
Energy of n identical bosons in a finite volume at O�L�7�

William Detmold and Martin J. Savage
Department of Physics, University of Washington, Box 351560, Seattle, Washington 98195, USA

(Received 23 January 2008; published 20 March 2008)

The volume dependence of the ground-state energy of n identical bosons with short-range interactions
in a periodic spatial volume with sides of length L is calculated at order L�7 in the large-volume
expansion. This result will enable a refined determination of the ������ interaction from lattice QCD
calculations.
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It is now well established that two-body interactions
between hadrons can be studied with lattice QCD as the
volume dependence of the energy spectrum of two hadrons
is related to their scattering amplitude below inelastic
thresholds [1,2]. Recently, this method has been used to
determine the ���� scattering length [3], a���� , with
�1% precision with a nf�2�1 fully dynamical mixed-
action lattice QCD calculation. In order to extract the
many-body interactions from lattice QCD calculations,
the energy of multihadron states in a finite volume
must be calculated with lattice QCD and combined
with the known dependence of this energy on the many-
body interactions. The ground-state energy of a system
of n identical bosons with short-range interactions in
a cubic volume with sides of length L was recently
computed at O�L�6� in the large-volume expansion [4].
The underlying motivation for that work, which builds

upon the classic works of Refs. [5–8], was to provide
a way to determine the three-body interactions be-
tween ��’s from lattice QCD calculations, which first
enters at that order [4]. In Ref. [9], this result was used
in conjunction with lattice QCD calculations of multi-
pion systems to determine the interaction between three
��’s for the first time. In order to refine the determina-
tion of the ������ interaction, here we compute the
contribution to the energy shift of n identical bosons at
O�L�7� in the large-volume expansion. The energy shift
of three identical bosons in a finite volume has been
computed recently in Ref. [10], and our n � 3 calculation
agrees.

The ground-state energy of n identical bosons is calcu-
lated using standard Schrödinger perturbation theory, with
a Hamiltonian, appropriate to the order we are working in
the large-volume expansion, of the form
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where the operator hk annihilates a �� with momentum
k with unit amplitude. The divergences that arise at
loop level are regulated with dimensional regularization,
and therefore the coefficients of the two-body interaction
can be readily identified with the parameters describing
the scattering amplitude: the scattering length, a, and
the effective range, r (p cot� � � 1

a�
1
2 rp

2 � . . . ). The
terms proportional to M�3 in Eq. (1) describe the lead-
ing effects of relativity. Only the momentum independent
three-body interaction, �3���, is required at O�L�7�.
Our method of computation is equivalent to the pion-
less effective field theory (EFT) describing low-energy
nucleon-nucleon interactions, EFT��6 � [11–13] (when

modified to describe systems with natural scattering
lengths) and the method of pseudopotentials used in our
previous work. The divergences that occur in loop dia-
grams are renormalized order by order in the expansion,
preserving the power counting, and hence the explicit
dependence of the bare three-body coefficient on the re-
normalization scale, �.

The calculation of the energy-shift of n identical bosons
at O�L�7� due to the interactions defined in Eq. (1) is
straightforward but tedious. We will not delve into the
details, referring the reader to our previous work [4] and
that of Ref. [10], and simply state the result. The energy
shift of the ground state is
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where the geometric constants that enter are1

 I � �8:9136329; T 0 � �4116:2338;

J � 16:532316; T 1 � 450:6392;

K � 8:4019240; SMS � �185:12506;

L � 6:9458079;

(3)

and �nk� � n!=�n� k�!=k!. The last term in the last bracket
of Eq. (2) is the leading relativistic contribution to the
energy shift. Deviations from the energy shift of
n-bosons computed with nonrelativistic quantum mechan-
ics arise only for three or more particles as the two-particle

energy shift has the same form when computed in non-
relativistic quantum mechanics and in quantum field theory
[1,2]. In Eq. (3), SMS is the value of the scheme-dependent
quantity S in the minimal subtraction (MS) scheme that we
have employed to renormalize the theory (a change in
scheme results in a change in S and a compensating change
in �3���).

2 The T i are renormalization scheme indepen-
dent. Our result at n � 2 agrees with large-volume expan-
sion of Ref. [1,2], and at n � 3 agrees with the previous
computation by Shina Tan [10].

The renormalization-scale independent, but volume de-
pendent, quantity
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was determined in recent lattice QCD calculations [9]. It
was found to be nonvanishing in systems of three, four and
five ��’s at pion masses of m� � 290 and 350 MeV in a
��2:5 fm�3 volume, when extracted at O�L�6� in the large-
volume expansion. Its size was found to be consistent with
expectations based upon naive dimensional analysis, ��L3 �
1=�m�f4

��. Our result will allow for further refinement of
such extractions.
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