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Stability of color-flavor-locking cores in hybrid stars
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We study the equation of state strongly interacting quark matter within a Nambu-Jona-Lasinio-like
model in which the chiral condensates and the color superconducting gaps are computed self-consistently
as a function of the baryon density. A vector interaction term is added to the Lagrangian in order to render
the quark matter equation of state stiffer. For the low density hadronic phase we use a relativistic mean
field model. The phase transition to quark matter is computed by a Maxwell construction. We show that
stable color-flavor-locking (CFL) cores in hybrid stars are possible if the superconducting gap is
sufficiently large. Moreover we find stable stellar configurations in which two phase transitions occur,
a first transition from hadronic matter to 2SC quark matter and a second transition from 2SC quark matter

to CFL quark matter.
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L. INTRODUCTION

The possibility that quark matter, and eventually color
superconducting quark matter, is present in the center of
neutron stars has stimulated many theoretical investiga-
tions in the last years both on the modelling of the equation
of state (EoS) of quark matter and on the phenomenologi-
cal signatures of the presence of quark matter in neutron
stars [1]. Presently the “‘state of the art” for the EoS of
quark matter is represented by the three-flavor Nambu-
Jona-Lasinio (NJL) model in which both the chiral con-
densates and the diquark condensates are self-consistently
computed as a function of the chemical potential and
temperature. Chemical equilibrium and charge neutrality
(both electric and color charge) conditions necessary to
describe neutron star matter are also imposed in this model
[2-6]. Recently, also the effect of a finite neutrino chemi-
cal potential has been included [7,8]. The structure of the
QCD phase diagram within this model turns out to be very
rich, with many different possible quark phases. One of the
most striking features, on which we will focus here, is the
first order phase transition between the two flavor phase,
2SC or normal quark matter depending on the diquark
coupling constant, and the three-flavor superconducting
phase, the color-flavor-locking phase (CFL), at vanishing
temperature.

Concerning the phenomenological signatures, the dif-
ferences between the mass-radius relation for neutron stars
and quark or hybrid stars is currently studied. The astro-
physical data so far are still affected by large uncertainties
but will improve considerably with the advent of new
satellite missions, as XEUS, Constellation-X, SKA,
JWST, and LISA. From recent theoretical studies it turns
out that the values of the maximum mass of neutron stars
and compact stars containing quark matter are very similar
[9,10]. Therefore, it seems difficult with the present knowl-
edge to rule out quark matter from just a mass measure-
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ment [11,12]. Other interesting quantities have been
calculated (see Ref. [13] for a recent review) for the differ-
ent possible phases of quark matter, as the neutrino emis-
sivity and the heat capacity which are important for the
cooling of compact stars [14—18] or the bulk viscosity
which determines stability with respect to gravitational
waves emission via r-modes [19-25]. Also in explosive
phenomena, as supernovae and gamma-ray-bursts (GRBs),
quark matter can play an important role. For instance, the
possibility of a double phase transition, first from hadronic
matter to 2-flavor quark matter and then from 2-flavor
quark matter to the CFL phase, has been proposed to
explain the complicated time structure of GRBs exhibiting
a long quiescent time in their light curve [26—28].

When the above mentioned NJL-EoS is used for the
applications on compact stars, hybrid stars become un-
stable at the onset of the CFL phase and therefore the
CFL phase can not be present in the core of neutron stars.
This conclusion was obtained first in Ref. [29] where quark
matter does not occur at all in compact stars because there
is a direct transition from hadronic matter to CFL matter in
the model used. In Refs. [30—-32] for different EoSs for the
hadronic matter and different parameters for the NJL
model for quark matter, again the CFL phase was ruled
out because it renders the stars unstable. The 2SC phase
could appear; the conclusion is therefore that only 2-flavor
superconducting quark matter can be realized in compact
stars. A similar result about the allowed quark phases in
compact stars was also found in Ref. [33] where a modified
2-flavor NJL model, which simulates confinement at low
density, is proposed. The dependence of the stability of a
quark core from the momentum cutoff of the NJL model
has been analyzed using density dependent cutoffs, but the
instability still persists [34,35].

On the other hand, completely different results are ob-
tained using MIT-bag-like models as shown in Refs. [37-
40] where the appearance of CFL cores does not compro-
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mise the stability of the star. Moreover, the absence of the
2SC phase in compact stars has been demonstrated in
Ref. [41].

In this paper we want to consider again the NJL-EoS as
computed in Ref. [3] to study the structure and composi-
tion of compact stars. We will investigate larger windows
of the model parameters with respect to previous work,
with particular attention to the diquark coupling. Fur-
thermore, we discuss the importance of the procedure
used to fix the effective bag constant within the NJL model
for the stability of a star when the phase transition to quark
matter is considered. We will investigate a new procedure
for fixing the effective bag constant by requiring that the
chiral symmetry restoration coincides with the transition
from the hadronic to the quark matter description [42]. We
use then different EoSs to compute the mass-radius rela-
tions of hybrid stars showing that in some cases a stable
CFL core is possible and, even more intriguing, that two
phase transitions, from hadronic matter to the 2SC and then
to the CFL phase, can take place in compact stars. The
double phase transition is particularly intriguing in con-
nection with the deconfinement quark model of GRBs in
which the interpretation of bursts presenting two emission
periods is due to a double phase transition in compact stars
[26-28].

The paper is organized as follows. In Sec. II we discuss a
simple toy model for a first order phase transition between
hadronic matter and quark matter in compact stars, and we
study the stability of the star by varying the parameters of
the quark matter EoS. In Sec. III we compute the quark
matter EoS within the NJL model for different sets of
parameters and finally in Sec. IV we discuss the stability
of the stars obtained using our EoSs with particular em-
phasis on the CFL core stability. In Sec. V we draw our
conclusions.

II. A TOY MODEL FOR PHASE TRANSITIONS IN
COMPACT STARS

We present in this section a toy-model EoS for strongly
interacting matter to show qualitatively the conditions for
stable solutions of the Tolman-Oppenheimer-Volkoff
(TOV) equation when a phase transition from hadronic
matter to an exotic phase, like quark matter, occurs. At
very low baryon densities, n < 0.05 fm 3, we use the EoS
as computed in Ref. [45] (similar results are obtained using
the EoS of Ref. [46]) suitable for the crust of neutron stars.
At larger densities, we consider for the hadronic matter a
relativistic mean field EoS, GM3, taken from Ref. [47]. For
quark matter we adopt a schematic EoS in which the
pressure is proportional to the energy density p = ae
where the slope (which corresponds to the sound velocity
and therefore regulates the stiffness of the quark matter
EoS) is a free parameter. Notice that this EoS corresponds,
for a = 1/3, to the EoS of massless and noninteracting
quarks. We then model the phase transition from hadronic
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matter to quark matter by introducing two other free pa-
rameters, the energy density jump A, = €, — €, at the
onset of the phase transition (e, and €; are the energy
densities of the quark phase and of the hadronic phase) and
the pressure at which the phase transition occurs p,. Our
aim is to investigate, for the different values of these
parameters, the stability of stars having a core of quark
matter. Let P1 be the parameter set with a = 1/3, A, =
200 MeV/fm?, and p, = 200 MeV/fm3. In Fig. 1(a) the
corresponding EoS is plotted by a gray line. In this case
compact stars are unstable when the quark matter phase
appears, see the gray line in Fig. 1(b). If we decrease now
the transition pressure to p, = 50 MeV/fm? keeping the
same values for the other parameters [set P2; see solid line
in Fig. 1(a)], a sizable branch of stable configurations
appears instead, see the thin solid line in Fig. 1(b). If we
reduce the energy density jump to A, = 50 MeV/fm? [set
P3 with pgand a as in set P1, see dashed line in Fig. 1(c)] a
small branch of stable solutions is obtained [dashed line in
Fig. 1(d)]. Concerning the stiffness parameter a, to obtain
stable solutions one must choose a = 1 (set P4 with p, and
A, as in P1). For this value of a the quark matter EoS is
even stiffer than the hadronic matter EoS [see the dotted
line in Fig. 1(e) for the EoS and the dotted line in Fig. 1(f)
for the mass-radius relation]. This last case is probably not
realistic in view of the asymptotic freedom property of
QCD.

In conclusion, what seems to be the most crucial pa-
rameter for the stability of a quark matter core is the value
of the pressure at the onset of the phase transition. If the
softening due to the appearance of quark matter occurs at
too large pressures, deep in the core of a neutron star, the
surrounding material exerts a pressure that cannot be sus-
tained by the new formed phase and therefore the star
collapses. Also a low value of A, can help to stabilize
the quark matter core. A detailed analytical study on the
critical value of energy density jump for having stable
cores of a new phase can be found in Refs. [48-51]
demonstrating that €,/€; should be smaller than €,/e; =
3(1 + po/e€y).

We will see in the next sections how these cases are
connected with more physical meaningful quantities as the
bag constant, the superconducting gap, and the constituent
masses of quarks.

ITI. PHASE TRANSITION TO QUARK MATTER

We present now a more realistic EoS for quark matter.
The EoS is computed within the NJL-like model proposed
in Ref. [3] in which a scalar diquark interaction term for the
color antitriplet and flavor antitriplet channel is added to
the usual NJL model. Here we include also the isoscalar
vector term as in Refs. [31,52,53] in order to obtain stiffer
EoSs. The input variables of the model are the chemical
potentials for all the quark flavors and colors given, in
chemical equilibrium, by the matrix:
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FIG. 1. Equations of state and corresponding mass-radius relations for the toy model for different parameter sets. EoSs are shown in
the left column and mass-radius relations in the right column. The purely hadronic matter EoS and the corresponding neutron stars
sequence are depicted by a thick solid line. (a) Quark matter EoS for @ = 1/3, A, = 200 MeV/fm?, and p, = 200 MeV /fm? (gray
line set P1), and a = 1/3, A, = 200 MeV/fm3, and p, = 50 MeV/fm3 (solid line set P2). (c) Quark matter EoS for the choice
a=1/3, A, =50 MeV/fm?, and p, = 200 MeV/fm> (dashed line set P3), the other curves are as in (a). (¢) Quark matter EoS for
a=1, A, =200 MeV/fm?, and p, = 200 MeV/fm> (dotted line set P4), the other curves as in (a). Stable configurations with a
quark core can only appear for sufficiently stiff quark matter EoS or for a transition point away from the maximum mass configuration
of the purely hadronic compact stars.

sz — (u6f + MQQ?ﬁ)é\ab mg; = 140.7 MeV, 3)

+ [IU’3(T3)ab + IU’S(TS)ab]aaﬁ’ (1) GSAZ — 1835, (4)
where u is the quark chemical potential; u is the chemi-
cal potential of the electric charge equal to minus the
electron chemical potential u,; and w; and g are the
color chemical potentials associated with the two mutually A =602.3 MeV. (6)
commuting color charges of the SU(3).. gauge group. The
explicit form of the electric charge matrix is Qp =
diag,(3, — %, — ), and for the color charge matrices T3 =

KAS = 12.36, (5)

After fixing the masses of the up and down quarks by
equal values, m, ;, = 5.5 MeV, the other four parameters
are chosen to reproduce the following four observables
diag.(3, — 1, 0) and +/3Tg = diag.(, 3, —1). [54]: m, =1350 MeV, my =497.7 MeV, m, =

The model parameters are fixed by fitting low energy  957.8 MeV, and f,, = 92.4 MeV. This parameter set gives
hadronic properties which are the current quark masses, the m, = 514.8 MeV [54].

quark-antiquark coupling Gy, the strength K of the
“’t Hooft” interaction and the cutoff parameter A intro-
duced in the NJL model to regularize the ultraviolet diver-
gences:

There are two more parameters, the diquark coupling
Gp and the vector current coupling Gy, which are not
known. We will use G, = Gy and G, = 1.2Gg because
one expects that the diquark coupling has a similar strength
as the quark-antiquark coupling. For G, we choose the
Myq = 5.5 MeV, (2)  cases Gy = 0 and Gy = 0.2Gs.
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At vanishing temperature and within the mean field
approximation the pressure reads

P=5 22] dkk?|e;| + 4K o, 040,

1 w3
——§A2—2G§ 24+ 2 +p, 7
4GD C:1| cl Sa:1 Oq 4GV Pe ( )

where €; are the dispersion relations as computed in
Ref. [3], 0,4, are the quark-antiquark condensates, and
A, are the three diquark condensates. We denote with
wo = 2G(QMIWiip, + iy + ¥l |QM)  the  mean
field expectation value of the isoscalar vectorlike meson
w. This field modifies also the chemical potentials:
Muds — Myas — wo. Finally, the contribution to the pres-
sure of electrons is p, = u#/(1272).

The pressure within the NJL model is defined but for a
constant B, similarly to the MIT bag constant, which is
usually fixed by requiring that the corrected pressure p —
B is vanishing at vanishing chemical potential [4,55,56]. In
our model, for the parameters set used here, we have B =

= (425.4 MeV)* [57]. Actually, this procedure to de-
termine the bag constant is somehow unsatisfying, as also
stated in Ref. [56], since the pressure computed within the
NJL model at vanishing density is used which is in a
regime where the NJL model cannot be trusted due to its
lack of confinement. On the other hand, in the MIT bag
model for instance, which contains confinement, the pres-
sure in the vacuum is not vanishing.

Here we propose an alternative procedure to fix the bag
constant in the NJL model. First, we introduce at low
density an EoS having hadronic degrees of freedom, like
the GM3 EoS used in Sec. II, and then we compute the
transition to quark matter, the deconfinement transition, by
a Maxwell construction. We remark that *““deconfinement”
in our scheme has the meaning of a change of degrees of
freedom and the corresponding Lagrangian, it is not a
phase transition described by an order parameter. To fix
the bag constant we assume that deconfinement occurs at
the same chemical potential as the chiral phase transition
ie. when chiral symmetry is restored. Practically this
means that we require that the pressure of quark matter,
p — B, is equal to the pressure of the hadronic matter at the
critical chemical potential for which chiral symmetry is
restored i.e. the value w.; computed in the NJL model.
This allows one to fix the value of B and, as we will see, to
obtain significantly different results with respect to the
ones obtained using the conventional procedure. It turns
out that deconfinement occurs at very large quark chemical
potential ~470 MeV by far larger than the critical chemi-
cal potential for chiral symmetry restoration for B = B,,
the standard choice [56]. The bag value obtained with our
assumption, B = B,, as we will see in the following, is
marginally smaller than B, and must be considered as the
lowest possible value for the bag constant in the NJL model
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because it allows one to use the NJL-EoS just starting from
Mqii- For chemical potentials lower than w;; the density of
quarks, as computed within the NJL. model, is vanishing
due to the completely broken chiral symmetry. This is
obviously a regime in which the NJL model cannot be
applied. Our assumption on the coincidence of deconfine-
ment and the chiral phase transitions at finite density has
not yet been a QCD-motivated argument. Nevertheless,
this coincidence has been found in Lattice QCD calcula-
tions at finite temperature (see Ref. [58] and references
therein), and it has been also adopted in other models for
the EoS at finite chemical potential as the NJL-inspired
model proposed in Ref. [33]. Interestingly, within the
Dyson-Schwinger approach, it is possible to define an
order parameter for deconfinement at finite density and it
turns out that the two phase transitions occur simulta-
neously [59]. We will examine here both choices for the
bag constant B, and B..

We remark that another possible scenario has been
proposed for the finite density phase transition in
Refs. [43,44]: there is no deconfinement at all at large
density, only the chiral phase transition occurs and the
quarks are still confined.

A. Results

In order to compute the EoS needed for compact stars,
the pressure, Eq. (7), must be minimized with respect to the
chiral and color superconducting order parameters, o, and
A, and therefore six gap equations are obtained:

ip
ao_a - 0’ (8)
ip
9. =0. )

Moreover, local electric and color charge neutrality are
met if three other equations are satisfied,

ny=—£ =y (10)
=540
ny =T —, (11)
M3
9
ng =L =0, (12)
d g

These conditions fix the values of the three correspond-
ing chemical potentials, wy, w3, and ug. One more equa-
tion is imposed to compute the vector current expectation
value:

ap

by =0. (13)
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FIG. 2. Upper left panel: pressure as a function of the chemical potential for hadronic matter (thick line), the 2SC phase (dashed
line), and the CFL phase (solid line). Upper right panel: pressure as a function of the baryon density. Parameters are G, = Gy,
B = By, Gy = 0. A direct transition from hadronic matter to the CFL phase occurs with a large baryon density jump ~0.45 fm™3 at
the onset of the phase transition. Lower left panel: pressure as a function of the chemical potential. Lower right panel: pressure as a
function of the baryon density. Parameters are G, = Gg, B = B., Gy = 0. For a lower value of B there is first a transition from
hadronic matter to 2SC quark matter and then from 2SC quark matter to CFL quark matter.

After all these quantities are fixed, one arrives at the
pressure of quark matter as a function of the quark chemi-
cal potential only and one can easily build the Maxwell
construction by solving the equation

pum(p) = pom(u) — B. (14)

As discussed before we use for B two values, B, and B... In
the upper left panel of Fig. 2 we show the pressure as a

function of the quark chemical potential for hadronic mat-
ter (thick line) and quark matter (thin lines, the dashed line
corresponding to the 2SC phase and the continuous line to
the CFL phase). Parameters are B = B\, Gp = Gg, and
Gy = 0. In this case there is a direct transition from
hadronic matter to the CFL phase, see also Refs. [29,30].
The corresponding EoS is shown in the right panel of
Fig. 2. Notice the large jump of the baryon density of about
~0.45 fm~? at the onset of the phase transition. We notice
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FIG. 3. Same as in Fig. 2 for G, = 1.2G5. When a large diquark coupling G is considered there are for both values of B two phase
transitions, first from hadronic matter to 2SC quark matter and then from 2SC quark matter to CFL quark matter.
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that in Ref. [31] a similar parameter set, B = By, Gp =
GS, and Gy = 0, gives a different result: there is just a
transition from hadronic matter to the 2SC phase. Apart
from the different choice for the hadronic matter EoS, the
’t Hooft interaction term is neglected in that calculation.
We obtain the same result, a transition from hadronic
matter to the 2SC phase, by choosing K = 0 in our model.
The ’t Hooft term in fact, as observed in Refs. [54,60],
pushes the 2SC-CFL phase transition to lower chemical
potentials rendering the CFL phase the favored quark
matter phase also at intermediate densities.

Let us study how this result changes if we choose B =
B.., which for this set of parameters is B, = (424.8 MeV)*,
slightly smaller than B, = (425.4 MeV)*. By construction
now there is first a transition from the hadronic matter to
the 2SC matter and then a second transition from 2SC
matter to CFL matter, see the corresponding plots in the
lower panel of Fig. 2.

We repeated the previous calculation for Gp = 1.2Gg.
For this value of the diquark coupling the superconducting
gap within the CFL phase at u = 500 MeV is Acp ~
160 MeV. Notice that our present knowledge of the CFL
gap concerns only its order of magnitude i.e. ~100 MeV;
therefore, a CFL gap larger than 100 MeV is not excluded
and has been considered also in previous papers
[4,37,61,62]. The effect of increasing the diquark coupling
on the EoS is to decrease the onset of chiral symmetry
restoration, from w, = 358 MeV for Gp = Gg to u, =
344 MeV for Gp = 1.2Gg and the 2SC-CFL phase tran-
sition onset, from w, = 415 MeV for G, = Gg to u, =
386 MeV for Gp = 1.2Gg. As shown in Fig. 3 for both
choices of B there is a double phase transition with in-
creasing baryon density [63].

P[MeV/fm>]

P[MeV/fm ]

Hg [MeV]
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We include now in our calculation the vector meson term
and set Gy = 0.2Gg (we consider now only G = 1.2Gy).
The physical effect of this term is a repulsive interaction
between quarks which renders the quark matter EoS stiffer.
For the case B = By, there is a transition from hadronic
matter to CFL matter and for the case B = B, a double
phase transition is present, see Fig. 4.

IV. MASS-RADIUS RELATIONS

Let us now discuss the corresponding mass-radius rela-
tions for compact stars. In Fig. 5 we show the mass-radius
diagram for the EoSs with G, = Gg for B = B (EoS1)
and B = B, (EoS2) indicated by the dotted lines and the
EoSs with Gp = 1.2Gg for B = B, (EoS3) and B = B.
(EoS4) indicated by the solid lines. In the first case, EoS1,
where a transition from hadronic matter to CFL is found
(see upper panel of Fig. 2), the CFL core is unstable and
therefore the conclusion is that quark matter does not occur
at all in compact stars in agreement with the findings of
Ref. [30]. This is due to the fact that the transition to CFL
matter occurs at a large pressure and chemical potential
which, as demonstrated within the toy model of Sec. I,
strongly disfavors stable configurations. Decreasing the
value of B to B,, which in the toy model would correspond
to a change of the transition pressure, changes the result
significantly: a stable core of quark matter can be present
but only in the 2SC phase, the subsequent transition to the
CFL phase renders the star unstable. This scenario agrees
with the one proposed for instance in Ref. [31]. Let us
discuss now the cases in which G, = 1.2Gg. Obviously
the larger the diquark coupling the more favored is quark
matter with respect to hadronic matter because both the
onset of the chiral symmetry restoration and the one for the

CFL

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Py [fm 3

CFL

2SC,
HM

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Pyfm 3

FIG. 4. Same as in Fig. 3 with the inclusion of a repulsive vector term with Gy = 0.2Gyg. In the case B = B, a direct transition from
hadronic matter to CFL matter is found. In the case B = B.. the EoS exhibits instead two phase transitions.
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FIG. 5. Mass-radius relations for the EoSs with Gp = Gy
(dashed lines) for B = By and B = B, and with Gp = 1.2Gg
(solid lines) for B = By and B = B... Gy = 0 in all cases. The
thick curve stands for the hadronic stars. In the case Gp = Gg no
stable CFL cores are found, only a 2SC core is possible for B =
B.. In the case Gp = 1.2Gy, hybrid stars having a CFL core are
stable. Furthermore, in both cases, B = By and B = B, a layer of
2SC phase is present inside the hybrid stars.

2SC-CFL transition are shifted to lower densities. This
implies that the pressure of the phase transition is smaller
than in the previous cases but also that the density jump
due to the Maxwell construction is larger [64]. Among
these two effects, the first favors the stability of the star
while the second disfavors the stability of the star (see our
toy model discussion). We find that the first effect domi-
nates and hybrid stars containing both the 2SC phase and
the CFL phase are stable in both cases, B = By and B = B,
[65]. The structure of these stellar objects is extremely
interesting: it contains a crust of hadronic matter, a layer
of 2SC phase, and a core of CFL phase. Possible astro-
physical implications of these stellar compositions have
been already discussed in Refs. [26—28] in connection with
GRBs. The formation of first the 2SC phase and then of the
CFL phase, during the evolution of the star, would produce
two separate neutrino emission and possibly also two
different GRBs emission periods for which there are al-
ready observational hints [27].

We point out that the solutions of the TOV equations
obtained without vector interactions reach a maximum
mass of less than 1.4M, and therefore are excluded by
pulsar mass data. For the case Gy = 0.2Gg we obtain
hybrid stars with a stable core of CFL phase in the case
B = B, and hybrid stars with both the 2SC and the CFL
phases for B = B, as in the previous cases. These solutions
have a corresponding maximum mass of ~1.8M, (see
Fig. 6) due to the effect of the repulsion given by the vector
interaction and are not ruled out by the presently available
astrophysical data. For even larger values of Gy, we arrive
at stable hybrid stars with just a CFL core.

A final important remark concerns the large value of the
diquark coupling that we must use to obtain stable quark
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FIG. 6. Mass-radius relations for the EoSs with Gp = 1.2Gy
and Gy = 0.2G¢ for B = By and B = B, (solid lines). The thick
curve stands for the hadronic stars. In both cases stars having a
CFL core are stable (see the magnification for the case B = By),
in the case B = B, a double phase transition is present.

matter cores. The crucial quantity for the stability is a low
value of the pressure of the phase transition to quark matter
as seen already in our discussion of the toy model. A low
transition pressure can be obtained for a large diquark
coupling but also for a reduced constituent mass of the
strange quark. Within the NJL model discussed here, m
turns out to be quite large. Other quark matter studies
within the Dyson-Schwinger approach point towards lower
values of m and consequently the CFL phase dominates in
an enlarged density region [68]. Unfortunately, the EoS of
quark matter within the Dyson-Schwinger approach is not
yet available. Our analysis suggests that the corresponding
results for the TOV solutions can be very similar to the
ones obtained here.

V. CONCLUSIONS

We have studied the phase transition from hadronic
matter to quark matter and the corresponding impact on
the mass-radius relation of compact stars. By using first a
toy model for the quark matter equation of state we have
analyzed how the stability of hybrid stars depends on the
properties of the phase transition. In particular a low value
of the pressure at the onset of the phase transition seems to
be the most crucial quantity for the stability of a hybrid
star. We have then computed the equation of state of quark
matter within the NJL model by including effects from the
chiral condensates, the diquark coupling pattern, and a
repulsion vector term. For large enough values of the
diquark coupling strength, hybrid stars containing a CFL
core are found to be stable. Even more interesting stable
hybrid stars containing both a layer of a 2SC phase and a
core of a CFL phase appears to be possible. This result
opens the possibility to find new signatures of the presence
of quark matter in compact stars. The formation of differ-
ent quark phases in compact stars can release a huge
amount of energy powering both energetic bursts of neu-
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trino and gamma-ray signals. A detailed study of the time
evolution of a proto-neutron star including the possible
appearance of the 2SC phase followed by the formation
of the CFL phase could reveal some new features and
opportunities for detecting the chiral phase transition of
QCD in the sky.
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