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We investigate an effective Hamiltonian for QCD at large s, in which longitudinal gauge degrees of
freedom are suppressed, but not eliminated. In an axial gauge the effective field theory is a set of coupled
(1� 1)-dimensional principal-chiral models, which are completely integrable. The confinement problem
is solvable in this context, and we find the longitudinal and transverse string tensions with techniques
already used for a similar Hamiltonian in (2� 1) dimensions. We find some a posteriori justification for
the effective Hamiltonian as an eikonal approximation. Hadrons in this approximation consist of partons,
which are quarks and solitonlike excitations of the sigma models. Diffractive hadron-hadron scattering
appears primarily due to exchange of longitudinal flux between partons.
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I. INTRODUCTION

In the last decade and a half, effective gauge-theory
descriptions for QCD at large center-of-mass energy
squared s has been an active area of research [1–8]. The
approximation of Ref. [6] was to eliminate some gauge-
theory degrees of freedom by a longitudinal rescaling. In
this paper we carefully examine the consequences of this
rescaling: x0;3 ! �x0;3, x? ! x?, A0;3 ! ��1A0;3, A? !
A?, where A� � Aa�ta, a � 1; . . . ; N2 � 1, denotes the
components of the SU�N� Yang-Mills field and the trans-
verse indices 1, 2 are sometimes collectively denoted by
? . We normalize Trtatb � �ab and define ifcabtc �
�ta; tb�. The center-of-mass energy squared changes as s!
��2s [6]. Since we wish to consider high energies, we take
�� 1.

If the scale factor � is small, but not zero, the resulting
Hamiltonian has one extremely small coupling and one
extremely large coupling. The rescaled action is

 S �
1

2g2
0

Z
d4xTr

�
��2F2

03 �
X2

j�1

F2
0j �

X2

j�1

F2
j3 � �

2F2
12

�
;

(1.1)

where F�� � @�A� � @�A� � i�A�; A��. The Hamil-
tonian in A0 � 0 gauge is therefore

 H �
Z
d3x

�
g2

0

2
E 2
? �

1

2g2
0

B2
? �

�g00�
2

2
E 2

3 �
1

2�g000 �
2 B

2
3

�
;

(1.2)

where g00 � �g0, g000 � ��1g0 (so that g00g
00
0 � g2

0), the
electric and magnetic fields are E i � �i�=�Ai and Bi �

�ijk�@jAk � Aj 	 Ak�, respectively, and �Aj 	 Ak�
a �

fabcA
b
jA

c
k. Physical states � must satisfy Gauss’s law

 �@? 
 E? � @3E 3 � ��� � 0; (1.3)

where � is the quark color-charge density. As of this
writing, we are not certain that this rescaled theory is
definitely describing QCD, but think it may be a useful
phenomenological approach to small-x, large-s scattering.

The Hamiltonian (1.2) and the constraint (1.3) will be
regularized on a spatial lattice [9], keeping time continu-
ous. Afterwards, x3 will also be made continuous, leaving
only the transverse coordinates discrete. We take an axial
gauge condition, breaking the precedent of considering
large-s scattering in the light-cone gauge. We do this
because, as we show later, (1.2) is similar to the anisotropic
(2� 1)-dimensional Yang-Mills theory in this gauge [10–
14]. If further experience persuades us to use a light-cone
lattice [15] instead, so be it. A light-cone-lattice approach
in this spirit was discussed in Ref. [16]. This was the
starting point of an argument justifying the rescaling
used in (1.1) by an anisotropic renormalization group
[17]. Similar arguments were presented for the (2� 1)-
dimensional case [13,14] without knowledge of Ref. [17].
We should mention that a lattice gauge theory with differ-
ent transverse and longitudinal couplings has also been
studied in Ref. [18].

The analogous rescaling in (2� 1) dimensions gives the
Hamiltonian, in A0 � 0 gauge,1

 H �
Z
d2x

�
g2

0

2
E 2

1 �
1

2g2
0

B2 �
�g00�

2

2
E 2

2

�
; (1.4)

where g00 � �g0, and the electric and magnetic fields are
E i � �i�=�Ai and B � ��jk@jAk � Aj 	 Aj�, respec-
tively. Gauss’s law is

 �@1 
 E 1 � @2E 2 � ��� � 0: (1.5)

*giantswing@gursey.baruch.cuny.edu

1We note that the coordinate indices 1 and 2 are reversed in
Refs. [10–14].
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Upon regularization, confinement of quarks can be read-
ily demonstrated. Thus the hadronization problem is es-
sentially solved. This suggests that the elastic part of the
forward amplitude and the soft Pomeron can eventually be
understood using our methods.

It has been noted before that the �! 0 limit of QCD is
equivalent to a set of principal-chiral SU�N� 	 SU�N�
sigma models [6,16]. Such a sigma model has the
Lagrangian L � 1=�2g2

0��
�� Tr@�U

y@�U, where U 2
SU�N� and � � 0, 3. This field theory is integrable, and
the S matrix [19], and even certain off-shell information
(for N � 2) [20], is exactly known. The integrable nature
of large-s scattering is also indicated by the form of
Reggeized amplitudes [21]. In Ref. [6] it was pointed out
that the effective gluon-emission vertex [22] can be derived
by considering longitudinal fluctuations before taking the
transverse limit �! 0.

The particles of the principal-chiral sigma model are
labeled by r � 1; . . . ; N � 1 [19]. The particle with label r
has an antiparticle with label N � r. The mass spectrum is

 mr � m1

sinr�N
sin�N

; m1 � K��g2
0N�

�1=2e��4�=g
2
0N� � . . . ;

(1.6)

where K is a nonuniversal constant, � is the ultraviolet
cutoff and the ellipses denote nonuniversal corrections.

We study the physical states for the effective Hamil-
tonian. They are very similar to those of the (2� 1)-
dimensional model (1.4) and (1.5), already investigated
in detail in Refs. [10–14]. Hadrons consist of quarks joined
by electric strings. Longitudinal electric flux consists es-
sentially of (1� 1)-dimensional Yang-Mills strings. In
contrast, transverse electric flux is built out of the massive
particles of the sigma model. We call these Faddeev-
Zamolodchikov (FZ) particles, consistent with the termi-
nology of the operator algebra of the creation and annihi-
lation operators for these particles.

In (2� 1) dimensions, the transverse and longitudinal
string tensions2 were first found to leading order in g00 [10].
Later, the corrections of higher order in g00 to the longitu-
dinal string tension [11], and the transverse string tension
[14], were computed. String tensions for different repre-
sentations of charges were found, and it was shown that
adjoint sources are not confined [12]. The low-lying mass
spectrum was studied in Ref. [13].

Both transverse electric flux and longitudinal electric
flux have some nonzero thickness. The thickness of trans-
verse flux is due to color smearing of the FZ particles in the
longitudinal direction [14]. The thickness of longitudinal
flux is caused by creation and destruction of FZ particle
pairs, akin to vacuum polarization [11].

After we discuss these confinement mechanisms for the
theory in (3� 1) dimensions, we attempt to justify the
effective Hamiltonian as an eikonal approximation. This
view was advocated in Ref. [6], but we interpret the mean-
ing of the factor � slightly differently.

Each of the two incoming hadrons in a collision process
is a collection of FZ particles, joined by longitudinal
electric flux lines. Scattering of two hadrons can involve
rearrangement of the flux lines among the FZ particles. It is
also possible for a non-Abelian phase rotation of FZ par-
ticles to occur as they pass through each other; the phase
factor is given by the exact (1� 1)-dimensional exact S
matrix [19]. These two processes are not entirely distinct,
as can be seen from an examination of the 1=N expansion
of this S matrix.

In the next section, we put the Hamiltonian (1.2) on a
spatial lattice, then transform to the axial gauge. In Sec. III,
we take the continuum limit in the x3 direction and show
that this Hamiltonian is equivalent to a collection of inte-
grable field theories which are coupled together. We dis-
cuss confinement of color and find the transverse string
tension in Sec. IV. We find the longitudinal string tension in
Sec. V. By comparing the electric-field strengths in differ-
ent directions, we find some justification of the effective
Hamiltonian in Sec. VI In Sec. VII, we describe the nature
of hadronic states and begin an examination of diffractive
hadronic scattering, focusing on the exchange of hadronic
flux. We present some conclusions and mention some
further directions for research in Sec. VIII.

II. REGULARIZATION AND THE AXIAL GAUGE

Consider a lattice of sites x, whose coordinates are xj,
j � 1, 2, 3, where xj=a are integers, and where a is the
lattice spacing. Each link is a pair x, j, and joins the site x
to x� ĵa, where ĵ is a unit vector in the jth direction. We
choose temporal gauge A0 � 0. Before any spatial gauge
fixing, the degrees of freedom are elements of the group
SU�N� in the fundamental (N 	 N)-dimensional matrix
representationUj�x� 2 SU�N� at each link x, j. In addition,
there are the electric-field operators at each link lj�x�b, b �
1; . . . ; N2 � 1. The commutation relations on the lattice are

 �lj�x�b; lk�y�c� � i�xy�jkfdbclj�x�d;

�lj�x�b; Uk�y�� � ��xy�jktbUj�x�;
(2.1)

all others zero.
The lattice version of (1.2) is H � H0 �H

0 �H00,
where

 H0 �
1

a

X
x

�
g2

0

2
l?�x�2 �

X
j�1;2

1

4g2
0

TrU�
j �x�

�
;

H0 �
�g00�

2

2a

X
x

l3�x�2; H00 � �
1

4�g000 �
2a

X
x

TrU�
3 �x�;

(2.2)

2In Refs. [10–14], we called the transverse string tension the
‘‘vertical string tension’’ and the longitudinal string tension the
‘‘horizontal string tension.’’
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and where, as before, g00 � �g0, g000 � ��1g0 and

 U�
i �x� � �ijkUj�x�Uk�x� ĵa�Uj�x� k̂a�

yUk�x�
y: (2.3)

We need the adjoint representation of the SU�N� gauge
field Rj�x�, defined by Rj�x�b

ctc � Uj�x�tbUj�x�
y. This

has the properties Rj�x� 2 SU�N�=ZN , Rj�x�TRj�x� � 1,
and detRj�x� � 1. Notice that

 �Rj�x�b
clj�x�c; Uk�y�� � ��xy�jkUj�x�tb:

Thus lj�x� generates infinitesimal SU�N� transformations
on the left of Uj�x�, and Rj�x�lj�x� generates infinitesimal
SU�N� transformations on the right of Uj�x�. The squares
of these operators are the same

 �lj�x��2 � �Rj�x�lj�x��2;

by virtue of the orthogonality of the adjoint representation.
Color-charge operators, denoted by q�x�b, satisfy

 �q�x�b; q�y�c� � ifdbc�xyq�x�d: (2.4)

Schrödinger wave functions are complex-valued func-
tions of all the link degrees of freedom Uj�x�. Physical
wave functions ��fUg� satisfy Gauss’s law

 ��D 
 l��x�b � q�x�b���fUg� � 0; (2.5)

where (with no summation of j)

 �Djlj�x��b � lj�x�b �Rj�x� ĵa�b
clj�x� ĵa�c: (2.6)

Next we impose the axial gauge condition U3 � 1. We
take the lattice to be open at x3 � 0, L3, which means we
do not fix any noncontractible Wilson loops. The open
boundary condition means, however, that a relic of
Gauss’s law must still be imposed.

We choose space to be a lattice ‘‘cylinder’’ of size L1 	
L2 	 L3, with periodic boundary conditions in the 1 and 2
directions only. This means that for any function of posi-
tion f�x�, we have f�x1 �mL1; x2 � nL2; x3� � f�x�, for
anym, n 2 Z. We take components of x to have the values
x1;2 � 0; a; 2a; . . . ; L1;2 � a, and x3 � 0; a; 2a; . . . ; L3.
Gauss’s law is still given by (2.5), provided (2.6) is modi-
fied to
 

D3l3�x���x3�L3l3�x���x3�0R3�x?;x3�a�l3�x?;x3�a�;

D1l1�x�� l1�x��R1�x1�a;x2;x3�l1�x1�a;x2;x3�;

D2l2�x�� l2�x��R2�x1;x2�a;x3�l2�x1;x2�a;x3�:

(2.7)

To fix the links in the 3 direction, we need to use (2.5)
and (2.7) to solve for l3:

 l3�x� �
Xx3

y3�0

�q�x?; y3� � �D? 
 l?��x
?; y3��: (2.8)

Some non-Abelian gauge invariance remains, namely,

 ��x?�� �
XL3

x3�0

��D? 
 l?��x� � q�x��� � 0: (2.9)

This remaining gauge invariance means that (2.8) is
equivalent to

 l3�x� � �
XL3

z3�x3�a

�q�x?; z3� � �D? 
 l?��x
?; z3��: (2.10)

The new expressions for l3, namely, (2.8) and (2.10),
allow us to completely eliminate all degrees of freedom but
U2;3. We now can write the term in the Hamiltonian (2.2)
which depends on the longitudinal electric field as

 H0 � �
�g00�

2

2a

X
x?

Xx3

y3�0

XL3

z3�x3�a

�q�x?; y3� � �D? 
 l?�

	 �x?; y3���q�x?; z3� � �D? 
 l?��x
?; z3��;

or
 

H0 � �
�g00�

2

4a2

X
x?

XL3

y3;z3�0

jy3 � z3j�q�x?; y3� � �D? 
 l?�

	 �x?; y3���q�x?; z3� � �D? 
 l?��x?; z3��: (2.11)

In the axial gauge, the longitudinal-electric-field-squared
term H0 is highly nonlocal in the 3 direction. This non-
locality is a standard feature of physical gauges. This fact
has a simple physical interpretation in the case of (2.11).
The longitudinal electric field has been eliminated in favor
of the transverse degrees of freedom. Now electric flux
between two charged transverse plates must be propor-
tional to the longitudinal separation of these plates. This
is accounted for by the linear factor in (2.11). On the other
hand, the vacuum expectation value of H0 must be propor-
tional to the spacial volume L1L2L3. The nonlocality of
(2.11) means that the nature of the vacuum state is subtle.
Mandelstam, who considered the analogous continuum
Hamiltonian, argued that the vacuum state can only have
finite energy density if magnetic condensation takes place
[23]. His reasoning was that this is the way in which the
vacuum correlator
 

h0j�q�x?; y3� � �D? 
 l?��x
?; y3��

	 �q�x?; z3� � �D? 
 l?��x?; z3��j0i

can fall off sufficiently quickly in jy3 � z3j.
What of the remainder of the Hamiltonian H0 �H00

after gauge fixing? Setting U1�x� � 1, we find

 H0 �
X
x?
�H0�x?; 2� �H0�x?; 3��; (2.12)

where
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 H0�x
?; j� �

XL3

x3�0

g2
0

2a
lj�x�

2

�
XL3�a

x3�0

1

2g2
0a

Re TrUj�x�Uj�x?; x3 � a�y:

(2.13)

On the other hand, the longitudinal magnetic term H00 is
unchanged, since it depends only on the transverse com-
ponents of the gauge field.

Now that the Hamiltonian has been recast in an axial
gauge, we may, at least in principle, take the thermody-
namic limit, in which L1, L2 and L3 all become infinity.

III. COUPLED (1� 1)-DIMENSIONAL FIELD
THEORIES

Next let us examine each of the terms of the Hamiltonian
more closely. We will take a continuum limit in the 3
direction. Thus only the transverse coordinates will be
latticized. The resulting structure resembles a transit box
for bottles of wine as shown in Fig. 1. Each termH0�x?; j�,
defined in (2.13), is a lattice (1� 1) principal-chiral non-
linear sigma model, with coupling constant g0. We will
regard H0 as the Hamiltonian of the unperturbed theory
and treat H0 and H00 as interactions. Notice that the coef-
ficients of each of these terms is small, by virtue of �� 1.
Thus one coupling g0 is small (to take the continuum
limit), another coupling g00 is much smaller still and the
third coupling g000 is comparatively extremely large. We

shall say more about the sizes of the couplings in the next
section.

We will assume the lattice spacing is small and treat the
principal-chiral sigma models as near their thermodynamic
and continuum limits. Each sigma model lives in a band,
that is a two-dimensional strip of length L3 ! 1 and width
a, in the j-3 plane, where j � 1, 2. [We referred to bands as
layers in the papers on (2� 1)-dimensional gauge theories.
In three spatial dimensions, a different name seems appro-
priate.] In our wine-transit-box analogy, there are four
bands surrounding each wine bottle, and two wine bottles
adjacent to each band. We denote the band between the line
at x? and the line at x? � ĵa by �x?; j�. The left-handed
and right-handed currents of sigma model in the band
�x?; j� are
 

JL
��x

?; x3; j�b � i Trtb@�Uj�x
?; x3�Uj�x

?; x3�y;

JR
��x

?; x3; j�b � i TrtbUj�x?; x3�y@�Uj�x?; x3�;

respectively, where � � 0, 3. The operator JL
0 �x
?; x3; j�

produces an SU�N� rotation at the edge of the band �x?; j�
at x?. The operator JR

0 �x
?; x3; j� produces an SU�N�

rotation at the other edge of the band �x?; j� at x? � ĵa.
We write H0 as

 H0 �
X
x?;j

Z
dx3 1

2g2
0

�JL
0 �x
?; x3; j�2 �JL

3 �x
?; x3; j�2�:

(3.1)

The connection between (2.12), (2.13), and (3.1) is made
through the Heisenberg equation of motion for Uj. This
gives lj�x� � ag�2

0 JL
0 �x
?; x3; j�, for small a. Similarly,

Rj�x�lj�x� � ag�2
0 JR

0 �x
?; x3; j�. The transverse electric

field is now JLR
0 .

The a residual gauge-invariance condition and the
longitudinal-electric-field-squared term are written by the
same substitution into (2.9) and (2.11), respectively.
Residual gauge invariance is now the condition on physical
states �
 Z
dx3

X
j�1;2

�JL
0 �x
?; x3; j� �JR

0 �x
? � ĵa; x3; j�

� ��x?; x3��� � 0; (3.2)

and the longitudinal-electric-field-squared term is
 

H0 � �
�g00�

2

4g4
0a

2

X
x?

X
j�1;2

Z
dx3

Z
dy3jx3� y3j

	 �JL
0 �x
?; x3; j��JR

0 �x
?� ĵa;x3; j����x?; x3��

	 �JL
0 �x
?; y3; j��JR

0 �x
?� ĵa;y3; j����x?; y3��;

(3.3)

where ��x?; x3� is a linear charge density, satisfying the
algebra

x

x

x

FIG. 1. Space with x? discrete and x3 continuous resembles
the interior of a wine transit box.
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 ���x?; x3�b; ��y?; y3�c� � i�x?y?��x
3 � y3�fdbc��x

?; x3�d:

(3.4)

The last term in the Hamiltonian is the longitudinal-mag-
netic-field-squared term

 H00 � �
1

4�g000 �
2a2

X
x?

Z
dx3Re TrU��x?; x3�; (3.5)

where U��x?; x3� is given by (2.3), as before.
The terms in the Hamiltonian (3.1), (3.3), and (3.5) and

the constraint (3.2) may seem a bit complicated, but they
each have a straightforward geometrical interpretation. A
sigma model lives in each band �x?; j�, whose Hamiltonian
is H0�x

?; j�. The excitations of H0 are the FZ particles,
which behave like solitons, though they are not quantized
versions of classical solutions. Without the interaction
terms, these particles move only in the 3 direction, scat-
tering with a nontrivial S matrix. The scattering is inte-
grable, which implies that there is no particle creation or
destruction. The elementary r � 1 FZ particles are adjoint
gluonlike particles [see Eq. (1.6)]. They can be thought of
as color dipoles with a right fundamental color charge
(anticharge) at x? and a left fundamental anticharge
(charge) at x? � ĵa. All other FZ particles can be built
out of these r � 1 ‘‘diffractive gluons.’’

We can regard a line in the 3 direction as a choice of x?.
Consider now the four bands which meet at this line x?,
namely, �x?; 1�, �x?; 2�, �x? � 1̂a; 1� and �x? � 2̂a; 2�,
shown in Fig. 2. There are five color charges at the line
x?, one from each band and one from the color sourceR
dx3��x?; x3� on the line. The nontrivial constraint (3.2)

means that the sum of these five color charges is zero.
The interaction H0, as discussed before, is simply the E 2

1
term of the Hamiltonian in the axial gauge.

Finally, the interaction H00 is a discrete version of the
integral of the square of the longitudinal magnetic flux.
The quantity TrU��x?; x3� is the Wilson loop around four

bands (a wine bottle stands in the middle of these four
bands), shown in Fig. 3.

IV. TRANSVERSE CONFINEMENT

Next we explain how transverse confinement works for
our effective gauge theory. The mechanism does not rely
on our taking the continuum limit of the coordinate x3; it
holds just as well on the three-dimensional lattice. The key
ingredients are the mass gap of H0 and residual gauge
invariance (2.9) or (3.2). We will show that our explanation
makes sense for

 �g00�
2 �

g4
0

�g000 �
2 �

1

g0
e�4�=�g2

0N�: (4.1)

Our arguments are adapted from Ref. [10].
Let us first consider the extreme case of � � 0. In this

case, g00 � 0 and g000 � 1, so that H � H0. Let us place a
quark at u?, u3 and an antiquark at v?, v3. We now ask
what the ground-state energy is, with these sources intro-
duced. This energy is an eigenvalue of H0. Since H0 is the
sum of nonlinear sigma models, we try to put as many as
possible of these sigma models in their ground states. In
other words, we want as many bands of our wine transit
box as possible to be unoccupied by FZ particles. Consider
the effect of the residual condition on states, (3.2). This
tells us that we cannot make all four of the bands meeting
at u? in a color-singlet state, due to the presence of the
quark at u?. Now we want the sigma model in each of
these bands �u?; 1�, �u?; 2�, �u? � 1̂a; 1� and �u? � 2̂a; 2�
to be in an eigenstate (since we seek the lowest-energy
eigenstate of H0). Now at least one of these four sigma

x

x

x

FIG. 2. The four bands meeting at the line of fixed x?.

x1

x2

x3

FIG. 3. The Wilson loop U��x?; x3�, directed counterclock-
wise around four bands.
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models cannot be in a color-singlet state. The Hohenberg-
Mermin-Wagner theorem tells us that there is no sponta-
neous symmetry breaking for the vacuum of a (1� 1)-
dimensional field theory. Hence the vacuum must be a
singlet. Any nonsinglet eigenstate must therefore have
energy of at least the mass gap, m1. So at least one of the
four sigma models must contain an FZ particle, say,
�u?; 1�. If there is no color source in the line u? � 1̂a,
then by the constraint (4.1), at least one of the other three
sigma models in bands adjacent to this line, namely, �u? �
1̂a; 1�, �u? � 1̂a; 2� and �u? � 1̂a� 2̂a; 2�, must also be
excited, by the same reasoning. Continuing in the this way,
there must be a connected two-dimensional union of bands
in which all the sigma models are excited, terminating at
u?. For the energy to be finite, this two-dimensional union
of bands must also terminate at v?, where the antiquark is
present.

The physical picture of transverse confinement is the
following. Imagine we look at the quark-antiquark pair
from a great distance along the 3 direction. We see a string
of FZ particles in the transverse plane, joining the quark to
the antiquark, as in Fig. 4. The potential is the sum of the
masses of all these FZ particles. As it happens, the poten-
tial is not rotation invariant, even in the transverse plane. If
the quark and antiquark are separated along the 1 or 2
directions, however, the potential between these sources is
linear with transverse string tension

 	? �
m1

a
: (4.2)

The lack of rotational invariance around the x3 axis seems
unrealistic, but we will argue at the end of this section that
this invariance comes about when H0 and H00 are included.

We can readily see that certain spacelike Wilson loops
have an area law. Consider a rectangular loop in the x1-x3

plane. By virtue of the gauge condition U3 � 1, this loop
breaks apart into a product of sigma-model correlation
functions. Suppose the dimensions of the loop are M1

and M3 in the 1 and 3 directions, respectively. Then the
Wilson loop is roughly (in that we are being sloppy with
contractions of group indices)

 A�
Yy3�M3

x3�y3

h0jU1�x
?; x3�U1�x

? � 1̂M1; x3�yj0i:

Each of the correlation functions in this product decays
exponentially as

 h0jU1�x
?; x3�U1�x

? � 1̂M1; x3�yj0i � e�m1M1
;

where j0i is the vacuum of the sigma model. Therefore the
Wilson loop behaves as

 A� exp�	?M
1M3: (4.3)

Loops oriented in the x2-x3 plane behave exactly the same
way.

Let us now suppose we increase � a bit, so that it is no
longer zero, but so that (4.1) is satisfied. Then the coeffi-
cients of H0 and H00 are small compared to m1=a. We have
three mass scales in the problem, namely, m1, �g00�

2=a and
1=��g000 �

2a�. If the first of these mass scales is much greater
than the other two, transverse confinement will still hold.
Finding the correction to the potential (as g00 is increased
and g000 is decreased) will require the application of exact
matrix elements; current form factors for H0 [20] and field
form factors for H00 [24]. The inclusion of these terms will
mean that FZ particles interact between adjacent bands.
There are also processes whereby FZ particles can be
created or destroyed, due to these interactions. These ef-
fects mean that the theory is no longer integrable, though it
is nearly so, provided (4.1) holds.

The correction to the transverse string tension for
(2� 1)-dimensional SU(2) gauge theory comes from the
lower-dimensional analogue of H0 (there is no term analo-
gous to H00) [14]. This correction is due to fluctuations of
positions of FZ particles, bound by longitudinal strings.
The longitudinal string potential (which we discuss in the
next section) is not linear at short distances, but quadratic;
this is due to the fact that the color of an FZ particle is
smeared in the longitudinal direction. The actual distribu-
tion of color is approximately Gaussian, which can be
found using a form factor for the current operator of the
sigma model [20].

FIG. 4. The transverse projection of a transverse string, built
out of FZ particles (represented by large bullets), joining a quark
to an antiquark (represented by small bullets). Longitudinal flux
lines join the particles together. These flux lines are parallel to
the line of sight, hence are not visible. The neighboring FZ
particles and sources in this figure are not adjacent, in general,
since they may be located at different values of x3.
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We expect that corrections coming from the inclusion of
H00 make the potential invariant with respect to rotations
about the 3 axis. This is because H00 acting on string states
deforms the contour of the string in the transverse plane.
Perturbation theory in this term should therefore cause the
string to fluctuate enough to make a rotation-invariant
potential (this is what happens in Hamiltonian-strong-
coupling perturbation theory [25]).

V. LONGITUDINAL CONFINEMENT

Next we will show how longitudinal confinement takes
place. Again, the reasoning is essentially that of Ref. [10].

Let us next consider a quark and antiquark separated in
the 3 direction only, with coordinates u?, u3 and u?, v3,
respectively. If g00 � 0, there is just a constant potential
between the sources, since longitudinal electric flux costs
no energy. If we assume g00 � 0 and (4.1) instead, then
electric flux does cost some energy. Furthermore this flux
will be concentrated along the line u?. The reason for this
concentration is that if any flux leaves this line, residual
gauge invariance (4.1) implies that one of the four bands
�u?; 1�, �u?; 2�, �u? � 1̂a; 1�, �u? � 2̂a; 2� cannot be in a
singlet state. Hence at least one of these four bands is
excited with an energy of at least the sigma-model gap
m1. The mass gap tends to prevent flux spreading
transversely.

We can now estimate the longitudinal string tension. It is
simply the string tension of a Yang-Mills theory in one
space and one time dimension, with coupling g00=a:

 	L �
�g00�

2

a2 CN; (5.1)

where CN is the Casimir of SU�N�. Notice that the physical
mechanism of longitudinal confinement is a dual Meissner
effect, though no assumptions of magnetic condensation
have been made.

Note that if we simply took � � 0 [6], we would have
transverse confinement, but no longitudinal confinement.
The term H0 is essential for the longitudinal string tension.

Corrections of higher order in �g00� to (5.1) come from
virtual pairs of FZ particles. The analogous calculation in
(2� 1) dimensions has already been done [11].

VI. THE EFFECTIVE HAMILTONIAN AS AN
EIKONAL APPROXIMATION FOR QCD

We now argue that the effective Hamiltonian is an
eikonal approximation for QCD. A conventional approach
to this approximation [26] is to take the fields from one
incoming particle in that particle’s rest frame, boost them
to the lab frame, and consider the wave function of the
second particle in the presence of those fields (afterwards
one can improve the result by iteratively imposing unitar-
ity). We point out in this section that the rescaling of the

coupling constant in (1.1), (1.2), and (2.2) produces
‘‘boosted’’ electric fields.

The value of g00 must be chosen so that the ratio of the
longitudinal string tension to the transverse string tension
is small. This ratio, from (4.2) and (5.1), is

 

	L

	?
�
�g00�

2

m1a
�
�2g2

0

m1a
:

We can turn this expression around to find

 �2 �
m1a

g2
0

	L

	?
: (6.1)

Suppose now we consider two incoming hadrons, traveling
in the 3 direction, with velocity v. If the electric and
magnetic fields of a hadron in its rest frame are E 0k and B0k,
respectively, then in the lab frame

 E 1 �
E 01  vB

0
2��������������

1� v2
p ; E 2 �

E 02 � vB
0
1��������������

1� v2
p ; E 3 � E 03:

(6.2)

If we assume the magnetic fields inside the hadron are
random, then the average of the ratio of the longitudinal
electric field to the transverse electric field is

��������������
1� v2
p

. We
substitute this for 	L=	? in (6.1) to obtain

 �2 �
m1a

g2
0

��������������
1� v2

p
: (6.3)

Note that (6.1) means that large velocity v implies small �.
We have thereby interpreted the rescaling of the coupling
constants in (1.1), (1.2), and (2.2) as the result of hadrons
moving at high velocities. To make such an interpretation
sensible, however, the velocity in the transformed coordi-
nates (that is, the coordinates defined after the rescaling)
should be small. Otherwise, the expression (6.1) cannot be
used. This means that to consider large-s processes, �
should be taken small, but velocities in our new coordi-
nates should be nonrelativistic.

Our justification of the rescaling as an eikonal approxi-
mation is rather heuristic. It seems strange, because it
contradicts the fact that under a simple rescaling, the
longitudinal component of velocity does not change. We
are arguing that there really is an anomalous transforma-
tion of the velocity. Before rescaling the velocity is close to
zero, but afterwards, it is given by (6.3). It seems worth
making the argument more rigorous. This could conceiv-
ably be done with anisotropic renormalization-group meth-
ods [13,14,16,17].

VII. HADRONIC STATES AND DIFFRACTIVE
SCATTERING

The structure of hadrons for our effective action is rather
similar to that of the strong-coupling picture [9], despite
the fact that only one coupling g000 is strong, all others being
weak [the same is true in the (2� 1)-dimensional case
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where all couplings are weak]. Hadrons are built out of
strings connecting quarks. Strings terminate at quarks, and
N of them can meet in junctions. Thus we have a string-
parton picture, in which the partons are quarks and FZ
particles.

The transverse projection of a state of two baryons
approaching each other longitudinally is shown in Fig. 5.
The hadrons can collide at coincident lines or bands. Let us
suppose we neglect H0 �H00. In the case of overlapping
sites (but without overlapping at adjacent links), longitu-
dinal flux exchange (LFE) at lines of fixed x? can happen,
but nothing else occurs. The LFE amplitude can be thought
of as due to resonance between different flux arrangements
and is of order 1=N, as we explain in the next paragraph.

The LFE process is analogous to the case of meson
scattering in (1� 1) dimensions. We can think of the two
FZ particles adjacent to the line x? (in one hadron) as
being similar to two sources of fundamental color in that
line (recall that FZ particles are dipoles, and each of them
has one fundamental source adjacent to the line). Thus
LFE is essentially similar to flux exchange in (1� 1)-
dimensional QCD. This nonplanar process is of order
1=N [27]. An example of LFE is shown in Fig. 6.

We note that the world sheet of longitudinal electric flux
lines during LFE has the same topology as that of Pomeron
exchange in string models.

In the case of two hadrons intersecting the same band,
i.e. with colliding FZ particles, the S matrix of the

principal-chiral sigma model comes into play. We note
that this (1� 1)-dimensional S matrix is unity in the
large-N limit, N ! 1, g2

0N fixed. Thus in this limit, no
interaction occurs. In the 1=N expansion of this S matrix,
however, LFE occurs [19].

VIII. CONCLUSIONS

In this paper, we have considered the anisotropic effec-
tive theory of Ref. [6], which is a longitudinally rescaled
Yang-Mills theory, with rescaling parameter �. We have
shown that this theory confines for sufficiently small � and
a natural string-parton picture emerges. The partons are
valence quarks and the solitonlike FZ particles of the
principal-chiral nonlinear sigma model. The interpretation
of this effective action as an eikonal approximation is
rather subtle, since electric fields are much stronger in
the transverse than the longitudinal direction, even for
slow-moving hadrons. We have argued that this interpre-
tation is correct, provided colliding hadrons are moving
anomalously slowly in the rescaled coordinates. An im-
portant process in hadronic scattering in the forward direc-
tion is the exchange of longitudinal flux, even if FZ
particles collide.

There are essentially two areas which come to mind for
further investigation.

We would like to improve our understanding of confine-
ment for the anisotropic gauge theory considered here.
This is not a strong-coupling gauge theory, but rather a
hybrid gauge theory where one coupling, namely, g000 , is
strong and the rest are weak. A demonstration that con-
finement still holds if g000 is weak would be real progress on
the QCD confinement problem. We have been investigat-
ing expansions in �g000 �

�2 using field form factors of the
sigma model [24], but as yet have no simple argument that

FIG. 5. Longitudinally approaching baryons. Large circles rep-
resent FZ particles, and small circles represent quarks. The
symbol � means that the constituent particle (FZ particle or
quark) is coming out of the page, and the symbol � means that it
is going into the page. Strings of FZ particles can intersect at
lines of fixed x? (A) or overlap at transverse bands (B).

FIG. 6. An example of LFE is resonance between the configu-
rations shown here, resembling (A) in Fig. 5. Longitudinal flux
lines are present, in general, in the second and third diagrams.
The particles shown can be either quarks or FZ particles.
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confinement holds for small g000 . In any case, it seems
possible to generalize our calculations of the corrections
to the longitudinal [11] and string tensions [14], and to the
mass spectrum [13] to (3� 1) dimensions, with g000 large,
but not infinite.

The other problem of importance is the forward scatter-
ing amplitude of hadron-hadron scattering. We hope that
its solution will yield a quantitative understanding of the
Pomeron. The solution will require some control of LFE
processes. We believe that this problem is tractable. We
have argued in Sec. VI that in the new coordinates, mo-
menta should be taken as small as possible; in this way the
electric fields are longitudinally boosted as they should be.
Thus, LFE processes can be studied in a nonrelativistic

context. We hope to make progress on this problem soon.
Some assumptions may need to be made for the distribu-
tions of partons within a hadron. A good starting point
should be the solution of hadron-hadron scattering in (2�
1) dimensions, where the parton distributions are simpler.
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