to keep the
outside geometry invariant, after a false vacuum bubble is
nucleated, the junction conditions need to be modified. In
our model the false vacuum bubbles with minimal coupling
can expand within the true vacuum background with non-
minimal coupling. It will be interesting if this solution can
be related to tunneling from nothing to de Sitter space [43]
or related to a kind of eternal inflation [44]. Our model is
within the framework of the classical theory of gravity. It
will be interesting if this framework can be embedded in
the superstring theory.
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