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We present a new truncation scheme for the Schwinger-Dyson equations of QCD that respects gauge
invariance at any level of the dressed loop expansion. When applied to the gluon self-energy, it allows for
its nonperturbative treatment without compromising the transversality of the solution, even when entire
sets of diagrams (most notably the ghost loops) are omitted or treated perturbatively.
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I. INTRODUCTION

The quantitative understanding of the nonperturbative
properties of quantum chromodynamics (QCD) [1] con-
stitutes still one of the most challenging problems in
particle physics. The basic building blocks of this theory
are the Green’s (correlation) functions of the fundamental
degrees of freedom, gluons, quarks, and ghosts. Their non-
perturbative structure is at the center stage of extensive
research that could furnish invaluable clues for deciphering
the infrared dynamics of QCD.

Lattice simulations are indispensable in this quest, since
they capture in principle all the nonperturbative informa-
tion of the theory, their main limitation being related with
the extrapolation of the results to the continuum space-time
limit. The quality of the lattice data is steadily improving,
as has been recently attested by the results reported on the
infrared behavior of the gluon and ghost propagators (in
the Landau gauge), using large volumes [2]. It is certainly
of paramount importance to obtain analogous results from
the theory formulated in the continuum, since this is bound
to expose a fundamental dynamical mechanism at work.

In the continuous formulation the dynamics of all
Green’s functions are determined by an infinite system of
coupled nonlinear integral equations known as Schwinger-
Dyson equations (SDE) [3]. These equations are inherently
nonperturbative and can be used to address problems re-
lated to e.g., chiral symmetry breaking, dynamical mass
generation, and formation of bound states. Since this sys-
tem involves an infinite hierarchy of equations, in practice
one is severely limited in their use, and the need for a self-
consistent truncation scheme is evident [4]. Devising such
a scheme, however, is very challenging, especially in the
context of non-Abelian gauge theories, like QCD [5]. The
central problem stems from the fact that the SDEs are built
out of unphysical off-shell Green’s functions; thus, the
extraction of reliable physical information depends cru-
cially on delicate all-order cancellations, which may be
inadvertently distorted in the process of the truncation.

The situation may be best exemplified with the SDE of
the gluon propagator ����q�. In the Feynman gauge,

 ����q� � �i
��
g�� �

q�q�
q2

�
��q2� �

q�q�
q4

�
; (1)

where ����q� � �g�� � q�q�=q
2���q2� is the gluon

self-energy and ��1�q2� � q2 � i��q2�. The conven-
tional SDE for ��� reads

 ����q� �
X5

i�1

�ai���; (2)

where the diagrams �ai� are shown in Fig. 1(a). Since the
self-energy enters in the latter diagrams (white blobs in the
same figure), Eq. (2) constitutes a dynamical equation that
can in principle determine ���. Because of general argu-
ments based on the Becchi-Rouet-Stora-Tyutin (BRST)
symmetry [6], ����q� is transverse, i.e., q�����q� � 0.
Notice, however, that enforcing this fundamental property
on the right-hand side of Eq. (2), i.e., through the contrac-
tion of individual graphs by q�, is far from trivial, essen-
tially due to the complicated Slavnov-Taylor identities
(STI) satisfied by the fully-dressed vertices. As a result,
the SDE of Fig. 1(a) cannot be truncated without compro-
mising the transversality of ����q�. For example, keeping
only graphs �a1� and �a2� is not correct even at one loop.
Adding �a3� is still not sufficient for a SDE analysis,
because (beyond one-loop) q���a1� � �a2� � �a3���� � 0.

In this paper we present a new truncation scheme for the
SDE of (quarkless) QCD that respects gauge invariance at
any level of the dressed loop expansion. This becomes
possible due to the drastic modifications implemented to
the building blocks of the SD series, i.e., the off-shell
Green’s functions, following the field-theoretic method
known as pinch technique (PT) [7]. The PT is a well-
defined algorithm that exploits systematically the BRST
symmetry in order to construct new Green’s functions
endowed with very special properties. Most importantly,
they satisfy Abelian, Ward identities (WI) instead of the
usual STIs and have correct analytic properties.

The PT rearrangement gives rise dynamically to a new
SD series analogous to the one in Eq. (2), with the follow-
ing characteristics: the graphs appearing on the right-hand
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side are made out of new vertices [Fig. 1(d)], but contain
the conventional self-energy ��� as before. These new
vertices correspond precisely to the Feynman rules of the
background field method (BFM) in the Feynman gauge,
i.e., it is as if the external gluon had been converted
dynamically into a background gluon. The left-hand side,
along with the term ����q� already there, contains addi-
tional terms, also proportional to ����q�, which are gen-
erated during the PT rearrangement of the original right-
hand side of Eq. (2).

II. A NEW SD EQUATION FOR THE GLUON
PROPAGATOR

The relevant PT rearrangements take place when the
longitudinal momenta of the three-gluon vertex trigger
the STIs satisfied by specific subsets of fully dressed
vertices appearing in the ordinary perturbative expansion.
Unlike QED, due to the nonlinearity of the BRST trans-
formations, these STIs are realized through auxiliary
(ghost) Green’s functions involving composite operators
such as h0jT�s��x� � � � j0i, where s is the BRST operator
and � is a generic QCD field. It turns out that the most
efficient framework for dealing with these type of objects
is the so-called Batalin-Vilkovisky formalism [8]. In this
framework, one adds to the original gauge-invariant
Lagrangian LI the term LBRST �

P
��	s�, coupling the

composite operators s� to the BRST invariant external
sources (usually called antifields) �	, to obtain the new
Lagrangian LBV � LI �LBRST. One advantage of this
formulation is that it allows one to express the STIs of
the theory in terms of auxiliary functions which can be
constructed using a well-defined set of Feynman rules
(derived from LBRST). In particular, the usual STI satisfied
by the three-gluon vertex, an essential ingredient in the

ensuing construction, assumes the form

 q��Aa�Am�An��k1;k2��q2Daa0 �q��ca0An�A	�d
�k2;k1��Ad�Am��k1�

�q2Daa0 �q��ca0Am�A	�d
�k1;k2��Ad�An��k2�;

(3)

where �Aa�Ab��q� � ��
�1�ab���q� � i�

abq�q� and

��0A�A��q� � ����q� with a prime denoting subtraction

of the tree-level contribution from the corresponding
Green’s function. The auxiliary function �cAA	 , given in
Fig. 2(a), is nothing but the standard function appearing in
the conventional derivation [9] now written in the antifield
language.

An important property of auxiliary functions involving
the gluon antifield, A	, is encoded into the so-called
Faddeev-Popov equation: ��

� �ca � iq
� ��
�A	a�
� 0. This equa-

tion amounts to the simple statement that contracting A	

with its own momentum q converts it to an antighost, �c.
This property will be used extensively in what follows.

In addition, one can obtain a set of useful identities
relating Green’s functions of background fields to those
of quantum fields. These background quantum identities
(BQIs) [10] are realized through auxiliary functions in-
volving normal fields, antifields, and a background source
�, coupled through the term �gfamn �ca�m

�A
�
n , see

Fig. 2(b). The BQIs satisfied by the gluon propagator are

 i�Âa�Ab��q� � �ig
�
��ad � ��a

�A
	�
d
�q���Ad�Ab��q�; (4)

 i�Âa�Âb��q� � �ig
�
��ad � ��a

�A
	�
d
�q���Ad�Âb��q�; (5)

which can be combined into the single identity

FIG. 1. The PT procedure to construct the new SDE of the gluon propagator. External legs ending in a gray circle represents
background gluons. The corresponding Feynman rules can be found in [15].
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 i�Âa�Âb� � i�Aa�Ab� � ��a
�A
	�
d

�Ad�Ab� � ��b
�A
	�
d

�Aa�Ad�

� i��a
�A
	�
d

�Ad�Ae���b
�A
	�
e
: (6)

Other BQIs needed in our construction will be

 

i�bAa�’��k1; k2� � �ig
�
��ad � ��a

�A
	�
d
�q���’Ad����q; k2�

� R�a
�’��k1; k2�; (7)

where �’;�� 2 f�A; A�; �c; �c�; �c; A	�g, and

 

R�a
�Am�An� � ��a

�An�A
	�
d

�Ad�Am� � ��a
�Am�A

	�
d

�Ad�An� ;

R�a
�cm �cn � ��cmA	�d

��a
�Ad� �cn � ��a

�cmc	d�cd �cn ;

R�a
�cmA	n� � ��cmA	�d

��a
�Ad�A	n� � ��a

�cmc	d�cdA	n� :

(8)

Equipped with these relations we may now proceed to the
derivation of our main result. The aim will be to start from
the conventional SDE of Fig. 1(a) and generate dynami-
cally through the PT algorithm all the terms appearing in
the BQI of Eq. (6), thus arriving at the SDE equation of
Fig. 1(d). This will be accomplished by constructing the
two BQIs of Eq. (4) and (5), one at a time. The starting
point is diagram �a1� of Fig. 1(a). The tree-level three-
gluon vertex � can be decomposed [7] into the sum �F �
�P, where (factoring out the color structure)

 

i�F
A�A�A�

�k1; k2� � g���k1 � k2�� � 2q�g�� � 2q�g��;

i�P
A�A�A�

�k1; k2� � g��k1� � g��k2�: (9)

This splitting assigns a special role to the physical momen-
tum q, making �F Bose symmetric only with respect to the
A� and A� legs inside the loop. In fact, �F coincides with

the BFM vertex ��0�
Â�A�A�

. �P contains the longitudinal

momenta that will get contracted with the full three-gluon
vertex, triggering the STI of Eq. (3). The result will be
�a1� � �a1�

F � �a1�
P, with �a1�

F coinciding with diagram
�b1�, and

 

�aP
1�
ab
�� � �i��a

�A
	�
d
�q��Ad�Ab��q�

� igfamd
�Z

k1

k2�D�k1�D�k2��cmAb� �cd��q; k2�

�
Z
k1

D�k1��
0
ceA	d�
�k2�D�k2��cmAb� �ce��q; k2�

� i
Z
k1

D�k1��cmAb�A	d� ��q; k2�

�
: (10)

In the equation above we have used the ghost equation
k2D�k� � 1� i�0c �c�k�D�k� to transform a tree-level ghost
propagator appearing in the second term of the right-hand
side into a full one. The first integral on the right-hand side
of Eq. (10) symmetrizes the ghost-gluon vertex of �a3�,
giving rise to the characteristic BFM vertex / �k1 � k2��,
and thus to diagram �b3�. The second term coincides
precisely with the diagram �b9�; the third term (see
Fig. 2) gives rise to diagram �b4� [through the tree-level
part of �cAA	], as well as �b7�, �b8�, and �b10�. Finally, due
to the fact that the four gluon vertices �ÂAAA and �AAAA
coincide at tree-level, we will have �a2� � �b2�, �a4� �
�b5�, and �a5� � �b6�. Thus taking into account the first
term in Eq. (10) we have dynamically reproduced the
propagator BQI of Eq. (4).

At this point we have constructed �Âa�Ab�
�q�; the next step

will be to exploit the obvious equality �Âa�Ab�
�q� �

�Aa�Âb��q� to interchange the background and quantum

legs [see Fig. 1(c)]. This introduces a considerable simpli-
fication: on the one hand we keep identifying the pinching
momenta from the PT decomposition of the (tree-level) �,
while on the other hand the equality between diagrams
�c5�, �c6� and �d5�, �d6� is immediate.

Let us now carry out the PT splitting of Eq. (9) to
diagram �c1�. The �F part of the vertex generates directly
diagram �d1�; the longitudinal momenta contained in �P

get contracted as before with the full three-gluon vertex,
which, however, has now an external background leg.
Using Eq. (7) with �’;�� � �A;A�, we get

 �cP
1�
ab
�� � �i�ig

�
��

bd � ��b
�A
	�
d
�q���aP

1�
ad
��

� gfamn
Z
k1

��
��k2�

k�1
k2

1

R�b
�A

m
�An��k1; k2�: (11)

FIG. 2. The auxiliary functions ��caA	m� , ���m
�A	n� , i�caAn�A	m� , and i��m

�An� �ca . Black and white blobs represent one-particle irreducible
and connected Green’s functions, respectively, while gray blobs are connected kernels.
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The presence of the prefactor ig���
bd � ��b

�A
	�
d

allows one

to use the BQIs of Eq. (7) to convert the full vertices �cA �c
and �cAA	 , appearing in the last three terms of �aP

1�, into
�cÂ �c and �cÂA	 , respectively. This operation has two ef-
fects: (i) it generates �d7�, �d8�, �d9�, and �d10�, plus the
contribution needed to convert �c3� and �c4� into �d3� and
�d4�, respectively; (ii) it gives rise to leftover contributions
given by the three integrals appearing in Eq. (10) where the
corresponding vertex is replaced by either �R�c �c or
�R�cA	 . These latter terms cancel exactly against the
second term in Eq. (11), after its tree-level contribution
has been extracted and used to convert �c2� into �d2�. At
this point we have generated all diagrams of Fig. 1(d) [11].
In addition, using the BQI of Eq. (4) (already proven in the
previous step), the term in �aP

1� proportional to ��A	 will
give precisely �i��a

�A
	�
d
�q��Ad�Âb��q�. Thus, we have con-

structed the full BQI of Eq. (5). Having dynamically
realized the BQIs of Eqs. (4) and (5), we can combine
them into Eq. (6), which constitutes the announced result.
We emphasize that (i) all rearrangements have been in-
duced by the PT manipulation of only one diagram [�a1�
and �c1� of Fig. 1] and (ii) all quantities encountered exist
in the conventional formulation. In that sense, the Batalin-
Vilkovisky formalism serves simply as an efficient way of
keeping track of them.

III. DISCUSSION

The new SD series just constructed reads

 �1�G�q2��2����q� �
X10

i�1

�di���; (12)

where G is defined as the part of ���A	�
proportional to

g��: ���A	�
�q� � iG�q2�g�� �
q�q�. The right-hand

side of Eq. (12) has a very special structure. The diagrams
of Fig. 1(d) can be separated into four subgroups [�d1�,
�d2�], [�d3�, �d4�], [�d5�, �d6�], and [�d7�, �d8�, �d9�, �d10�],
corresponding to one- or two-loop dressed gluonic or ghost
contributions. Because of the Abelian WIs satisfied by
these new vertices, the contribution of each of the four
subgroups is individually transverse [12].

The practical implications of this property for the treat-
ment of the SD series are far-reaching, since it furnishes a
systematic, manifestly gauge-invariant truncation scheme.
In the case of the gluon self-energy, for instance, the trans-
versality of the answer is guaranteed at every step.
Specifically, keeping only the diagrams in the first group,
we obtain the truncated SDE

 ����q� � �1�G�q
2���2��d1� � �d2����; (13)

and we have that q���d1� � �d2���� � 0 by virtue of
q��Âa�Am�An��k1; k2� � gfamn���1

���k1� ���1
���k2��. There-

fore, ����q� is transverse, as it should, despite the omis-
sion of the remaining graphs (most notably the ghost
loops). In fact, one can envisage the possibility of employ-
ing completely different treatments for each subgroup: for
example, one may treat the graphs �d1� and �d2� nonper-
turbatively, while opting for a perturbative treatment of the
ghost diagrams �d3� and �d4�, without compromising the
transversality of the self-energy. The price one has to pay is
the need to consider the additional SDE governing G [see
Fig. 2(b)]. Notice, however, that the approximations em-
ployed for the treatment of this latter SDE will not interfere
with the transversality of ���. The Abelian WIs furnish an
additional technical advantage: one may use gauge-
technique inspired Ansätze, a common practice when deal-
ing with the SDE of QED [4], to express the vertices in
terms of propagators, in such a way as to automatically
enforce gauge invariance. Finally, notice that (i) the SDEs
for the QCD vertices can be constructed in a very similar
way [13], and (ii) the analysis presented here can be
generalized to other gauges (e.g., the Landau gauge) using
the methodology developed in [14].

In conclusion, the new SD series constructed in this
letter provides a powerful tool for the systematic explora-
tion of the nonperturbative sector of QCD, allowing the
study of the fundamental Green’s functions in a manifestly
gauge-invariant way.
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