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By analytic continuation to real � of data obtained from numerical simulation at imaginary � we study
the Haldane conjecture and show that the O(3) nonlinear sigma model with a � term in two dimensions
becomes massless at � � 3:10�5�. A modified cluster algorithm has been introduced to simulate the model
with imaginary �. Two different definitions of the topological charge on the lattice have been used; one of
them needs renormalization to match the continuum operator. Our work also offers a successful test for
numerical methods based on analytic continuation.
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I. INTRODUCTION

Several years ago Zamolodchikov and Zamolodchikov
introduced an integrable S-matrix for massless particles
which was associated to the two-dimensional O(3) non-
linear sigma model with a topological � term for � � �
[1].

Therefore, the two-dimensional O(3) sigma model with
� � � is possibly gapless. Actually this conclusion was
previously achieved by Haldane and Affleck. They worked
out a low energy description of the one-dimensional chain
of quantum half-integer spin with antiferromagnetic cou-
pling finding that it and the above-mentioned O(3) sigma
model share the same long distance properties [2–4].
Moreover, it was found that antiferromagnetic quantum
spin chains are gapless for half-integer spins [2,5].

Later Affleck and Haldane [6] argued that the critical
theory for the half-integer quantum antiferromagnetic spin
chain is the Wess-Zumino-Witten model with a topological
coupling k � 1. This model is the stable fixed point of the
two-dimensional O(3) sigma model with a vacuum angle
� � �.

In addition, two numerical calculations of the partition
function for the O(3) model in the presence of a � term [7]
yield indications that the theory undergoes a second order
phase transition at � � � (although the two analyses dis-
agree about the universality class).

In the present work we introduce a direct numerical
method to verify the Haldane conjecture for the two-
dimensional O(3) nonlinear sigma model. The idea is to
perform a Monte Carlo study on the lattice of the mass gap
in the model as a function of the � parameter and to show
that it vanishes at a precise value of �, called �end, which,
following Haldane, should be �end � �. We overcome the
sign problem by simulating the theory at imaginary � and
analytically continuing the results to the real � values. To
this end we introduce a new cluster algorithm that works
for imaginary nonzero theta.

II. LATTICE IMPLEMENTATION

The continuum expression for the action of the model is
 

S � A� i�Q;

A �
1

2g

Z
d2x�@� ~��x��

2;

Q �
Z

d2xQ�x�;

Q�x� �
1

8�
����abc�a�x�@��b�x�@��c�x�;

(1)

where g is the coupling constant and Q�x� is the topologi-
cal charge density. ~��x� is a 3-component unit vector that
represents the dynamical variable at the site x. We have
regularized this action on a square lattice by the expression

 SL � AL � i�LQL; AL � ��
X
x;�

~��x� � ~��x� �̂�;

(2)

where QL �
P
xQL�x� is the total lattice topological

charge and QL�x� is the lattice topological charge density.
� is the inverse bare lattice coupling constant and �L is the
bare vacuum angle. In general, �L � � and the point where
the lattice regularized model becomes massless will be
called �L;end.

The action AL used in (2) is the simplest one on the
lattice. More complicated actions and expansion parame-
ters boast better scaling and asymptotic scaling properties
and hence they are more suited for the calculation of
masses [8–10]. However, our interest lies only on the
vanishing of the mass gap at a particular value of �L and
such a property is clearly unaffected by the slow conver-
gence of the series.

III. CHOICE OF QL

Let us discuss the regularization of the topological
charge density to be used in our Monte Carlo simulation.
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Q counts how many times the configuration of spin varia-
bles winds around the unit sphere. Hence Q takes on
integer values. Configurations with �1 (� 1) winding
number are called instantons (anti-instantons) [11].

We have made use of two different lattice regulariza-
tions for the topological charge density. The first one [12],

 

Q�1�L �x� �
1

32�
����abc�

a�x���b�x� �̂� ��b�x� �̂��

� ��c�x� �̂� ��c�x� �̂��; (3)

is a symmetrical discretization of the expression for Q�x�
in Eq. (1).

The second lattice regularization is defined on triangles
(not on single sites). Every plaquette of a square lattice can
be cut through a diagonal into two triangles. If we call ~�1,
~�2, and ~�3 the fields at the sites of the three vertices

(numbered counterclockwise) of one of these triangles
then the fraction of the spherical angle subtended by these
fields is Q�2�L �4� which satisfies [13]

 

exp�2�iQ�2�L �4�� �
1

�
�1� ~�1 � ~�2 � ~�2 � ~�3 � ~�3 � ~�1

� i ~�1 � � ~�2 � ~�3��; (4)

where �2 � 2�1� ~�1 � ~�2��1� ~�2 � ~�3��1� ~�3 � ~�1�

and Q�2�L �4� 2 	�
1
2 ;�

1
2
. The sum of Q�2�L �4� over all

triangles yields the so-called geometric topological charge
Q�2�L .

In general, a regularization of Q does not lead to integer
values on a single configuration. To recover integer results
for QL on ensembles of configurations that belong to the
same topological sector, we must renormalize this opera-
tor. The lattice and the continuum topological charges are
related by [14]

 Q�1;2�L � Z�1;2�Q Q; (5)

Z�1;2�Q being the corresponding renormalization constant
which is UV finite since the topological charge operator
has no anomalous dimensions in the model under study.
Z�1;2�Q can be calculated either in perturbation theory [14]

or by a nonperturbative numerical method [15]. We have
used the latter. In a nutshell it works in the following way:
A classical instanton (with topological charge �1) is put
by hand on the lattice and then 100 updating steps are
applied [we used the Heat-Bath algorithm on the conven-
tional O(3) nonlinear 	 model without a � term since the
renormalization constant to be used in Eq. (5) cannot
depend on �]. After every Heat-Bath step the value of
Q�1;2�L is measured and, in order to monitor the background
charge and check that it is not varied after the updating

step, Q�1;2�L is measured again after six cooling hits. In the
calculation of Z�1�Q this procedure was repeated 4 � 104

times at � � 1:5 and 1.6 and 104 times for � � 1:7 and
1.75. The average of Q�1;2�L on configurations within the
topological sector �1 yields Z�1;2�Q .

The above nonperturbative method is summarized by the
expression

 Z�1;2�Q �

R
1�instanton D

~�Q�1;2�L exp��AL�R
1�instanton D

~� exp��AL�
: (6)

The restricted path integral runs over all configurations
(fluctuations) that preserve the background of one instan-
ton. Since the geometric charge Q�2�L is �1 till the back-
ground classical configuration is one instanton (whatever
the fluctuations are), the expression (6) yields Z�2�Q � 1 for
all � [16].

The determination of Z�1�Q is not so trivial and an example

of such an evaluation is shown in Fig. 1. Measures of Q�1�L
on configurations that belong to the topological sector �1
attain to a plateau (in general after a few Heat-Bath steps)
and stay on it for the rest of the updating steps. The height
of this plateau is the value of Z�1�Q . In Table I the results for

Z�1�Q at the values of � used in the present work are given.
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FIG. 1. Data for hQ�1�L i starting at �1 at the 0th Heat-Bath step
and then going down until reaching a plateau. The horizontal line
and grey band are the value and error, respectively, of Z�1�Q �� �
1:5�.

TABLE I. Values of Z�1�Q and �end.

� L ��L;end�
2 Z�1�Q 
2=d:o:f: �end

1.5 120 111(5) 0.285(9) 0.90 3.00(12)
1.6 180 94(5) 0.325(6) 0.45 3.15(10)
1.7 340 67(3) 0.380(6) 1.04 3.11(9)
1.75 470 56(3) 0.412(5) 0.68 3.08(9)
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The relevant consequence of the above considerations
for our study is that the vacuum angle � is related to the
corresponding bare parameter by the expression � �

�LZ
�1;2�
Q [which implies � � �L when Q�2�L is used].

IV. CLUSTER ALGORITHM FOR IMAGINARY �

Although the use of the topological charge density Q�1�L
requires the knowledge of a renormalization constant, it
brings about the advantage that the action SL in (2) can be
simulated on the lattice by use of a fast cluster algorithm.
Instead when the geometric charge Q�2�L was used, the
model was updated by a (rather slow) Metropolis
algorithm.

Let us briefly describe the main characteristics of the
new cluster algorithm expressly devised for the present
work. The first part of an updating step with the usual
Wolff algorithm [17] for the standard O(3) sigma model
without a � term consists of choosing a random unit vector
~r in such a way that every dynamical field can be split in a
component parallel to ~r and the rest, ~��x� � � ~��x� � ~r�~r�
~�?�x�, where ~�?�x� denotes the part of ~��x� orthogonal to
~r. Then the signs of � ~��x� � ~r� for all x are updated à la
Swendsen-Wang as in the Ising model [18].

By introducing the above separation for ~��x� in the
expression (3) we can rewrite it as

 

Q�1�L �x� �
1

16�
f� ~��x� � ~r��d1;2 � d�1;�2 � d2;�1 � d�2;1�

� � ~��x� 1̂� � ~r��d0;�2 � d0;2� � � ~��x� 1̂�

� ~r��d0;2 � d0;�2� � � ~��x� 2̂� � ~r��d0;1 � d0;�1�

� � ~��x� 2̂� � ~r��d0;�1 � d0;1�g; (7)

where x� 1̂ means the site at the position one step forward
(backward) in the direction ‘‘1’’ starting from site x and the
notation di;j stands for the 3� 3 determinant (the three
components for each vector must be unfold along the rows)

 di;j � det
~r

~��x� î�
~��x� ĵ�

0
@

1
A: (8)

In this fashion the theory at each updating step looks like
an Ising model in the bosom of an external local magnetic
field h�x� because the expression in Eq. (7) is linear in � ~� �
~r�. Recall that all Monte Carlo simulations have been
performed with an imaginary vacuum angle �L � �i#L,
(#L 2 IR). By gathering all contributions of the type
shown in Eq. (7) that contain � ~��x� � ~r� at site x one can
readily derive the effective magnetic field at this site,

 

h�x� � �
#L

16�
j ~��x� � ~rj�d1;2 � d�1;�2 � d2;�1 � d�2;1

� d�1;�1�2 � d�1�2;�1 � d1;1�2 � d1�2;1

� d2;2�1 � d2�1;2 � d�2;�2�1 � d�2�1;�2�: (9)

di�k;j [and analogous terms in (9)] are the straightforward
generalization of the above definition (8) when the site is
obtained by shifting two steps from the original position x,
the first in the direction î and the second in the direction k̂.

Hence the last step in the updating consists of applying
to the above expressions an algorithm valid for the Ising
model in presence of a magnetic field. In the literature
there are two such algorithms, the Lauwers-Rittenberg [19]
and the Wang [20,21] methods. After testing their perfor-
mances and comparing the corresponding decorrelation
times with the usual (multihit) Metropolis, Heat-Bath and
overHeat-Bath, we decided on the Wang algorithm. It
consists of placing the magnetic field on an extra, fictitious
site (called a ghost site) that couples to every Ising spin
through the value of h�x�. Using this coupling on the same
footing as all other terms in the action, the Fortuin-
Kasteleyn clusters [22] are arranged by the Hoshen-
Kopelman algorithm [23] and then updated with the usual
1
2 probability.

Following the proof given in [17], it can be seen that our
algorithm also satisfies the detailed balance property.

V. RESULTS

Operators representing physical states can be built out of
an arbitrary number of fundamental fields since supposedly
the model is not parity invariant for �L � 0. As the energy
gap is given by the mass of a triplet state [24] we studied
the correlation functions of operators having one O(3)
index as quantum number,

 

~O 1�x� � ~��x�; ~O2�x� � ~��x� � ~��x� 1̂�: (10)

Then we calculated the related wall operators by averaging
over the x1 coordinate (as usual L is the lattice size),
~W i�x2� �

1
L

P
x1

~Oi�x� for i � 1, 2.
To single out the correct parity mixture for the physical

particle and to clean the signal from possible excited states,
we extracted the triplet mass m by using the variational
method of Ref. [25] where the mass is obtained from the
exponential decay of the largest eigenvalue of the correla-

tion matrix h ~W i�x2�
~W j�0�i � h

~W iih
~W ji.

A. Results for Q�1�L
2 � 105 decorrelated propagators were measured for all

values of � and �L. In the main plot of Fig. 2 the results for
the triplet mass are shown for four values of �. The
extrapolations in this figure were done by using the func-
tional form �c1 � c2�2

L�=�1� c3�2
L�. We avoided using a
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functional form dictated by some theoretical argument,
like the one that for real or imaginary �L goes likem��L� �
c1�c

2
2 � �

2
L�

2=3 which is, up to logarithmic corrections, the
renormalization group prediction, because such an analytic
form implicitly assumes the vanishing of the mass at a
precise value of �. Instead we made the extrapolations with
ratios of polynomials (which are contemporaneously both
simple and very general functional forms) in order to leave
room for any behavior in the vacuum angle. The results of
the analytic continuations are given in Table I. The physi-
cal value of �where the theory becomes gapless is given by
�end � �L;endZ

�1�
Q . The numbers in the last column are in

fair agreement with the prediction that the model becomes
massless when � equals �. Similar results (and 
2) were
obtained from degree 2 or 3 polynomials in �2

L, while ratios
of higher order polynomials proved to be statistically un-
likely (their 
2 was too large).

The lattice sizes in Table I were chosen large enough to
meet at �L � 0 the condition L=� � L � am � 10. Once
this inequality holds at �L � 0, it is amply realized at the
values of �L where the simulations were performed as
inferred from Fig. 2. This fact warrants the absence of
significant finite size effects.

B. Results for Q�2�L
In this case a Metropolis algorithm was used for updat-

ing and 105 independent propagators were measured for
each value of � (recall that in the present case �L � �). We
report data for two values of �. They are displayed in the
inset of Fig. 2. The value of � where Haldane predicted the
closing of the mass gap is indicated with an arrow, �2 �

�2. The numerical results are given in Table II. Comments
similar to theQ�1�L case apply to the extrapolations shown in
the figure. Again the results are in fair agreement with the
conjecture.

By averaging all results for both topological charge
operators and assuming Gaussian errors, we obtain that
the mass gap vanishes at �end � 3:10�5�.

VI. CONCLUSIONS

We have simulated the O(3) nonlinear sigma model in
two dimensions with an imaginary � term at several values
of the lattice coupling �. The mass gap was measured and
extrapolated towards real �. In all cases the extrapolation
vanished at a value of � compatible with the Haldane
conjecture � � �. Our result is � � 3:10�5� which agrees
within errors with the conjecture. This value seems very
robust as it is independent of the topological charge density
operator chosen for the simulation. In particular, an opera-
tor Q�1�L that requires a nontrivial renormalization constant
leads to the same conclusion as another operator [the
geometric charge Q�2�L ] that does not renormalize.

A new fast cluster algorithm was purposely introduced
to simulate the theory with an imaginary � term. It works
for the operator Q�1�L . Instead, when the geometric topo-
logical chargeQ�2�L was used, the theory was simulated by a
(rather slow) Metropolis algorithm.

A salient outcome of our work is the good performance
of the analytic continuation from imaginary to real �. No
theoretical prejudices were assumed in the functional form
used in the continuation, apart from the obvious require-
ment that it is analytic. This can be justified by a compari-
son with the phase diagram shown in Ref. [26]. In the case
of the geometrical charge our largest � and � � �L (1.55
and 3.5, respectively) are very far from the line of phase
transitions; as for the Q�1�L case, our largest � and � �

�LZ
�1�
Q were 1.75 and 4.1, which again lie very far from any

line of singular points.
The need to perform Monte Carlo simulations at imagi-

nary values of � is actually a blessing in disguise since it
forced us to work at very small correlation lengths, as can
be clearly seen in Fig. 2. Had we studied the theory directly
at real � values, we would have met with severe finite size
effects.

A key ingredient for the successful extrapolation was to
have gotten data from simulations within a wide range of
(imaginary) values of �L for all �, [#L � �i�L 2 	0; 10


TABLE II. �end for the operator Q�2�L .

� L ��end�
2 
2=d:o:f: �end

1.5 110 10.4(1.0) 1.72 3.22(16)
1.55 150 9.7(1.0) 0.73 3.11(16)
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Q
L
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β=1.55

FIG. 2. Behavior of the mass gap (in units of the lattice spacing
a) as a function of �2

L. Main plot: circles (� � 1:5), up triangles
(� � 1:6), squares (� � 1:7), and down triangles (� � 1:75) are
the data from the simulation at imaginary �L (�2

L < 0) by using
the Q�1�L lattice regularized topological charge. Each continuous
line is the result of the extrapolation described in the text and the
dashed lines enclose the boundary of its error. Inset: the same for
the Q�2�L regularization: squares (� � 1:5) and up triangles (� �
1:55). In this case � � �L and the position of � � � is indicated.
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when Q�1�L was used and #L � # � �i� 2 	0; 3:5
 for
Q�2�L , the difference of intervals being due to the effect of
the nontrivial renormalization that must be applied to the
former]. All that looks encouraging for the numerical
studies based on the analytic continuation with respect to
a parameter in the theory, such as in QCD with nonzero
chemical potential [27].
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