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We present the concept design of a new class of acoustic detectors of gravitational waves (GWs), which
feature a wideband sensitivity. The main novelty relies in the geometry of the test mass, which is equipped
with integrated whips. This tapering provides more resonant modes with favorable cross-section to GWs
to achieve a large bandwidth. Moreover, the whips act as displacement concentrators and ensure a high
mechanical gain at the sensing surfaces. The resulting decrease in mechanical stiffness allows us to
achieve the noise matching condition with reasonable operating parameters of the displacement trans-
ducer. The performances of the detector are modeled taking into account the quantum and thermal noise
sources in the case of a capacitive transducer with a SQUID amplifier. This class of detectors can be
designed to target GWs in the frequency range above 1 kHz at a sensitivity comparable to that predicted
for future long baseline interferometric detectors. After showing how to scale the design for different
constructing materials and target frequencies, we discuss the predicted sensitivity to specific astrophysical
signal waveforms.
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I. INTRODUCTION

The search for gravitational waves (GWs) is being pur-
sued by networks of laser interferometric detectors and
resonant detectors. The operating long arm interferometers
[1,2] are the GW detectors with the best potential of
discovery today, in particular, for GW signals in the lower
part of the acoustic frequency band, say �50� 2000� Hz.
In fact, these detectors, which show the best strain sensi-
tivity, are performing coordinated long-term observations
and have working plans for near future improvements
[3,4].

The operating resonant bar detectors are projects of
much smaller size and have been in long-term operation
for many years [5,6]. Their sensitivity is limited in a
narrow frequency range around 900 Hz. This is a conse-
quence of their conventional detection design, where a
lighter mechanical resonator is coupled and tuned to a
resonant mode of the larger test mass sensitive to GWs.
The lighter resonator provides a mechanical amplification
of the deformation of the test mass around its resonance
frequency. This amplification is necessary to overcome the
additive noise contributed by the electrical signal amplifier
and, if possible, to achieve the noise matching condition
[7]. Unavoidably, the lighter resonator produces also addi-
tional thermal noise, which dominates the performances of
the detectors out from its resonance. This conventional
scheme of resonant detection can be improved by using a
chain of tuned resonators with decreasing masses [8], but

the additional thermal noise limits in practice the band-
width to & 0:1 of the resonance frequency. The state-of-
the-art is represented by the AURIGA bar detector, which
implements a chain of two lighter resonators tuned to the
first longitudinal mode of the cylindrical bar [9]. The
current designs of spherical resonant detectors are affected
as well by this limitation [10].

New concept designs of acoustic detectors have been
proposed to overcome the bandwidth limitations of con-
ventional resonant detectors: the DUAL detectors [11,12]
are sensitive over a wide frequency bandwidth between the
fundamental quadrupolar resonant modes of the two nested
test masses. To preserve the wide frequency band and to
minimize the thermal noise, the DUAL detectors need a
geometrically selective readout, which senses the quadru-
polar deformations, as those produced by GWs, while
rejecting deformations with different symmetry [12].
More recently, the same operating principle has been dem-
onstrated also in the case of a hollow cylindrical test mass,
called single-mass DUAL detector [13]. It has been proved
that the latter can offer all the advantages of a DUAL
detector, but with easier detector realization. Both these
designs, however, set too strict requirements on the noise
stiffness of the motion sensors. In fact, it is well known in
linear system theory that the limiting performances can be
achieved only if the measuring device has a noise imped-
ance matched to the impedance of its load (see, e.g.,
Ref. [14]). The noise stiffness required to optimize the
performance of the single-mass DUAL proposed in
Ref. [13] is 2-3 orders of magnitude larger than the one
which could be achieved by realistic readouts, both elec-*Corresponding author: leaci@science.unitn.it
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tromechanical and optomechanical. Therefore, also the
DUAL detectors require a wideband mechanical amplifi-
cation of displacement, which cannot be of the traditional
resonant type, as above mentioned.

In this article, we propose a new design of single hollow
test mass which allows us to achieve the noise matching
condition with realistic displacement transducers. In this
design, the test mass is equipped with displacement con-
centrators made by properly tapered whips [15], which
provide wideband mechanical amplification at the sensing
surfaces. Moreover, the test mass design is optimized so
that five resonant modes with favorable cross-section to
GWs contribute to its wideband sensitivity, as compared
with the two modes contributing to the sensitivity of the
single-mass DUAL detector. As in former DUAL designs,
also the new ones exploit the back-action reduction at
frequencies between adjacent resonant modes. The result-
ing main advantage of the new design is the reduction of
the mechanical stiffness at the sensing surfaces by almost 3
orders of magnitude. This allows us to achieve the noise
matching condition, while keeping a standard quantum
limit (SQL) performance comparable to the DUAL detec-
tors, in terms of noise spectra. The development of this new
design was based on the systematic use of three-
dimensional dynamical simulations by means of finite
element method (FEM).

The paper is organized as follows. In Sec. II, we briefly
review the model of a generic acoustic detector made by a
single test mass equipped with an ideal SQL readout or a
realistic capacitive transducer. Section III describes the
new concept design, namely, the design of the test mass,
the design of the capacitive displacement transducer and
amplification chain, and the resulting design sensitivity.
Section IV is devoted to the discussion of a few science
cases, based on two detector configurations targeted to
different frequency bandwidths: ��1:1� 2:6� kHz and
��2� 5� kHz. Conclusions are summarized in Sec. V.

II. GENERAL PROPERTIES OF ACOUSTIC GW
DETECTORS

The fundamental driving forces on the test mass of an
acoustic GW detector are the tidal force field of the GW,
the readout back-action force and the thermal noise. In the
following subsections we recall the system response on the
basis of the guidelines of Refs. [12,13], and we discuss the
noise matching condition to a capacitive readout. We also
review the general scaling properties of the mechanical
design of the cylindrical test mass in terms of its dimen-
sions and related operating frequencies.

A. Response of the test mass to the fundamental driving
forces

The deformation u�r; t� of the test mass is read at the
selected sensing surfaces and the output displacement can
be expressed as

 X�t� �
Z
S
dsP�r�u�r; t�; (1)

where P�r� is a suitable weight function, used to select the
deformations that can be produced by the quadrupolar GW
field and to reject deformations of different geometrical
symmetry.

As usual, in the following h�t� is the time varying
amplitude of metric perturbation related to GW. The de-
tector responses to h�t� and to an input back-action force
FBA�t� are described in the frequency domain by

 

~X�!� � ~h�!�HGW�!� (2)

and

 

~X�!� � ~FBA�!�TBA�!�; (3)

where a tilde denotes a Fourier transform. The back-action
force acts on the sensing surfaces and it is basically deter-
mined by the readout. The function jTBA�!�j�1 is the
mechanical stiffness k�!� of the readout port of the test
mass.

The expressions of the transfer functions, in terms of the
superposition of the resonant modes of the test mass, are

 HGW�!�

�
1

2V

X
m

�!2�
R
V dVW�r� � wm�r���

R
S dsP�r� � wm�r��

�!2
m �!2� 	 i!2

m�m�!�

(4)

and

 TBA�!� �
1

M

X
m

�
R
S dsP�r� � wm�r��2

�!2
m �!2� 	 i!2

m�m�!�
; (5)

where the integrals are performed on the volume V and
sensing surfaces S of the test mass. Here W�r� is the spatial
component of the GW field, M is the mass of the detector,
! the angular frequency, wm�r� and !m the displacement
field and the resonance angular frequency of the normal
mode m, respectively. For frequency-independent losses,
the phase lag �m�!� is equal to the inverse of the material
quality factor Q [16].

For a system at equilibrium with a bath at temperature T,
the fluctuation-dissipation theorem [17] predicts the fol-
lowing single sided power spectrum of the thermal noise on
the output variable X,

 SXX�!; T� �
�4KBT
!

=m�TBA�!��; (6)

where KB is the Boltzmann constant.

B. Noise matching and mechanical amplification

The test mass has to be equipped with a readout system.
The noise power spectral densities contributed by the read-
out are Sxx�!� (m2=Hz) and Sff�!� (N2=Hz), that repre-
sent the additive noise in terms of equivalent displacement
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and the back-action force disturbance on the test mass,
respectively. Then, the noise on the measured observable X
due to the readout can be simply expressed by

 SRXX�!� � Sxx�!� 	 jTBA�!�j2Sff�!�: (7)

It is convenient to introduce also the energy resolution,
expressed as number of energy quanta,

 �R�!� �

����������������������������
Sxx�!�Sff�!�

q
@

(8)

and the readout noise stiffness:

 kR�!� �

���������������
Sff�!�

Sxx�!�

s
: (9)

Then, it is straightforward to show [13] that the mini-
mum readout noise, for given �R�!� and TBA�!�, is
achieved when

 kR�!� � k�!�; (10)

where k�!� � jTBA�!�j
�1. According to Eq. (10), we

optimize the coupling between the test mass and its trans-
ducer by matching the readout noise stiffness kR to the
mechanical stiffness k of the test mass. For instance, in the
case of a capacitive transducer, kR is of the order of E2

0C
(for detailed calculations see Appendix A), where C is the
capacitance of the transducer and E0 is the bias electric
field. Therefore, the noise stiffness can be tuned in princi-
ple by acting on E0. Unfortunately, the breakdown field
sets an upper limit to the maximum achievable E0, which is
of the order of 3
 108 V=m [18]. An ordinary single-mass
DUAL [13] would require a noise stiffness of 1:7

1011 N=m: even if a readout with a capacitance as large
as 10�7 F was built, the needed field would be�109 V=m,
clearly out of reach.

The straightforward way to relax the requirement on the
readout noise stiffness is to increase the mechanical defor-
mation on the sensing surfaces. The surface integral in
Eqs. (4) and (5),

 �m �
Z
S
dsP�r� � wm�r�; (11)

can be interpreted as an estimate of the displacement
concentration relative to the mth mode over the sensing
surface. Close to the resonant frequencies of the test mass,
the readout noise stiffness required to achieve the noise
matching is reduced by the square of the displacement
concentration �m. In fact, near !m, the transfer functions
HGW�!� and TBA�!� are dominated by the response of the
mth mode so that jHGWj / �m and jTBAj / �2

m; therefore,
according to Eq. (10), we have kR�!� / 1=�2

m. However, in
order to increase the coefficients �m, one needs to change
the detector geometry, for instance by adding some kind of
embedded mechanical amplification stage.

The best achievable sensitivity is affected by the test
mass geometry: whenever this geometry is changed, one
needs to check that the sensitivity is preserved. To discuss
this point, let us consider the detector noise in terms of GW
strain at input,

 Shh�!; T� � SRhh�!� 	
SXX�!; T�

jHGW�!�j
2 ; (12)

where

 SRhh�!� �
@�R�!�

jHGW�!�j2

�
1

kR�!�
	 jTBA�!�j

2kR�!�
�

(13)

is the detector noise obtained when the thermal noise is
neglected. In this approximation, assuming the readout
optimally matched �kR�!� � jTBA�!�j�1� and with quan-
tum limit energy resolution ��R�!� � 1� [19], Eq. (13)
gives the so-called SQL sensitivity of the detector:

 SSQL
hh �!� � 2@

TBA�!�

jHGW�!�j
2 : (14)

According to Eqs. (4) and (5), around !m, the SQL sensi-
tivity does not depend on the change of the displacement
concentration �m. This happens because the term repre-
senting the displacement concentration dominates at reso-
nance both in the numerator and denominator of Eq. (14).
However, this is not the case of a wideband detector, which
works in-between resonances. Thus one has always to
check a posteriori if the detector SQL sensitivity is pre-
served when a mechanical amplification stage is imple-
mented. For instance, it has been demonstrated that the
implementation of leverage type amplifiers [20], suitable to
solve the noise matching, can strongly degrade the SQL
sensitivity of the ordinary single-mass DUAL detector
[21].

C. Scaling formulas

The scaling formulas will be used throughout the paper
to evaluate the sensitivity of detectors made by different
materials and with scaled dimensions. The scaling of the
vibrational spectrum of a three-dimensional body, when its
size and/or material are changed, can be obtained by study-
ing the Rayleigh quotient R of the system [22]. The
Rayleigh quotient, based on the principle that a conserva-
tive system vibrating at a natural frequency has maximum
system kinetic energy equal to the maximum system po-
tential energy, is a popular means of estimating frequencies
in linear undamped vibratory systems. A detailed treatment
shows that R has stationary points at the system eigen-
functions wm, and these stationary values are the system
eigenvalues R�wm� � !2

m [23].
Let us show now as the Rayleigh quotient is defined on a

free harmonic vibration of a three-dimensional elastic
body, with displacement modal function w�r� and natural
angular frequency !̂. The solution is expressed as a space x
and time t dependent displacement function w�r�ei!̂t, and
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the maximum stored potential energy is

 V �
1

2

Z
V
�ij"ijdV; (15)

where the strain tensor " is defined as

 "ij �
1

2

�
@wi
@xj
	
@wj
@xi

�
: (16)

If the body is made of a material isotropic and homoge-
neous, the stress components�ij are given by Hooke’s law:

 �ij � �"kk�ij 	 2�"ij; (17)

where the Lamè coefficients � and � depend on the
Poisson’s ratio �p and on the Young’s modulus Y of the
material:

 � �
Y�p

�1	 �p��1� 2�p�
� �

Y
2�1	 �p�

: (18)

The kinetic energy associated with the displacement
function w�r�ei!̂t is simply:

 !̂ 2T � !̂2 �
2

Z
V
�wiwi�dV; (19)

where T is the so-called ‘‘kinetic energy functional’’ and
� is the mass density. The Rayleigh quotient is defined as
R � V =T and, if w�r� is a normal mode, has a stationary
point in w�r� over the space of the possible solutions. In
other words, any function w0 obtained from a small varia-
tion of w will give the same value of R at the first order.
This value is exactly the eigenvalue of the mode !̂2:

 !̂ 2 �R �
Y
�

R
V�

�p"kk
�1	�p��1�2�p�

�ij 	
1

�1	�p�
"ij�"ijdVR

V�wiwi�dV
;

(20)

where Eq. (17) has been used to remove any dependence on
the stress �ij. The volume integrals in Eq. (20) are not
modified by the choice of Y and/or �, then the eigensolu-
tion w�r� remains a stationary point of the Rayleigh quo-
tient whatever the value of Y and/or �. On the contrary, the
functional dependence on the Poisson’s ratio is more com-
plex and there is no guarantee that the solution w�r�
remains a stationary point if �p is changed. Moreover we
can see that, as the value of R simply scales as Y=�, the
corresponding natural frequency will scale as

���������
Y=�

p
.

The relation expressed by Eq. (20) is also useful to
evaluate the effect of the scaling of the elastic body. The
solution w��r� � w�r=a� describes a body uniformly ex-
panded by a factor a. By changing the integration variable
in Eq. (20), it can be shown that w��r� is a stationary point
of R with a natural frequency !̂� � !̂=a.

In the case of a solution with cylindrical symmetry, it is
also easy to show that R is independent of the length of the
cylinder. Then, in our cylindrical detectors, the angular
frequencies of the modes with cylindrical symmetry scale

according to the simple relation

 

!�m
!m
�
v�s
vs

1

ar
; (21)

where !m, vs, and !�m, v�s are the original and the scaled
values of the angular frequency and of the material’s sound
velocity, respectively. Here ar is the radial scaling factor.

On the basis of these relations, it is straightforward to
evaluate the scaling law for the transfer functions [Eqs. (4)
and (5)], in the hypothesis of constant value of the
Poisson’s ratio and loss angle independent of the fre-
quency. The transfer functions for the scaled system are
given as:

 H�GW�!� � arHGW

�
!
arvs
v�s

�
(22)

and

 T�BA�!� �
Y
Y�

1

aL
TBA

�
!
arvs
v�s

�
; (23)

where aL is the scaling factor of the cylinder length L.
According to Eq. (14), the power spectrum density at the
SQL is

 S�hh�!� �
Y
Y�

1

aLa2
r
Shh

�
!
arvs
v�s

�
; (24)

while the scaled optimal value for the readout noise stiff-
ness is

 k��!� �
aLY

�

Y
k
�
!
arvs
v�s

�
: (25)

D. Test mass coupled to a capacitive-SQUID readout

In this section we describe how the sensitivity of an
acoustic GW detector is affected by a realistic readout,
made by a capacitive transducer followed by a SQUID
amplifier. A basic scheme of such kind of readout is shown
in Fig. 1. The capacitive transducer must be designed in
order to implement a selective readout, defined by a prop-
erly chosen weight function P�r� [13]. The coordinate X of
the test mass is assumed to be equal to the average gap of
the capacitive transducer over the sensing region. This is
true in the case of parallel plates. The basic linear equa-
tions which describe the coupling between a mechanical
and an electrical system through a capacitive transducer,
biased with static electric field E0, are [24]

 V�t� � E0X�t� (26)

and

 FBA�t� � E0Q�t�: (27)

Equation (26) represents the voltage induced in the elec-
trical circuit by a mechanical displacement X, while
Eq. (27) represents the back-action force acting on the
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mechanical system due to a charge Q induced on the
capacitor by the electrical circuit (for more details see
Appendix A).

Following the method of the normal mode expansion,
we write down the equations of motion of the test mass
normal modes in the frequency domain, taking into ac-
count through Eq. (27) the coupling to the electrical circuit:

 M��!2 	!2
m 	 i!

2
m�m�!��~qm�!�

� �1
2�!

2�m
~h�!� 	 �mE0

~Q�!� 	 ~Fth�m�!�: (28)

Here, qm represents the amplitude of the mth normal
coordinate. In the right-hand side of Eq. (28) there are 3
driving terms. The first one is the GW effect, with the
coefficients �m defined by

 �m �
Z
V
dVW�r� � wm�r�: (29)

The second one is the back-action term, proportional to
E0

~Q�!� and to the coupling coefficient �m between the
mth mode and the readout, i.e., the displacement concen-
tration [see Eq. (11)]. We note that �m and �m depend only
on the geometry of the test mass and on the choice of the
sensing surface, but not on the electrical circuit parameters.
The third driving term is the thermal noise force Fth�m
acting on the coordinate qm. Its power spectral density is
predicted by the fluctuation-dissipation theorem to be

 SFth�m
�!� � 4kBTM!2

m
�m�!�
!

: (30)

Let us discuss the electrical part of the system. The
forward (mechanical to electrical) coupling, expressed by
Eq. (26), can be rewritten in terms of the normal coordi-
nates qm as

 V�t� � E0

X
m

�mqm�t�: (31)

In general, if the electrical circuit is read by a SQUID
current amplifier, it is convenient to exploit the LC reso-
nance formed by the transducer capacitor C and the in-
ductive part of the circuit. In particular, in order to
maximize the noise stiffness of the readout, it is necessary
to move the LC resonance frequency close to the design
sensitivity band [9]. Because of the small value of the
typical input inductance Li of practical dc SQUIDs, the
tuning can be achieved only by interposing a low-loss
superconducting matching transformer, as shown in
Fig. 1. The effective inductance of the circuit is given by
Lr � Lp �M2

tr=Lt, where Lt � Ls 	 Li and the inductan-
ces Lp, Ls, Mtr, and Li are shown in Fig. 1. The effective
electrical resonance frequency is given by �el �
!el=�2	� � �2	

���������
LrC
p

��1, and the electrical quality factor
is Qel � !elLr=R. The equations of motion of the electri-
cal circuit with the intermediate transformer can be written,
in the frequency domain, as

 

8>>>><
>>>>:
��!2Lp 	 i!R	

1
C�

~Q�!2Mtr
~Qs � E0

P
m

�m~qm 	 ~V th

�!2Mtr
~Q�!2Lt ~Qs � ~Vn

~I � ~In 	 i! ~Qs:

(32)

The independent variables are the AC charge on the ca-
pacitor Q, the charge on the secondary circuit Qs and the
total current I measured by the amplifier, which is the sum
of the physical current Is � _Qs and the additive equivalent
noise current In, with spectral density SIn . In addition to the
mechanical signal and noise, coupled to the electrical
circuit through E0, we have two electrical noise driving
terms: the voltage thermal noise of the electrical circuit Vth,
with power spectral density SVth

� 4kBTR and the voltage
back-action noise of the SQUID amplifier Vn, with spectral
density SVn .

Equations (28) and (32) constitute a set of linear sto-
chastic differential equations, which can be solved to yield
the total measured SQUID input current I, as function of
the different signal and noise driving terms. To obtain the
sensitivity of the system as detector of GWs, one has to
divide the total measured current noise by the transfer
function IGW�!� � ~I�!�=~h�!�, which converts an input
GW of amplitude ~h�!� to a SQUID input current ~I�!�.
Equations (28) and (32) constitute an extremely large set of
equations, that can be numerically solved only on a finite
subset of normal modes. An approximate solution at low
frequency can be obtained by considering the first N
modes, with N properly chosen in order to achieve a
satisfying convergence. Thanks to the selective readout,
the transfer functions are well reproduced by taking into
account only the normal modes up to the maximum fre-

Vn

In

C,E0
X

Vth QsMtr

Ls

Li

R SQUID

Lp

Q

FIG. 1. Electrical scheme of a displacement sensor based on a
capacitive transducer and a SQUID amplifier. A displacement X
modifies the capacitance C of the transducer, charged with a
static field E0. The induced electrical current is finally measured
by the SQUID current amplifier. The intermediate transformer,
with primary, secondary, and mutual inductance Lp, Ls, and Mtr,
is required to match the low input inductance Li of a dc SQUID
to the large output impedance of the capacitive transducer. _Q and
_Qs are the currents in the primary and secondary coils, and the

resistor R represents the total dissipation of the circuit. The
electrical noise sources are the additive current noise, In, the
back-action voltage noise Vn of the SQUID amplifier, and the
thermal voltage noise Vth related with the dissipation of the
electrical circuit.
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quency of interest, plus a few higher order modes among
those geometrically selected by the readout.

III. DETECTOR DESIGN

The test mass of an acoustic detector can be suitably
shaped to achieve the noise matching condition with a
practical readout. In this section we propose a new design
of a cylindrical detector in which the noise matching
condition is achieved by means of displacement concen-
trators integrated in the test mass. We show that the result-
ing sensitivity is comparable to that of an ordinary single-
mass DUAL detector. Moreover, the SQL sensitivity of the
new design can be closely approached by using practical
readout configurations. We demonstrate this by using a
capacitive-SQUID readout, evolution of those currently
under development for resonant detectors [25].

A. Displacement concentrators and selective readout

The test mass design we propose is a substantial
progress over the single-mass DUAL detector [13] in two
fundamental aspects. In particular, wideband mechanical
amplifiers are integrated in the test mass and the dynamics
is optimized in order to exploit more modes with favorable
cross-section to GWs.

In order to achieve the noise matching, the needed
mechanical amplification of the deformation at the sensing
surface is about a factor 15–30 with respect to the con-
figuration proposed in Ref. [13]. In a conventional resonant
detector this is usually done by means of a resonant trans-
ducer with mass much smaller than the one of the test mass
[7,26]. This approach however cannot ensure the wideband
amplification needed here. An alternative solution to
achieve wideband mechanical amplification was proposed
long time ago [15], and consists in using tapered elements,
the so-called whips. In a whip, the section is progressively
(linearly in the simplest version) decreased moving to-
wards its end [see Fig. 2(a)]. A whip behaves as a trans-
verse displacement concentrator. The large base of
thickness h1 is attached to the test body, whose motion is
to be amplified, while the other end, of smaller thickness
h2, is left free to move.

The numerical solution of a simple model of the system,
based on the Euler-Bernoulli equation [15], shows that
such an element provides a conventional resonant amplifi-
cation in correspondence of the whip transverse standing
waves, plus a wideband amplification exclusively due to
the geometrical tapering [see Fig. 2(b)]. The latter effect is
a consequence of the decrease of the linear mass density
moving towards the whip end. In particular, the minimum
gain between two consecutive resonances is proportional to
the whip-ratio �h1=h2�

3=4. Therefore, a suitable use of a
whip element can provide a wideband mechanical ampli-
fication between two consecutive whip modes.

As the whips can easily provide a transverse amplifica-
tion with respect to their base, we developed test mass

configurations with external tangential sensing, instead of
the internal radial sensing required by the ordinary single-
mass DUAL [13]. Two representative configurations are
shown in Figs. 3(b) and 3(c). Four main grooves are carried
out in the external surface to allow tangential motion in
correspondence of the four sensing regions. The profile of
the test mass in correspondence of the four main grooves is
then tapered to form four pairs of faced whips, which
provide mechanical amplification of the cylinder tangential
motion. The 8 additional secondary grooves have the only
purpose of tuning the frequency of the quadrupolar modes
of interest. The whips are designed in order to place the
frequencies of the quadrupolar modes of interest of the
main body between the frequencies of the first and second
mode of the whips. The resulting overall mechanical am-
plification, with respect to the internal radial deformation,
is of about 15 and 30 for the configurations in Figs. 3(b)
and 3(c), respectively.

The readout senses the differential motion of the ends of
the four pairs of whips (see Fig. 4). The signals from the 4
sensing gaps are combined with quadrupolar symmetry to
maximize the response to GW sensitive modes and to
reject the effect of other modes. To achieve this condition,
the readout has to measure the combination X�t� � d1;2 	
d3;4 � d5;6 � d7;8, where di;j is the distance between the ith
and jth surfaces (shown by the black segments on the tip of
each whip in Fig. 4). As a comparison, Fig. 4 shows also

h1
h2

LW

Y1 Y2

(a)

0 2000 4000 6000 8000
1

10

100

1000

|Y
2/Y

1|

Frequency (A.U.)

(b)

FIG. 2. (a) Simple whip element with linear profile and basic
operation principle as mechanical amplification stage. If the
base, of thickness h1, is moved transversely by Y1, the free
end, of smaller thickness h2, will move by Y2. (b) The mechani-
cal gain jY2=Y1j, as function of the frequency, exhibits conven-
tional resonances, corresponding to the standing transverse
waves, plus a wideband gain between two consecutive reso-
nances. The resonance frequencies scale as the ratio h1=L

2
W ,

while the minimum value of the off-resonance gain is roughly
given by �h1=h2�

3=4 [15].
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the sensing areas on the inner hole originally proposed in
Ref. [13] for the ordinary single-mass DUAL.

The resulting weight function P�r� is normal to the
reading surface. We chose to normalize P�r� on a single
reading surface S. Therefore, the weight function has the
value 	1=S for the surfaces 1, 2, 3, 4, and �1=S for the
surfaces 5, 6, 7, 8. Outside this domain it goes to zero, since
the border effects can be neglected [27].

By simulating gravitational signals propagating along
the symmetry axis of the cylinders shown in Fig. 3, we
evaluated their responses and calculated the strain noise
power spectral densities, following the guidelines of
Sec. II. In particular, in order to simulate the transfer
function HGW�!�, the GW equivalent force, corresponding
to an optimal polarization, was applied on the volume of
body. The transfer function TBA�!� was evaluated by
applying an external force on the readout surfaces. All
the simulations were performed by a three-dimensional
FEM harmonic analysis by using the ANSYS code [28].
The FEM solver evaluates the transfer functions from the
displacement averaged over the readout surfaces according
to the weight function used for our measurement strategy
and detection scheme. Here we assume, for simplicity, a
readout with frequency independent noise properties: �0,
the noise energy, and k0, the readout noise stiffness that
must be properly matched to the detector mechanical stiff-
ness. This is achieved selecting, by visual inspection, the k0

which makes the flattest sensitivity within the entire
bandwidth.

The assumption of a constant noise stiffness is a good
approximation of wideband real world transducers. The
resulting spectral sensitivity depends on the k0 value and it
occurs that a different choice of k0 can improve the sensi-
tivity at some frequencies at the cost of a deterioration at
other frequencies. Actually, the true SQL spectral sensi-
tivity would be achieved by using a quantum limited read-
out with a frequency dependent noise stiffness described
by Eq. (10), i.e., optimized to the back-action transfer
function at each frequency.

In Table I we report the cylinder geometrical parameters
and the used material. We will explain our choices of L in
Appendix B, where different cylinder lengths are
compared.

1 2

3

57

4

8

1d

2d 6

FIG. 4. Measurement readouts that geometrically select the
quadrupolar modes of the cylindrical detector. The internal
readout (d1 � d2) was proposed for the single-mass DUAL
configuration [see Fig. 3(a)]. The external readout, exploiting
the displacement amplification provided by the whips, is used for
the tapered configurations in Figs. 3(b) and 3(c). The sensing
surfaces are indicated by the black segments on the tip of each
whip (1-8). The readout measures X�t� � d1;2 	 d3;4 � d5;6 �

d7;8, where di;j is the distance between the ith and jth tips.

(a) (b)

(c)

FIG. 3. Different configurations of a hollow cylindrical detec-
tor: (a) ordinary single-mass DUAL [13] which is sensitive
between the first two quadrupolar modes of the hollow cylinder;
(b) cylinder with grooves and whips ensuring a mechanical gain
of 15 with respect to the configuration in the panel (a). Its
sensitivity bandwidth is determined by the first two quadrupolar
modes and the first two whip transverse modes, but its resulting
bandwidth is narrower than that of a single-mass DUAL;
(c) cylinder with grooves and whips ensuring a mechanical
gain of 30 with respect to the configuration in the panel (a). It
exploits one additional mode with good cross-section to GW
with respect to the configuration in the panel (b) and its resulting
bandwidth is as wide as that of a single-mass DUAL. The
drawings are not in scale and the geometrical parameters used
for the simulations in Sec. III are reported in Table I.

TABLE I. Geometrical parameters used for the FEM simula-
tions of the molybdenum (Mo) cylinders in Fig. 3. We indicate
the cylinder outer and inner radii, its length and mass with rext,
rint, L and M, respectively; rext does not include the displace-
ment concentrators. The resulting noise stiffness required to
match the readout (k0) is also reported. The material quality
factor is assumed Q � 107 [29].

rext (m) rint (m) L (m) M (ton) k0 (N/m)

panel (a) 0.5 0.15 3 22 1:7
 1011

panel (b) 0.5 0.08 1.7 13.4 5:0
 108

panel (c) 0.35 0.091 1.19 4.4 5:6
 107
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B. Design of tapered cylindrical test masses

The configurations proposed in Fig. 3 are optimized for
different target frequency bandwidths. In particular, the
cylinder in Fig. 3(b) works in the �2� 2:7� kHz frequency
band, while the detectors in Fig. 3(a) and 3(c) are sensitive
in the �2� 5� kHz wider frequency band, as shown in
Fig. 5. Such three detectors have large differences in their
masses. In fact, the tapered cylinders are much shorter than
the ordinary single-mass DUAL to keep the sensitivity
bandwidth clean from spurious three-dimensional modes
(see Appendix B). However, the SQL sensitivities become
comparable if one considers a set of detectors with the
same total mass. For instance, the resulting SQL perform-
ance of 5 independent tapered detectors of type Fig. 3(c) is
approximately equivalent to the single-mass DUAL
configuration.

The configuration in Fig. 3(c) represents an optimal
design for a wideband sensitivity. It differs from the con-
figuration in Fig. 3(b) for the different shape of the whips,
that produces a wider spacing of the sensitive modes and a
lower mechanical stiffness. This leads to wider bandwidth
and lower optimal noise stiffness of the readout. In fact, k0

at the sensing surfaces is reduced by �3 orders of
magnitude.

Moreover, five resonant modes with favorable cross-
section to GWs contribute to the wideband sensitivity of
the tapered cylinder in Fig. 3(c), as compared with the two
modes contributing to the sensitivity of the ordinary single-
mass DUAL detector [13]. This feature is shown in
Fig. 27(a).

If the thermal noise contribution is taken into account for
the configurations of Figs. 3(b) and 3(c), we obtain the
sensitivity curves plotted in Figs. 6 and 7, respectively. A
useful benchmark to compare the performances of these
detectors is the sensitivity to short GW pulses, ~H � �2	 


R
	1
0

1
Shh�!�

d!��1=2. ~H is obtained by setting the signal-to-
noise ratio (SNR) [see Eq. (37)] equal to one. According to
Tables II and III, the cooling of the detector at 100 mK or
below is required to approach the SQL sensitivity within a
factor * 2, if the value Q � 107 is used.

C. Coupling of the tapered test masses to a
capacitive-SQUID readout

In this section we consider the tapered test masses
proposed in Sec. III B coupled to a capacitive-SQUID
readout. A first relevant issue is to find a way to realize a
selective readout of the quadrupolar modes, which imple-
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FIG. 5. SQL sensitivities for the cylinders in Fig. 3(a) (dashed
curve), Fig. 3(b) (dotted curve), and Fig. 3(c) (solid curve). The
configuration in Fig. 3(c) shows the lowest stiffness.
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FIG. 6. Total power spectral densities for the cylinder in
Fig. 3(b), evaluated at a number of temperatures. The corre-
sponding sensitivities to short pulses, ~H, are reported in Table II.
A constant value Q � 107 is used in the simulations. The noise
stiffness of the configuration is k0 � 5
 108 N=m.
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FIG. 7. Total power spectral densities for the configuration of
Fig. 3(c), evaluated at a number of temperatures. The corre-
sponding sensitivities ~H are reported in Table III. A constant
value Q � 107 is used in the simulations. The noise stiffness of
the configuration is k0 � 5:6
 107 N=m.
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ments the weight function P�r� introduced in Sec. III A. A
possible solution is shown in Fig. 8, and consists in a series
connection of four identical capacitors, each one of capaci-
tance 4C. The capacitor plates are placed at the end of two
faced whips, and the variable gap of each capacitor is
constituted by the distance between the plates. The capaci-

tors must be alternately charged with a static bias field	E0

or �E0, where the sign corresponds to the voltage drop
across the capacitor measured in the direction of the arrow
in Fig. 8. In principle, this can be achieved without any
additional component, because each capacitor acts as a
decoupling capacitor for the following or preceding
capacitor.

The AC voltage signal across the series of the four
capacitors is given, at first order in the capacitor averaged
gap variation di;j, by

 V�t� � E0�d1;2 	 d3;4� � E0�d5;6 	 d7;8� � E0X�t�: (33)

At the same time, if an AC charge Q�t� is induced by the
electrical circuit on the series-connected capacitors, the
same charge Q will appear on each single capacitor. This
generates a force F � �E0Q onto the plates of the capaci-
tor, where the sign	 holds for the capacitor 1, 2, 3, 4, and
the sign � for the capacitor 5, 6, 7, 8. More precisely, the
back-action force acting on the test mass can be written in
the following compact form:

 F BA�r; t� � E0Q�t�P�r�: (34)

Therefore we can identify E0Q�t� as the scalar back-action
force FBA�t� [see Eq. (27)].

Now we can make explicit calculations of the sensitivity
of the test mass–readout system for some test mass con-
figurations by using the method described in Sec. II D. We
use a set of fixed parameters, listed in Table IV. Moreover,
for a given test mass, we modify two parameters, the
electrical bias field E0 and the electrical circuit resonance
frequency �el, which fixes the value of the primary induc-
tance Lp. This allows us to make a rough sensitivity
optimization; �el is placed roughly at the midpoint of the
sensitivity band. However, the sensitivity curve depends
quite weakly on �el, at least for variations up to 20%. E0 is
set to the lowest value required to make the final sensitivity
curve reasonably flat. The corresponding approximated
noise stiffness E2

0C (see Appendix A) is roughly half the
optimum noise stiffness obtained by using the generic ideal
readout.

TABLE III. Pulse amplitude ~H obtained with unitary SNR for
the sensitivity curves shown in Fig. 7.

Temperature (K) ~H (Hz�1)

0 3:6
 10�25

0.05 5:7
 10�25

0.3 1:0
 10�24

1 1:7
 10�24

4 3:3
 10�24

TABLE II. Pulse amplitude ~H detected with unitary SNR for
the sensitivity curves plotted in Fig. 6.

Temperature (K) ~H (Hz�1)

0 2:7
 10�25

0.05 4:5
 10�25

0.3 9:1
 10�25

1 1:6
 10�24

4 3:1
 10�24

+-

-+

+
-+-

8

SQUID

1 2

3 4 

6

7 5

FIG. 8 (color online). Possible reading scheme of the tapered
cylinder by means of a capacitive transducer. There are 4 sensing
regions, each one in correspondence to the end of a pair of
whips. A capacitor is formed in each sensing region, and the 4
capacitors are connected in series. Assuming equal average gaps,
the same static bias field E0 can be stored in each capacitor, with
alternate sign. This scheme allows a selective readout of the
quadrupolar modes of the test mass implementing the optimal
weight function P�r�.

TABLE IV. Common parameters used for the electromechani-
cal numerical simulations. See Fig. 1 for the description of
electrical components.

Parameter Value

T 50 mK
�m 10�7

C 5
 10�9 F
Qel 2
 106

Ls 5:1
 10�6 H
Mtr=

�����������
LpLs

p
0.9

Li 1:6
 10�6 H
�In  LiSIn=2 1 @

�Vn  SVn=�2!
2Li� 1 @
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The sensitivities of the test masses described in
Figs. 3(b) and 3(c), equipped with a capacitive-SQUID
readout, are comparable with the analogous configurations
equipped with a quantum limit readout (see Figs. 9 and 10,
respectively). In particular, even though the resulting noise
spectrum is not so much flat over the bandwidth, the
sensitivity to short GW bursts is only about

���
2
p

higher.
As shown in Figs. 9 and 10, it occurs that at some

frequencies the noise spectrum of a tapered cylinder
equipped with a capacitive-SQUID readout is lower than
the quoted SQL noise. This is not a paradox because the
quoted SQL refers to a quantum limited readout with the
constraint of a constant noise stiffness k0, which makes it
worse than the true quantum limit. Therefore, a readout
with a different noise stiffness might perform better at
some frequencies and worse at others.

The most critical parameters are the energy sensitivity of
the SQUID amplifier (�In ; �Vn) at 1 @, close to the quantum
limit value, the electrical quality factor Qel � 2
 106 and
the bias field E0 � 1
 108 V=m. The last two values are
close to those achieved by state-of-the-art technology,
while a factor 10 improvement is required on the energy
sensitivity of the SQUID amplifier demonstrated in a
strongly coupled configuration. However, no one of these
goals is out of reach within current R&D programs. Greater
values of E0 produce flatter sensitivity curves, but they are
not potentially achievable. The thermal noise is computed
assuming T=Q � 5
 10�9 K (which can be achieved
with a low-loss material at T < 1 K), an effective electrical
frequency �el � 2420 Hz in Fig. 9, and equal to 3630 Hz in
Fig. 10.

For comparison, we show in Fig. 11 the sensitivities of
the ordinary single-mass DUAL depicted in Fig. 3(a),

equipped with a quantum limit readout and with a
capacitive-SQUID readout. For the latter case we consider
both a realistic readout configuration as in Fig. 10 and an
unrealistic one with a bias field E0 � 3
 109 V=m. A
comparison of Figs. 9 and 10 with Fig. 11 clearly shows
the most relevant advantage of the new tapered concept
design with displacement concentrators: the requirements
on the readout parameters are much more relaxed, so that
the SQL sensitivity can be approached with the state-of-
the-art transducers.
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FIG. 10. Sensitivities for the detector in Fig. 3(c). Solid curve:
the detector is equipped with a capacitive-SQUID readout, E0 �
6:5
 107 V=m, �el � 3630 Hz and the other parameters as in
Table IV; ~H � 8:2
 10�25 Hz�1. Dotted curve: the detector is
equipped with a quantum limited readout, k0 � 5:6
 107 N=m;
~H � 5:7
 10�25 Hz�1.
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FIG. 9. Sensitivities for the cylinder in Fig. 3(b). Solid curve:
the cylinder is equipped with a capacitive-SQUID readout, E0 �
1:4
 108 V=m, �el � 2420 Hz and the other parameters as in
Table IV; ~H � 6
 10�25 Hz�1. Dotted curve: the cylinder is
equipped with a quantum limited readout, k0 � 5
 108 N=m;
~H � 4:5
 10�25 Hz�1.
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FIG. 11. Sensitivities for the ordinary single-mass DUAL
[Fig. 3(a)]. Solid curve: capacitive-SQUID with same realistic
parameters as in Fig. 10; ~H � 1:7
 10�24 Hz�1. Dotted curve:
capacitive-SQUID with same parameters, but with an unrealistic
electrical field �3
 109 V=m; ~H � 2:8
 10�25 Hz�1. Dashed
curve: quantum limited readout, k0 � 1:7
 1011 N=m; ~H �
1:3
 10�25 Hz�1.
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IV. SELECTED SCIENCE CASES

In the following we discuss a few different detector
configurations, targeted to different science cases. The
directional response of tapered cylinders to GWs results
identical to that of an interferometric detector with two 90�

arms. We focus on the optimal design of tapered detectors
for two different frequency bandwidths and estimate the
SNR for GW sources as merging binary neutron stars
(NSs) and black holes (BHs).

A. Directional response

We computed the transfer function HGW�!� of the ta-
pered detector by three-dimensional FEM evaluations, as-
suming that a plane gravitational wave is arriving from the
direction �
; ’� with an arbitrary polarization  . The de-
pendence of HGW�!� from the wave direction and polar-
ization is usually described by the antenna pattern. This is
a function of 
, ’,  , computed for each frequency as

 F�
; ’;  � �
jHGW�!�j

maxfjHGW�!�jg
; (35)

where maxfjHGW�!�jg indicates the maximum value of the
modulus of HGW�!� over 
, ’,  .

The detector antenna patterns to the two independent
polarization components of the GW (plus  � 0 and cross
 � 	=4) are shown in Figs. 12 and 13, respectively. Both
responses are equal to those of an interferometric GW
detector, with arms oriented along the X and Y axes.

The angles 
 and ’ are the usual spherical-polar coor-
dinates, representing the wave travelling direction, as mea-
sured in the detector reference frame, where 
 is the angle
with the axis of the cylinder and ’ � 0 is a semiplane

cutting between two faced whips. Figures 12 and 13 show
the antenna pattern also in terms of Cartesian coordinates,

 

8><>:
X � F sin�
� cos�’�

Y � F sin�
� sin�’�

Z � F cos�
�;

(36)

where the symbol F represents the modulus of F�
; ’;  �.
In particular, it is indicated as jF		j and jF
	j for the plus
polarization component (see Fig. 12) and for the cross
polarization component (see Fig. 13), respectively.
Similarly, a tapered cylinder, rotated by 45� in the XY
plane with respect to the first detector, will exhibit analo-
gous response functions, F	
 and F

, but rotated along ’
by 	=4.

To improve the antenna pattern characteristics, it is
convenient to consider a composite detector made by two
colocated tapered detectors with parallel cylindrical axes
and rotated in the XY plane by 	=4 with respect to each
other. This composite detector would need a housing larger
by just a few cubic meters. The advantages of such combi-
nation include the fact that no blind directions are present
for circularly polarized signals, as can be seen by quadrati-
cally averaging the responses to  � 0 and  � 	=4, with
the resulting antenna patterns shown in Figs. 14(a) and
14(b), respectively. The composite detector is blind only to
the cross polarization component of the GW propagating in
the XY plane (
 � 	=2) [see Fig. 14(c)].

These features of the antenna pattern are the same of the
ordinary single-mass DUAL [13].

B. Optimal tapered configurations

In Sec. III we considered as standard material the Mo,
for which the low dissipation factor and the good cross-
section to GWs are well characterized [29]. However, there

FIG. 13. As in Fig. 12, but for cross polarized GWs.

FIG. 12. Detector response function: (a) in Cartesian coordi-
nates and (b) in spherical-polar coordinates, for cylinders
equipped with whips [see Figs. 3(b) and 3(c)]. In the panel (a),
the distance from a point of the plot surface to the center of the
box is just a measure for the GW sensitivity in this direction [see
Eqs. (36)]. This plot refers to plus polarized waves.
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are several known materials with a cross-section to GWs
considerably higher than that of Mo. Most of them, like for
instance diamond, sapphire, or monocrystal SiC, are not a
realistic alternative because they cannot be manufactured
in large samples using existing technology at reasonable
cost. A more realistic choice is C/SiC. This material is a
special form of SiC ceramic, that offers design freedom
since it can be manufactured in monoblocks of relatively
complex shapes [30]. A possible critical issue of C/SiC is
its intrinsic dissipation at ultralow temperature, which is
currently under investigation. In the following we assume
an optimistic value Q � 107.

The sensitivities for C/SiC tapered cylinders were ob-
tained by scaling (see Sec. II C) the sensitivity curves of the
Mo tapered configuration in Fig. 3(c) [31]. We considered
2 detector configurations sensitive in different frequency
ranges: a high frequency range [HF� �2� 5� kHz], and a
lower frequency range [LF� �1:1� 2:6� kHz]. The HF
and LF configurations are targeted to sources such as the

NS-NS merger or the BH-BH merger, as discussed in the
following section. The resulting spectral sensitivities are
shown in Fig. 15 for different operating temperatures. The
detector parameters are reported in Table V. The gain in
sensitivity of the C/SiC material with respect to Mo is a
factor �1:5 in the strain sensitivity.

As results from Fig. 15, the LF massive configurations
produce spectral sensitivities in terms of strain better than
those of the HF detectors. However, the mass of these HF
detectors is�4 ton, a figure which would allow us to house
many such detectors in small research infrastructures at
different locations. Then, a proper joint data analysis from
such potentially independent detectors would allow us to
obtain a more reliable identification of gravitational signals
with respect to a single massive detector.

C. Selected GW sources

Predicted h�t� waveforms have recently become avail-
able for some potential sources of GWs in the frequency
range of the proposed detectors: in particular, the merger of
NS binaries [33,34] and of BH binaries [35]. For both
sources we used the predicted numerical h�t� to compute
their SNR for the proposed detector configurations, assum-
ing a source distance of 19 Mpc (Virgo cluster) and an
incoming direction along the axis of the tapered cylinder.

We report here the optimal SNR, i.e., the one achievable
with a Wiener matched filter:

 SNR �

����������������������������������������
2

	

Z 	1
0

j~h�!�j2

Shh�!�
d!

s
: (37)

The proposed configuration of a pair of identical tapered
cylinders, rotated by 45� with respect to each other, allows

FIG. 14. (a) Antenna pattern jF		;
j obtained by quadratically
averaging the responses to  � 0 waves of two tapered detec-
tors, rotated by 45�. (b) Antenna pattern jF
	;
j given by the
quadratic average of the responses to  � 	=4 waves of two
tapered detectors, 45� apart. (c) Antenna patterns jF		;
j (solid
line) and jF
	;
j (dotted line) as functions of the 
 angle.
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FIG. 15. Comparison among the sensitivity curves of tapered
cylinders [see Fig. 3(c)], made of (i) Mo in the higher frequency
band (HF), (ii) C/SiC in a HF band, and (iii) C/SiC in a lower
band (LF). The effect of thermal noise is also shown.
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us to measure both GW polarization components.
Therefore, the resulting combined SNR is �SNR2

h	
	

SNR2
h

�1=2, where SNRh	;
 represents the SNR calculated

by considering only one wave polarization (plus or cross).
Since all the considered sources give almost circularly
polarized signals, the combined SNR results greater than
the SNRh	;
 by a factor �

���
2
p

.

1. Merger of binary NSs

The main scientific interest on such sources relies in the
merger and post-merger phases, which carry the informa-
tion on the equation of state of the NS; therefore, we
excluded from our SNR computations the h�t� of the
preceding inspiral phase. In the following we consider
three models for the NS-NS merger.

According to Ref. [33], a hypermassive NS of ellipsoidal
shape can be formed after the merger of two NSs of 1.3
solar masses each (model APR1313 [33]). As a conse-
quence, a long transient of GWs with an approximately
constant frequency of about 3.2 kHz is released [33]. The
amplitudes for plus and cross polarized GWs, observed at a
distance of 100 Mpc from this source, are plotted in
Fig. 16, assuming that the angular momentum of the source
is aligned with the line of sight.

The resulting SNRs for circularly polarized GWs emit-
ted from the APR1313 model, at an assumed distance of

19 Mpc, are shown in Fig. 17. They refer to the HF C/SiC
sensitivity curves of Fig. 15, since the merger frequency of
3.2 kHz is included in the frequency band of this configu-
ration. In order to take into account the merger phase, but
not the inspiral, we used the plotted plus and cross compo-
nents for APR1313 starting from 1.7 ms and 1.8 ms, re-
spectively. According to Ref. [33], since the signal is
expected to last for 50 ms, significantly larger than the
time window of the available h�t� (see Fig. 16), we in-
cluded in the reported SNR an improvement of a factor 2
(� 51=2) with respect to the shorter waveform plotted in
Fig. 16.

We also consider different numerical predictions for the
merger of NSs of 1.4 solar masses: A21414 and S1414
[34], with a post-merger signal frequency of�2:7 kHz and
�1:7 kHz, respectively. The amplitudes for plus and cross
polarized GWs, observed at a distance 100 Mpc from the
A21414 and S1414 sources, are plotted in Figs. 18 and 19,
respectively. According to Ref. [34], the merger phase
starts from 7.5 ms and 4.5 ms, respectively, and therefore
we considered the following part of their waveforms for
our SNR computation. In addition, the authors report that
the wave amplitude is underestimated by 40% in the post-
merger phase. So, we included this suggested correction in
our SNR estimate. The resulting SNRs are plotted in
Fig. 20.

For the A21414 source, the SNRs are calculated by
considering the HF C/SiC sensitivity curves of Fig. 15,
since the post-merger frequency of �2:7 kHz is included
in their frequency band. Similarly, for the S1414 source,
the SNRs are estimated by using the LF C/SiC sensitivity
curves of Fig. 15, given the post-merger frequency of
�1:7 kHz.

TABLE V. Geometrical parameters, mass and noise stiffness
of tapered Mo and C/SiC cylinders, relative to the sensitivity
curves of Fig. 15.

rext (m) rint (m) L (m) M (ton) k0 (N/m)

Mo; HF 0.35 0.091 1.19 4.4 5:6
 107

C/SiC; HF 0.54 0.14 1.83 4.1 5:2
 107

C/SiC; LF 1.02 0.26 3.47 28 1:0
 108
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FIG. 16 (color online). Gravitational waveforms plus (h	,
solid line) and cross (h
, dashed line) for the APR1313 model
[33].
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FIG. 17. SNR for circularly polarized GWs emitted by
APR1313 source during the merger and post-merger phases, at
a distance of 19 Mpc, for the HF C/SiC sensitivities of Fig. 15
versus the thermal noise factor T=Q. The horizontal line, at
SNR� 4:2, indicates the SNR achievable at the SQL, i.e.,
neglecting the thermal noise contribution.
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In summary, a pair of HF C/SiC tapered cylinders,
rotated by 45� (M � 4:1 ton each, T=Q� 5
 10�9 K,
dashed-dotted-dotted curve in Fig. 15), gives SNR� 3:2
and �1:7 for the APR1313 and A21414 sources, respec-
tively, at distance of 19 Mpc. Two LF C/SiC tapered
cylinders at 45� (M� 28 ton each, T=Q� 5
 10�9 K,
dotted curve in Fig. 15), give SNR� 3:5 for the S1414
source at 19 Mpc. These figures are comparable to those
computed for Advanced LIGO in Refs. [33,34]. To reach
SNR� 6 [36] we would need 4, 12, and 3 pairs of such
tapered detectors for the APR1313, A21414, and S1414
sources, respectively.

2. Merger of binary BHs

The GWs emitted by a merger of binary equal mass BHs
are described in Ref. [35] (see Fig. 21). By scaling these

waveforms at the distance of 19 Mpc, we obtain a graph of
the SNR for configurations of tapered C/SiC cylinders
versus the two BHs total mass (see Fig. 22).
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FIG. 19 (color online). Gravitational waveforms plus (h	,
solid line) and cross (h
, dashed line) for the S1414 model [34].
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FIG. 18 (color online). Gravitational waveforms plus (h	,
solid line) and cross (h
, dashed line) for the A21414 model
[34].
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line, at about 5.2, indicates the SNR obtained neglecting the
thermal noise contribution. The dashed line represents the SNRs
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FIG. 21 (color online). Gravitational waveforms plus (h	,
solid line) and cross (h
, dashed line) for the merger of two
BHs at a distance of 100 Mpc: each BH has a mass of 0.5 solar
masses [35]. The waveforms can be considered reliable starting
from 0.3 ms and consist of the chirp, merger, and ringdown
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For two merging BHs of total mass 12 solar masses, we
obtain SNR ’ 33:5 for the LF C/SiC detector at SQL (solid
curve in Fig. 15). When a temperature of 0.05 K is con-
sidered, the best SNR is equal to 18.5 for two merging BHs
of total mass 10 solar masses. These values refer to pairs of
detectors, rotated by 	=4 with respect to each other, M �
28 ton each. For the HF C/SiC detectors of M � 4:1 ton,
the highest SNR is 3.3 for binary BHs of total mass 6 solar
masses, neglecting the thermal noise contribution. When a
thermal noise factor T=Q� 5
 10�9 K is considered, the
SNR decreases to 2.1 for the same BH mass. Then, in order
to reach for this last case a SNR� 6, we need 8 couples of
such detectors.

V. CONCLUSIONS

The new design of the GW detectors described here
solves the problem of the noise mismatch between test
mass and readout while keeping the wideband spectral
performances of the previous designs of single-mass
DUAL detectors of similar mass and material [13]. The
tapering of the test mass makes possible to exploit 5
resonant modes at suitably spaced frequencies, all contrib-
uting to the GW cross-section. Moreover, the whips am-
plify the transverse displacement of the tapered detector
quadrupolar modes at the sensing surfaces by a factor 15–
30 with respect to the single-mass DUAL model. This
allows us to achieve the noise matching with a capacitive
transducer with realistic values of bias field and capaci-
tance, �1
 108 V=m and 5
 10�9 F, respectively. For
the first time the model of a wideband acoustic detector has
been completed by including a transducer system.

The dynamics of the detectors was simulated on the
basis of three-dimensional FEM numerical analyses, by
computing the transfer functions to GW and back-action
force. In particular, we demonstrated that the SQL sensi-
tivity is not degraded by the decrease in noise stiffness, in

fact it is very close to the SQL curve obtained for the
ordinary single-mass DUAL configuration, having same
dimensions and material.

In this work we also described how the configuration of
the detector can be optimized as a function of the target
bandwidth of sensitivity. In particular, we considered two
case studies of tapered detectors: one operating in the
��1:1� 2:6� kHz band and the other in ��2� 5� kHz
band (see Fig. 15). For these configurations, the SQL
sensitivity level is at �1:2
 10�23 Hz�1=2 and �3

10�23 Hz�1=2, respectively.

We pointed out the advantages of considering a com-
posite configuration made by twin detectors with parallel
axis but rotated by 45�: in fact such a configuration does
not have blind directions. We also presented selected sci-
ence cases for GW sources at the distance of the Virgo
cluster: NSs and BHs mergers. Above 2 kHz, the predicted
performances of such twin configurations are comparable
to those of advanced interferometers. A further opportunity
is to consider a small network of such detectors, so to
increase the reach, to improve the reliability of the observ-
atory and help the rejection of local disturbances. This
should be easier for the target band at higher frequency,
since each detector has smaller mass (� 4 ton). However,
both for the proposed detectors and advanced interferome-
ters, the expected detection rate is still very low. The NS-
NS mergers are expected to occur �0:02 yr�1 within the
Virgo cluster range [34] and the predictions for BH-BH
mergers are even more rare than the binary NS events [37].
Additional sources of GWs in the frequency band above
1 kHz include quasinormal modes in newly born NSs [38].
Despite the low detection rate, the interest on high fre-
quency GWs is very high since they are a clue to the
equation of state of matter at extreme densities.

Experimental investigations are in progress to demon-
strate the feasibility on small scale prototypes and to
characterize the mechanical dissipations of construction
materials at low temperatures.
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APPENDIX A: EQUIVALENT FORCE AND
DISPLACEMENT NOISE OF A CAPACITIVE

TRANSDUCER COUPLED TO A SQUID
AMPLIFIER

Let us consider a generic elastic test mass, whose de-
formation is sensed by a readout composed of a capacitive
transducer followed by a dc SQUID as current amplifier.
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FIG. 22. SNR at 19 Mpc for pairs of the C/SiC detectors
(Fig. 15, Q � 107) versus the total mass of a two BHs system.
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The deformation of the test mass is described by the
observable X, according to Eq. (1). The back-action re-
sponse of the test mass, as seen from the sensing port, is
described by the transfer function TBA�!� or by its inverse,
the dynamical stiffness k�!�. In general, any linear dis-
placement sensor, based on some kind of intermediate
transducer, can be replaced by an equivalent displacement
amplifier, characterized by an additive displacement noise
source, xn, and a force noise source, fn. In addition, the
transducer modifies the effective response of the test mass
to an external force. In this section we derive an explicit
expression of ~xn, ~fn and of the modified stiffness k0�!�, for
the case of a capacitive transducer with a SQUID amplifier.

The circuit that we wish to analyze is shown in Fig. 23.
As we are interested in determining the general properties
of the capacitive-SQUID readout, we characterize the test
mass with a generic dynamic stiffness k�!�, without any
other specification. Then, we rewrite the equation of mo-
tion of the electromechanical system in the frequency
domain, without projecting on to the normal modes as in
Sec. II D:
 

k�!� �E0 0 0

�E0 �!2Lp	 i!R	 1=C �!2Mtr 0

0 �!2Mtr �!2Lt 0

0 0 �i! 1

0BBBBB@

1CCCCCA �
~X
~Q
~Qs

~I

0BBBBB@

1CCCCCA

�

~Fe
~Vth

~Vn
~In

0
BBBBB@

1
CCCCCA: (A1)

Here, the first equation in the system (A1) comes directly
from Eq. (27). Since we are only interested in finding the
properties of the readout, we include in the term ~Fe all
external or internal forces acting on the test mass other than
the transducer back-action. The other three equations in the
system (A1) are directly derived from Eqs. (32).

Solving the system of linear Eqs. (A1) for the displace-
ment ~X, we obtain

 

~X �
1

k0
� ~Fe 	 ~fn�; (A2)

where we defined the modified stiffness k0�!� as

 k0�!� � k�!� �
E2

0

�!2Lr 	 i!R	 1=C
; (A3)

the equivalent force noise

 

~f n � �
� ~Vn
i!
�

Lt
Mtr

~V th

i!

�
; (A4)

and the parameter ��!� as

 ��!� �
�i!E0Mtr=Lt

�!2Lr 	 i!R	 1=C
: (A5)

Solving Eqs. (A1) for the measured current ~I, we find

 

~I � �� ~X	 ~xn�; (A6)

where the equivalent displacement noise ~xn is defined by

 ~x n �
1

�

�
In 	

Vn
i!Lt

�!2Lp 	 i!R	 1=C

�!2Lr 	 i!R	 1=C

�
i!VthMtr=Lt

�!2Lr 	 i!R	 1=C

�
: (A7)

It is straightforward to verify that Eqs. (A2)–(A6) define
the sources xn and fn, and the modified stiffness k0 con-
sistently with the equivalent circuit shown in Fig. 23.
Moreover, we can interpret � as a transducer efficiency,
as it represents the ratio of the measured current ~I to the
effective displacement ~X. We discuss briefly the details of
the expressions of �, k0, ~fn, and ~xn. As regards k0, we
observe that the presence of the transducer loads the test
mass with an additional stiffness, that becomes huge at the
unloaded electrical resonance !el � �LrC��1=2, together
with the transducer efficiency �. In other words, for ! ’
!el the coupling between the test mass and the SQUID
becomes very large, but at the same time the transducer
‘‘freezes’’ the motion of the test mass. As regards the force
noise ~fn, it is composed of a term proportional to the
SQUID voltage noise ~Vn, and a term proportional to the
electric thermal noise ~V th. Finally, the displacement addi-
tive noise ~xn, besides a term coming from the SQUID
additive noise, features also two terms deriving from the
current induced in the electrical circuit by the SQUID
voltage noise ~Vn and by electrical thermal noise ~V th.
These terms introduce an unavoidable correlation between

Vn

In

C,E0
X

fn

xnX

Vth Qs

Q

Mtr

Ls

Li

k

k´

Fe

Fe

R SQUID

Displacement
sensor

Lp

FIG. 23. Scheme of a displacement sensor based on a capaci-
tive transducer and a SQUID amplifier, and equivalent circuit.
The noise sources of the equivalent displacement sensor, the
additive displacement noise, xn, and back-action force noise fn,
are functions of In,Vn, and Vth. The presence of the transducer
has the further important effect of loading the test mass to be
measured, modifying its dynamical stiffness k into k0. For details
on the other parameters see Fig. 1.
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the displacement and force noise, even if the amplifier
noise sources were uncorrelated.

The exact expression of the power spectral density of
force and displacement noise, as well their cross-
correlation, can be computed by using Eqs. (A4) and
(A7). It is possible to show that, under reasonable assump-
tions, the noise stiffness kR, defined by Eq. (9), is of the
order of E2

0C over a given bandwidth around the electrical
resonance frequency. For instance, let us assume an ideal-
ized mechanical system with constant mechanical stiffness
k, and the specific set of transducer parameters listed in
Table IV. For the determination of the effective noise stiff-
ness of the readout, one must take into account the trans-
ducer loading on the test mass. Therefore, the noise
matching condition [see Eq. (10)] must be slightly modi-
fied by replacing k with k0, as given by Eq. (A3). The ratio
jkR=k

0j is then numerically calculated for a transducer with
bias field such that E2

0C � k (Fig. 24). It is found that the
ratio is of the order of 1 over a 2 kHz bandwidth around the
electrical resonance frequency, meaning that the noise
matching condition jkRj � jk0j is achieved. Therefore,
the transducer is matched to the mechanical system when
the quantity E2

0C is equal to the unloaded stiffness k. In
other words, the transducer behaves roughly as if it had an
effective noise stiffness of the order of E2

0C without load-
ing the test mass.

APPENDIX B: OPTIMIZATION OF TAPERED
CYLINDER LENGTH

In this appendix we discuss the choice of the length of
the cylindrical detectors proposed in Sec. III. The relevant

issue is that the form factor, i.e., the ratio between the
cylinder length L and the external radius rext, can signifi-
cantly affect the shape of sensitivity curve. In general, this
is not true in the plain strain approximation, in which only
modes independent of L are considered.

Figure 25 shows the strain sensitivities of the cylindrical
detectors proposed in Sec. III, evaluated by means of FEM
simulations in plain strain approximation. We note these
sensitivity curves are consistent with the three-dimensional
curves plotted in Fig. 5. The only relevant difference is the
presence of some additional narrow peaks in the three-
dimensional curves. These peaks are actually related with
spurious modes, not sensitive to GWs, which are not
perfectly filtered out by the selective readout.

In general, the frequency and the coupling to the readout
of the spurious modes depend strongly on the form factor
of the test mass. In particular, the density of spurious
modes tends to increase with the increasing length. Thus,
we have to find a trade-off between high sensitivity (high
length) and a reasonably wide, flat and clean sensitivity
band (low length).

The SQL sensitivities for the new configurations of
Figs. 3(b) and 3(c) are shown in Figs. 26 and 27, together
with the HGW�!� and TBA�!� transfer functions, for a few
selected detector lengths. For the configuration in Fig. 3(b),
the best trade-off between a flat bandwidth and a good level
of sensitivity is achieved for L � 1:7 m. For L � 1:2 m
the sensitivity level is not better, and for L � 1:9 m an
annoying spurious peak appears in the middle of the sen-
sitive band. For the tapered cylinder in Fig. 3(c), the best
trade-off is achieved for L � 1:19 m. For L � 1:47 m, the
density of spurious peaks is quite larger, and for L �
0:84 m there is no significant improvement.
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FIG. 24. Ratio jkR=k0j for the following case: constant un-
loaded mechanical stiffness k, experimental transducer parame-
ters listed in Table IV, �el � 3 kHz, and E0 chosen so that
E2

0C � k. The ratio jkR=k0j is of the order of 1 over a 2 kHz
bandwidth around �el, meaning that the noise matching condi-
tion is achieved. This shows that the transducer behaves roughly
as if it had a noise stiffness of the order of E2

0C without loading
the test mass.
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