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The couplings of charmonia and charmonium hybrids (generically �) to p �p are of great interest in view
of future plans to study these states using an antiproton storage ring at GSI. These low to moderate energy
�p �p couplings are not well understood theoretically, and currently must be determined from experiment.
In this paper we note that the two independent Dirac (��) and Pauli (���) p �p couplings of the J= and  0

can be constrained by the angular distribution of e�e� ! �J= ;  0� ! p �p on resonance. A comparison of
our theoretical results to recent unpolarized data allows estimates of the p �p couplings; in the better
determined J= case the data is inconsistent with a pure Dirac (��) coupling, and can be explained by the
presence of a ��� term. This Pauli coupling may significantly affect the cross section of the PANDA
process p �p! �0J= near threshold. There is a phase ambiguity that makes it impossible to uniquely
determine the magnitudes and relative phase of the Dirac and Pauli couplings from the unpolarized
angular distributions alone; we show in detail how this can be resolved through a study of the polarized
reactions.
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I. INTRODUCTION

Charmonium is usually studied experimentally through
e�e� annihilation or hadronic production, notably in p �p
annihilation. The p �p annihilation process was employed
by the fixed target experiments E760 and E835 at Fermilab,
which despite small production cross sections succeeded in
giving very accurate results for the masses and total widths
of the narrow charmonium states J= ,  0, �1, and �2. A
future experimental program of charmonium and charmo-
nium hybrid production using p �p annihilation that is
planned by the PANDA Collaboration [1] at GSI is one
of the principal motivations for this study.

Obviously the strengths and detailed forms of the cou-
plings of charmonium states to p �p are crucial questions for
any experimental program that uses p �p annihilation to
study charmonium; see, for example, the predictions for
the associated production processes p �p! �0� in
Refs. [2–4]. (We use � to denote a generic charmonium
or charmonium hybrid state, and  if the state has JPC �
1��.)

Unfortunately these low to moderate energy production
reactions involve obscure and presumably rather compli-
cated QCD processes, so for the present they are best
inferred from experiment. In Ref. [4] we carried out this
exercise by using the measured p �p partial widths to esti-
mate the coupling constants of the J= ,  0, �c, �0c, �0, and
�1 to p �p, assuming that the simplest Dirac couplings were
dominant. These �p �p couplings were then used in a
PCAC-like model to give numerical predictions for several

associated charmonium production cross sections of the
type p �p! �0�.

In this paper we generalize these results for the J= and
 0 by relaxing the assumption of �� dominance of the  p �p
vertex. We assume a  p �p vertex with both Dirac (��) and
Pauli (���) couplings, and derive the differential and total
cross sections for e�e� !  ! p �p given this more gen-
eral vertex. Both unpolarized and polarized processes are
treated.

A comparison of our theoretical unpolarized angular
distributions to recent experimental J= results allows
estimates of both the Dirac and Pauli J= p �p couplings.
There is a phase ambiguity that precludes a precise deter-
mination of the (complex) ratio of the Pauli and Dirac
J= p �p couplings from the unpolarized data; we shall see
that an important interference effect between the Pauli and
Dirac terms leads to a strong dependence of the unpolar-
ized p �p! �0J= cross section near threshold on the
currently unknown phase between these terms.

Determining these couplings is evidently quite impor-
tant for PANDA, and can be accomplished through studies
of the polarized process e�e� ! J= ! p �p. The angular
distribution of the unpolarized, self-analyzing process
e�e� ! J= ! � �� may also provide complementary
information regarding the closely related J= � �� vertex.
Both of these processes should be accessible at the up-
graded BES-III facility.

II. UNPOLARIZED CROSS SECTION

The Feynman diagram used to model this process is
shown in Fig. 1. We assume a vertex for the coupling of
a generic 1�� vector charmonium state  to p �p of the form
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 �� p �p�
� � g

�
�� �

i�
2m

���q�

�
: (1)

In this paper m and M are the proton and charmonium
mass, � is the charmonium total width, and we assume
massless initial leptons. Following DIS conventions, q� is
the four momentum transfer from the nucleon to the elec-
tron; thus in our reaction e�e� ! p �p in the c.m. frame, we
have q � ��

���
s
p
; ~0�. The couplings g and � are actually

momentum-dependent form factors, but since we only
access them very close to the kinematic point q2 � M2

in the reactions e�e� ! �J= ;  0� ! p �p, we will treat
them as constants.

The unpolarized differential and total cross sections for
e�e� !  ! p �p may be expressed succinctly in terms of
the strong  p �p Sachs form factors GE � g�1� �s=4m2�
and GM � g�1� ��. Both GE and GM are complex above
p �p threshold, in part because phases are induced by p �p
rescattering. If we assume that the lowest-order Feynman
diagram of Fig. 1 is dominant, the phase of g itself is
irrelevant, so here we take g to be real and positive. �,
however, has a nontrivial phase. We express this by intro-
ducing a Sachs form factor ratio, with magnitude 	 � 0
and phase �;

 G E=GM � 	ei�: (2)

The corresponding relation between the Pauli coupling
constant � and this Sachs form factor ratio is

 � � j�jei
� �
	ei� � 1

�M2=4m2 � 	ei��
; (3)

where we have assumed that we are on a narrow resonance,
so we can replace s by M2.

We will first consider the unpolarized process e�e� !
 ! p �p, and establish what the differential and total cross
sections imply regarding the  p �p vertex. The unpolarized
total cross section predicted by Fig. 1 is

 

h�i �
4��2

3f2
 

M4

s2

�1� 4m2=s�1=2

��s�M2�2 � �2M2	


 �2m2jGEj
2 � sjGMj

2�: (4)

(We use angle brackets to denote a polarization averaged
quantity.) Exactly on resonance (at s � M2) this can be
expressed in terms of the  partial widths

 � !e�e� �
4��2M

3f2
 

(5)

and

 � !p �p �
�1� 4m2=M2�1=2

12�M
�2m2jGEj

2 �M2jGMj
2�; (6)

which gives the familiar result

 h�ijs�M2 �
12�

M2 Be�e�Bp �p: (7)

Here Be�e� and Bp �p are the  ! e�e� and  ! p �p
branching fractions.

Since the (unpolarized) p �p width and total cross section
on resonance involve only the single linear combination
�2m2jGEj

2 �M2jGMj
2�, separating these two strong form

factors requires additional information, such as the angular
distribution. The unpolarized e�e� !  ! p �p differen-
tial cross section in the c.m. frame is given by
 �
d�
d�

�
�

�2

4f2
 

M4

s2

�1� 4m2=s�1=2

��s�M2�2 � �2M2	

� �4m2jGEj
2�1��2� � sjGMj

2�1��2�	; (8)

where � � cos��c:m:�. This angular distribution is often
expressed as 1� ��2, where

 � �
1� �4m2=s�jGE=GMj

2

1� �4m2=s�jGE=GMj
2 : (9)

Inspection of Eqs. (8) and (9) shows that one can determine
the magnitude 	 � jGE=GMj of the Sachs form factor ratio
from the unpolarized differential cross section, but that the
phase � of GE=GM is unconstrained.

The undetermined phase � implies an unavoidable am-
biguity in determining the magnitude and phase of the
Dirac and Pauli  p �p couplings g and � from the unpolar-
ized e�e� ! �J= ;  0� ! p �p angular distribution. We
will discuss this ambiguity in the next section.

III. COMPARISON WITH EXPERIMENT

A. Summary of the data

Experimental values of � have been reported by several
collaborations. The results for the J= are [5–10]

FIG. 1. The Feynman diagram assumed in this model of the
generic reaction e�e� !  ! p �p.
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 � �

8>>>>>>><
>>>>>>>:

1:45� 0:56; Mark I �5	
1:7� 1:7; DASP �6	
0:61� 0:23; Mark II �7	
0:56� 0:14; Mark III �8	
0:62� 0:11; DM2 �9	
0:676� 0:036� 0:042; BES �10	:

(10)

and for the  0 [11,12]

 � �
�

0:67� 0:15� 0:04; E835�11	
0:85� 0:24� 0:04; BES �12	:

(11)

For our comparison with experiment we use the statisti-
cally most accurate measurement for each charmonium
state, and combine the errors in quadrature. This gives
experimental estimates for � of 0:676� 0:055 and 0:67�
0:155 for the J= and  0, respectively.

B. Testing the pure Dirac hypothesis

We first examine these experimental numbers using the
‘‘null hypothesis’’ of no Pauli term, � � 0, in which case
� � �1� r�=�1� r�, where r � 4m2=M2. This � � 0 for-
mula was previously given by Claudson, Glashow, and
Wise [13] and by Carimalo [14]; the value of � under
various theoretical assumptions has been discussed by
these references and by Brodsky and LePage [15], who
predicted � � 1. Figure 2 shows these two experimental
values together with the pure Dirac ���� formula for �.
The  0 case is evidently consistent with a Dirac ����  0p �p
coupling at present accuracy, but the better determined
J= angular distribution is inconsistent with a pure Dirac
J= p �p coupling at the 4� level.

The discrepancy evident in Fig. 2 may imply the pres-
ence of a Pauli term �� � 0� in the J= p �p vertex.
Inspection of our result for � in the general case

[Eq. (9)] shows that one can certainly accommodate this
discrepancy by introducing a Pauli term.

C. Determining � � jGE=GMj from �

The dependence of the predicted � on 	 at the J= mass
[from Eq. (9)] is shown in Fig. 3. The experimental value
� � 0:676� 0:055 (shown) is consistent with the Sachs
form factor magnitude ratio of

 	 � jGE=GMj � 0:726� 0:074: (12)

In terms of 	 and � this completes our discussion: Given
the unpolarized angular distribution, one obtains a result
for 	 � jGE=GMj from Eq. (9), but the phase � of GE=GM
is undetermined. However, one may ask the more funda-
mental question of what values of the Dirac and Pauli
coupling constants g and � in Eq. (1) are consistent with
a given experimental unpolarized angular distribution.

D. Determining �

First we consider the experimentally allowed values of
�. The unpolarized angular distribution provides us with a
range of values of 	 [Eq. (12)], but � is unconstrained; we
may combine this information through Eq. (3) to determine
the locus of allowed (complex) values of �. This is shown
in Fig. 4.

For � � 0, Eq. (3) implies that � is real and negative,
and takes on the smallest allowed magnitude. As we in-
crease � from 0, the allowed � values proceed clockwise,
since � initially acquires a negative imaginary part. The
extreme values of � on the real axis in Fig. 4 are for � � 0,
�, and are

 � �
�
�0:137� 0:032; � � 0
�0:500� 0:011; � � �:

(13)
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FIG. 2. The coefficient � observed in the unpolarized e�e� !
�J= ;  0� ! p �p angular distributions, together with the theoreti-
cal result � � �1� r�=�1� r� predicted by a pure Dirac ����
 p �p coupling.
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FIG. 3. The experimental value of the unpolarized e�e� !
J= ! p �p angular coefficient, � � 0:676� 0:055 (shaded),
and the resulting Sachs J= p �p strong form factor magnitude
ratio 	 � jGE=GMj [Eq. (12)].
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E. Determining g

Next we consider the determination of the overall
J= ! p �p vertex strength g. Since the differential and
total cross sections for e�e� ! J= ! p �p only involve
g through the ratio g=f , we must introduce additional
experimental data to constrain g. The partial width for
J= ! p �p is especially convenient in this regard, since
it only involves the strong J= p �p vertex, and thus depends
only on g and � (and kinematic factors). This partial width
was given in terms of the strong Sachs form factors in
Eq. (6); as a function of g and � it is

 

� !p �p �
1

3

g2

4�
M

�����������
1� r
p �

1�
r
2
� 3<����

�
1�

1

2r

�
j�j2

�
:

(14)

This generalizes the � � 0 result given in Eq. (27) of
Ref. [4] to a nonzero Pauli coupling. Using the PDG values
[16] of �J= � 93:4� 2:1 keV and BJ= !p �p �

�2:17� 0:07� � 10�3, Eq. (14) implies a range of values
of the overall vertex strength g for each value of the
(unknown) phase �. This is shown in Fig. 5. There is a
range of uncertainty in g at each � (not shown in the

figure), due to the experimental errors in �J= , BJ= !p �p,
and 	, which is at most 
� 5%.

Note that g is bounded by the limits at � � 0 and �, for
which g � 2:0 � 10�3 and � 3:4 � 10�3, respectively. The
allowed values of g are somewhat larger than our previous
estimate of g � �1:62� 0:03� � 10�3 [4] assuming only a
Dirac J= p �p coupling, as a result of destructive interfer-
ence between the Pauli and Dirac terms.

IV. EFFECT ON ��p �p! �0J= �

The effect of a J= p �p Pauli term on the p �p! �0J= 
cross section may be of considerable interest for the
PANDA project, since one might use this as a ‘‘calibra-
tion’’ reaction for associated charmonium production, and
the Pauli term may be numerically important. (We note in
passing that intermediate N� contributions may also be
important in this and related processes [4] and should be
considered in the future.) Although we have carried out this
calculation with the vertex of Eq. (1) for general masses,
the full result is rather complicated; here for illustration we
discuss the much simpler massless pion limit.

For a massless pion the ratio of the unpolarized cross
section h��p �p! �0J= �i with a Pauli term to the pure
Dirac result (�� only, denoted by D) is

 

h��p �p! �0J= �i

h��p �p! �0J= �iD

								m��0
�

�
1� 2<��� �

�
1

2
�
M2

8m2

�
j�j2 �

�s�M2�

4m2



ln��1� 
�=�1� 
�	

j�j2
�
; (15)

where 
 �
�����������������������
1� 4m2=s

p
is the velocity of the annihilating

p and �p in the c.m. frame. The limit of this cross section
ratio at threshold is shown in Fig. 6 for a range of complex
�.

Evidently there is destructive interference for a � with a
dominant negative real part, as is suggested by the unpo-

larized data. For the value � � �0:50 [the larger solution
in Eq. (13)] there is roughly a factor of 2 suppression in the
cross section over the prediction for a pure Dirac coupling.
The suppression, however, depends strongly on the
phase of �, and for imaginary � has become a moderate
enhancement. Thus, the near-threshold cross section for

-180 -90 0 90 180
χ [deg.]

0.001

0.002

0.003

0.004

g

0

FIG. 5. The value of the overall J= p �p vertex strength g
implied by the experimental �J= !p �p and 	 as a function of
the unknown J= p �p Sachs phase �.
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FIG. 4. The locus of complex � (the J= p �p Pauli coupling)
allowed by the experimental constraint 	 � 0:726� 0:074,
taken from the unpolarized differential cross section for e�e� !
J= ! p �p.
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p �p! �0J= is quite sensitive to the strength and phase of
the Pauli coupling; it will therefore be important for
PANDA to have an accurate estimate of this quantity. In
the next section we will show how both the magnitude and
phase of � can be determined in polarized e�e� ! J= !
p �p scattering, and may be accessible at BES.

V. POLARIZATION OBSERVABLES

The relative phase � of the J= p �p Sachs strong form
factors GE and GM may be determined experimentally
through a study of the polarized process e�e� ! J= !
p �p. As each of the external particles in this reaction has
two possible helicity states, there are 16 helicity ampli-
tudes in total. All the helicity amplitudes to the final p �p
helicity states jp��� �p���i are proportional to GE, and all
to jp��� �p���i are proportional to GM. In the unpolarized
case these are squared and summed, which leads to a cross
section proportional to a weighted sum of jGEj

2 and jGMj
2.

As we stressed earlier, this implies that the phase � of
GE=GM is not determined by the unpolarized data.

To show how � can be measured in polarized scattering,
it is useful to introduce the polarization observables dis-
cussed by Paschke and Quinn [17]. These are angular
asymmetries that arise when the polarizations of particles
are aligned or antialigned along particular directions. For
example, for our reaction e�e� ! p �p, Q�0; 0; z; 0� is the
difference of two angular distributions, �d�=d��p" �
�d�=d��p#. Here we will use x and y for the two transverse
axes and z for the longitudinal axis (see Fig. 7). x̂ and ẑ
vary with the particle, and ŷ is chosen to be common to all.
An entry of 0 signifies an unpolarized particle. Since there
are four possible arguments for each particle, 0, x, y, and z,
there are 44 � 256 polarization observables for this pro-
cess. Of course there is considerable redundancy, since
they are all determined by the 16 helicity amplitudes.

The constraints of parity and charge conjugation reduce
this set to 6 independent helicity amplitudes, and for
massless leptons (as we assume here) this is further re-
duced to 3 independent nonzero helicity amplitudes.

We introduce the normalized polarization observables
Q�e��e�� �p�p � Q��e� ; �e� ; � �p; �p�=Q�0; 0; 0; 0�, where
Q�0; 0; 0; 0� is the unpolarized differential cross section.
The (nonzero) polarization observables for this process
satisfy the relations
 

�a� Q0000 �Qxxyy �Qyyyy � �Qzz00 � 1;

�b� Q00y0 �Qxx0y �Qyy0y �Qzz0y � �Q000y

� �Qxxy0 � �Qyyy0 � �Qzzy0;

�c� Qxx00 �Qyy00 �Q00yy � �Qzzyy;

�d� Qz0
0 �Qz00x �Qyxyz �Qyxzy � �Q0zx0

� �Q0z0x � �Qxyyz � �Qxyzy;

�e� Qz0z0 �Q0z0z �Qxyxy �Qyxyx � �Q0zz0

� �Qz00z � �Qyxxy � �Qxyyx

�f� Qxxxx �Qyyxx �Qzzzz � �Q00zz;

�g� Q00xx � �Qzzxx � �Qxxzz � �Qyyzz;

�h� Q00xz �Qxxzx �Qyyzx �Qzzzx � �Qxxxz

� �Qyyxz � �Qzzxz � �Q00zx;

�i� Qxyx0 �Qxy0x �Qz0yz �Qz0zy � �Qyxx0

� �Qyx0x � �Q0zyz � �Q0zzy:

(16)

Explicit expressions for these observables are given in
Table I.

The results in Table I suggest how we may determine �
experimentally. Inspection of the table shows that only four
of the entries depend on �; two are proportional to sin�
and two to cos�. Assuming that one knows 	 with suffi-
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FIG. 7. Axes used to define the polarization observables.
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FIG. 6. The dependence of the unpolarized, near-threshold
cross section h��p �p! �0J= �i on the (complex) Pauli cou-
pling � � j�jei
� [from Eq. (15)].
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cient accuracy from the unpolarized data, one may then
determine � unambiguously by extracting sin� and cos�
from the measurement of two of these polarization
observables.

The determination of sin� is the most straightforward,
since it only requires the detection of a single final polar-
ized particle (for example the proton, through Q00y0). If �
is close to real, which corresponds to � � 0 or � �, this
observable may be relatively small. The other polarization
observables that are proportional to sin� involve asymme-
tries with either one or three particles polarized; these are
given in relations (b) and (i) of Eq. (16).

Determining cos� involves measuring double or qua-
druple polarization observables, which are given in rela-
tions (d) and (h) in Eq. (16). In the double polarization
case, either one initial and one final polarization are mea-
sured (such as e� and p) or the polarizations of both final
particles (p and �p) are measured. In the first case the
relevant observables (such as Qz0x0) require the initial
lepton to have longitudinal (� ẑ) polarization, which is
difficult to achieve experimentally. In the second case the
initial e�e� beams are unpolarized, and the longitudinal
polarization of one final particle and the transverse polar-
ization of the other must be measured. Determining the �p
polarization may prove to be an experimental challenge.

Of these two general possibilities, the most attractive
‘‘next experiment’’ beyond unpolarized e�e� ! J= !
p �p scattering may be a measurement of the differential
cross section with unpolarized leptons and only the final p
polarization detected. This will determine sin�, which
specifies � up to the usual trigonometric ambiguities.

Another interesting experimental possibility is to resolve
the phase ambiguity in unpolarized e�e� ! J= ! p �p
scattering through a study of the closely related reaction
e�e� ! J= ! � ��, which has recently been observed by
BABAR [18] using the ISR technique. Since the  p �p and
 � �� couplings are identical in the SU(3) flavor symmetry
limit, a determination of J= � �� couplings would suggest
plausible J= p �p couplings. This approach has some ex-

perimental advantages; as the � and �� decays are self-
analyzing, no rescattering of the final baryons is required to
determine their polarization. In addition no beam polariza-
tion is required, since it suffices to measure the (odd-	)
polarization observables Q00y0 and Q00xz. One may also
measure the even-	 observables Q00xx and Q00zz as a
cross-check of the result for 	.

Finally, we note in passing that it may also be possible to
measure the appropriate polarization observables in the
time-reversed reaction p �p! J= ! e�e�.

VI. SUMMARY AND CONCLUSIONS

The unpolarized angular distribution for the process
e�e� ! J= ! p �p, measured recently by the BES
Collaboration, is inconsistent with theoretical expectations
for a pure Dirac J= p �p coupling. In this paper we have
derived the effect of an additional Pauli-type J= p �p cou-
pling, and find that this can accommodate the observed
angular distribution. The J= p �p Pauli coupling may sig-
nificantly affect the cross section for the charmonium
production reaction p �p! �0J= , which will be studied
at PANDA. There is an ambiguity in determining the
relative Dirac and Pauli J= p �p couplings from the unpo-
larized e�e� ! J= ! p �p data; we noted that this ambi-
guity can be fully resolved through measurements of the
polarized reaction. The most attractive polarized process to
study initially appears to be the case of unpolarized initial
e�e� beams, with only the final p (transversely) polarized.
Alternatively, measurement of the required polarization
observables may also be possible using the time-reversed
reaction p �p! J= ! e�e�. It may also be possible to
use self-analyzing processes such as e�e� ! J= ! � ��
to estimate the Dirac and Pauli couplings in the closely
related J= � �� vertex.
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TABLE I. Nonzero inequivalent polarization observables in
e�e� ! J= ! p �p. The function F is 4� 2�1� 	2�sin2�.

Pol. observable Result

Q0000 1
Q00y0 4	 sin� sin� cos�=F
Qxx00 2�1� 	2�sin2�=F
Qz0x0 4	 cos� sin�=F
Qz0z0 4 cos�=F
Q00xz �4	 cos� sin� cos�=F
Qxyx0 �4	 sin� sin�=F
Qxxxx �4� 2�1� 	2�sin2�	=F
Qzzxx �2�1� 	2�sin2�=F
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