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A direct connection between physical parameters of general two-Higgs-doublet model (2HDM)
potentials after electroweak symmetry breaking (EWSB) and the parameters that define the potentials
before EWSB is established. These physical parameters, such as the mass matrix of the neutral Higgs
bosons, have well-defined transformation properties under basis transformations transposed to the fields
after EWSB. The relations are also explicitly written in a basis covariant form. Violation of these relations
may indicate models beyond 2HDMs. In certain cases the whole potential can be defined in terms of the
physical parameters. The distinction between basis transformations and reparametrizations is pointed out.
Some physical implications are discussed.
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I. INTRODUCTION

The standard model (SM) relies on the Higgs mecha-
nism to give masses to all massive gauge bosons and
elementary fermions. Such mechanism involves the spon-
taneous symmetry breaking (SSB) of the electroweak
SU�2�L �U�1�Y gauge group to the electromagnetic
U�1�EM as a scalar Higgs doublet acquires a nonzero
vacuum expectation value (VEV). Such scheme imposes
universality constraints on the couplings between fermions
and gauge bosons, establishes relations between the masses
of the gauge bosons, and fixes the couplings between the
physical Higgs and the fermions to be proportional to the
masses of the latter [1].

The scalar potential, constituted by only one Higgs
doublet, is also very restrictive since, from the knowledge
of the electroweak (EW) VEV and the physical Higgs
mass, the Higgs trilinear and quartic coupling constants
are fixed at tree level. However, the physical Higgs boson,
which is the only scalar remnant of the EW Higgs mecha-
nism, has not yet been discovered. One then resorts to
indirect means to bound the physical Higgs mass, most
of them relying on the higher order perturbative behavior
of the SM. Such bounds come from, e.g., the unitarity
constraints of the scattering of gauge bosons, the validity
of the SM up to the Planck scale, and the EW vacuum
stability (see Ref. [1] and references therein). Studies con-
straining the Higgs mass are very important to its search, in
particular, in view of the upcoming LHC experiment.

For models extending the electroweak symmetry break-
ing (EWSB) sector of the SM, the relation of the model
parameters before EWSB and the physical parameters
identified after EWSB may not be as minimal as in the
SM. Specially for N-Higgs-doublet extensions of the SM
(NHDMs), the multiplicity of independent parameters may
be quite large due to the presence of a horizontal space, i.e.,
the space of identical gauge multiplets, in this case, SU�2�L

doublets with quantum numbers identical to the SM Higgs
doublet. The simplest two-Higgs-doublet model (2HDM)
has been extensively studied recently [2–10] as the effec-
tive scalar sector of the MSSM requires two Higgs doublets
for anomaly cancellation [1,11]. Historically, the addition
of one or more Higgs doublets were considered to imple-
ment the spontaneous CP violation mechanism (SCPV)
[12,13] as an alternative source of CP violation.

Technical difficulties that arise when considering
NHDMs are twofold: (i) more than one local minimum
(orbit), not necessary with the same symmetry breaking
pattern, might be present, even at tree level, and (ii) the
reparametrization freedom [10] allowed by the presence of
the horizontal space formed by the N-Higgs-doublets may
masquerade the number of relevant independent parame-
ters and symmetry properties such as CP invariance.
Difficulty (i) includes the possibility of potentials with no
remainingU�1�EM symmetry after EWSB (charge breaking
vacuum) [4,14,15] and it forces the stability of the vacuum
to be a relevant issue at tree level [14].

Item (ii) concerns the reparametrization transformations
induced by basis transformations (or horizontal transfor-
mations [16]) acting on the identical N-Higgs-doublets.
Since all the doublets have the same gauge quantum num-
bers with respect to the SM gauge group, there is no change
in the physical content of the theory if one rotates the fields
in such space [17–19]. Such possibility may masquerade
the number of relevant independent parameters in the
theory. More crucially, transforming real parameters into
complex parameters (for complex multiplets), CP invariant
theories can be disguised as CP violating theories. This
issue can be solved in an objective way by noting that CP
invariant theories remain CP invariant through basis trans-
formations but the corresponding CP symmetry transfor-
mation also acts differently in different bases. As a
practical way of distinguishing the CP property of a theory,
one can resort to the use of CP-odd basis invariants analo-
gous to the Jarlskog invariant [20] in the quark sector of the
SM. In the context of NHDMs, many such invariants can*ccnishi@ifi.unicamp.br
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be constructed [18] but sufficient conditions for CP invari-
ance using a minimum number of invariants could be
formulated only for the potentials of 2HDMs
[7,18,19,21,22] and 3HDMs [19].

Recent advances in the study of 2HDMs include the
result that at most two local minima can be present when-
ever there is a discrete set of minima in the orbit space
[8,23]. Such result was obtained by using a Minkowski
structure that emerges naturally in the space of the fields
through suitable change of variables [9,19]. However,
some controversy remains from numerical examples pre-
senting more than two local minima [24]. Since the count-
ing of the number of local minima can be a very difficult
task, the upper bound of the number of minima is an
important result. It was also proved for 2HDMs that
(a) charge breaking vacua cannot coexist with a neutral
vacuum [4,9] and (b) spontaneously CP violating vacua
cannot coexist with CP invariant vacuum [4,8,9]. The
result (b) can be extended in a weaker version to
NHDMs: a spontaneously CP violating extremum always
lies above a CP invariant extremum if the latter exists [15].
The Minkowski structure can be also partially extended to
general NHDM potentials [25].

Bearing these results in mind, the present article aims for
two goals concerning the 2HDM potential: (i) to extract all
the physical parameters identifiable only after EWSB and
(ii) to study their properties under basis transformations.
The first goal involves having a more direct connection
between the parameters of the potential and the physical
parameters after EWSB, confining ourselves to the case of
neutral vacua. Since basis transformations are allowed
before EWSB and they are usually involved to reach the
physical basis, it would be desirable to have a basis cova-
riant relation for the physical parameters, which leads to
goal (ii). A systematic study of the physical parameters of
2HDMs, including the scalar self-interactions and the in-
teractions of scalars with fermions and gauge bosons, was
carried out in Ref. [6]. The basis covariance, however, was
not extended to the fields after EWSB.

Another aspect of item (i) regards seeking a physical
parametrization of the 2HDM potential by rewriting the
parameters before EWSB in terms of the physical parame-
ters. As explained in the end of Ref. [25], what prevents the
utility of a parametrization depending on physical parame-
ters, such as the masses of the physical charged and neutral
Higgs bosons, is the possibility of the potential so defined
possess another deeper minimum. The existence of at most
two local minima already ameliorate the situation. Such
parametrization also excludes by construction the poten-
tials without nontrivial minima. For the cases we know
there is only one local minimum and hence it is also the
global one, such parametrization is unambiguous. The
question that remains is to know if such parametrization
can cover all possible 2HDM potentials containing only
one global minimum.

The outline is as follows: in Sec. II we find the mass
matrix for neutral scalars in the basis where the mass
matrix for charged Higgs bosons is already diagonal.
Relations between potential parameters and the mass ma-
trices are found. In Sec. III, covariant relations between the
mass matrices and the potential parameters are shown. In
Sec. IV we show how to achieve the truly physical basis
where all the mass matrices are diagonal, pointing out the
distinction between basis transformations before and after
EWSB. Finally, the results and physical implications are
discussed in Sec. V. Some possibly useful material, includ-
ing an alternative method to ensure a bounded below
potential, is presented in the appendices.

II. PHYSICAL PARAMETERS IN THE PCH BASIS

A general 2HDM potential can be divided into its qua-
dratic and quartic parts as

 V � V2 � V4: (1)

The quadratic part is usually written as

 V2 � Yab�ya�b; a; b � 1; 2; (2)

where Y is a Hermitian matrix and �a � ��a1; �a2� are the
Higgs doublets for which the notation �a1 � ����a and
�a2 � ��0�a is usually adopted when the vacuum preserves
the electromagnetic symmetry. The quartic part can be
conveniently written [19] as

 V4 �
1
2���r�r�; �; � � 0; 1; 2; 3; (3)

where � is a 4� 4 real symmetric matrix while

 r� �
1
2����ab�ya�b; (4)

for � � 0, 1, 2, 3, are real quadratic combinations of the
doublets. The matrix �0 � 12 and �i are the Pauli matri-
ces. The quadratic variables r� � �r0; r� are functionally
free except for the future light cone constraint [9,25]

 r2
0 � r2 	 0; r0 	 0: (5)

The convention of summation over repeated indices is
adopted with Euclidean metric. For example, r�r� � r2

0 �

r2. The Minkowski metric will not be used to avoid con-
fusion and all indices will be written as lower indices,
different than Refs. [9,25].

Using the variables r�, the quadratic part of the potential
in Eq. (2) can be cast into the form

 V2 � M�r�; (6)

where M� has four independent components. The number
of free parameters contained in Y and M are the same and
they are indeed related by

 Y � M�
1
2�� $ M� � Tr
��Y�: (7)
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The most general unitary basis transformation group for
the potential (1) is SU�2�H. A general member of such
group acts as

 �a ! �0a � Uab�b; ri ! r0i � Rij�U�rj; (8)

with Rij �
1
2 Tr
Uy�iU�j�, while r00 � r0 is invariant.

The basis transformation in Eq. (8), in turn, induces uni-
versal reparametrizations on the parameters such as Mi
(��0i) and �ij as

 M0i � MjRji; �0ij � �klRkiRlj; (9)

in such a way that

 V�r0;M;�� � V�r;M0;�0�: (10)

We want to parametrize the potential in terms of physi-
cal quantities that are defined after EWSB. Confining
ourselves to neutral vacua, the first choice of physical
parameters will be the masses of physical particles, i.e.,
one charged scalar and three neutral scalars. In addition,
more parameters such as the EW vacuum expectation value
(VEV), the mixing among the neutral scalars, and certain
coupling constants will be necessary to completely pa-
rametrize the potential that requires 11 essential
parameters.

To extract the physical masses, we need the quadratic
part of the potential after EWSB that is induced by

 �a ! h�ai ��a; (11)

where h�ai is the vacuum expectation value (VEV) of �a,
usually a c-number minimum of the potential in (1). The
extremum equations are shown in appendix A. With the
shift of Eq. (11), the quadratic part of the potential can be
written as [25]

 V2jSSB � �ya hMiab�b �
1
2���s�s�; (12)

where

 s� �
1
2h�ai

y����ab�b � H:c:; (13)

and hMi is the mass squared matrix for the charged Higgs
bosons, including the charged Goldstone. (The mass
squared matrix will be denoted simply as ‘‘mass matrix’’
from this point on.) Such matrix can be calculated as [25]

 hMi � Y � 1
2�����hr�i; (14)

where

 hr�i �
1
2����abh�ai

yh�bi: (15)

In the physical charged Higgs (PCH) basis [25], for a
neutral vacuum, the VEVs are simply

 h�1i �
0
0

� �
; h�2i �

0
v��
2
p

 !
; (16)

while the doublets after the shift (11) can be parametrized
as

 �1 �
h�

1��
2
p �t1 � it2�

 !
; �2 �

G�
1��
2
p ��t3 � iG

0�

 !
;

(17)

where v � 246 GeV, is the electroweak VEV, ti, i � 1, 2,
3, are normalized neutral scalar fields, h� is the physical
charged Higgs and G� and G0 are the charged and neutral
Goldstone fields, respectively. The Goldstone fields G�

and G0 are absorbed by the longitudinal W� and Z0 gauge
bosons by the Higgs mechanism. For the VEV of Eq. (16),
we have

 hr�i �
v2

4
�1; 0; 0;�1�: (18)

In the PCH basis, the mass matrix for the charged scalars
can be written

 hMi � diag�m2; 0�; (19)

where the null eigenvalue corresponds to the charged
Goldstone. We can divide the quadratic part of the potential
of Eq. (12) into

 V2jSSB � V2jcharged � V2jneutral: (20)

For the charged fields we have

 V2jcharged � m2h�h�; (21)

while

 V2jneutral �
1
2m

2�t21 � t
2
2� �

1
2���s�s�; (22)

 � 1
2ti�MN�ijtj; (23)

where, using the parametrization of Eq. (17),

 s0 � �
v
2
t3; si �

v
2
ti: (24)

The 3� 3 matrix MN is the mass matrix for the physical
neutral scalars given by

 M N � m2diag�1; 1; 0� �
v2

4
~��

v2

4

�

0 0 ��01

0 0 ��02

��01 ��02 �00 � 2�03

0
@

1
A; (25)

where ~� � f�ijg, i; j � 1, 2, 3. The physical neutral sca-
lars will be orthogonal combinations of ti, defined by the
diagonalization of MN in Eq. (25). The mass matrix MN
in the PCH basis can be also found in Eqs. (24) and (41) of
Ref. [6] in a different notation.

From Eqs. (14), (18), and (25) we can find the following
relation between Y and MN ,

 Y �
1

2
2Y11 �MN�13 � i�MN�23

�MN�13 � i�MN�23 ��MN�33

� �
:

(26)
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Except for Y11, all elements of Y are directly related to
MN .

Hence, we can completely parametrize the potential in
the PCH basis in terms of the set of 12 parameters

 fv;m;�00;MN;�0g; (27)

where �0 � f�0ig, i � 1, 2, 3. For fixed values for the set
in Eq. (27), we obtain from Eq. (25) the rest of ��� by

 �ij �
4

v2 
�MN�ij �m2�ij�; i; j � 1; 2; (28)

 �i3 � �0i �
4

v2 �MN�i3; i � 1; 2; (29)

 �33 � ��00 � 2�03 �
4

v2 �MN�33: (30)

The quadratic parameter Y11 depends on more parameters
other than MN as

 Y11 � m2 �
v2

4
��00 ��03� �

1

2
�MN�33: (31)

There are 12 free parameters. Among these, 11 are
essential and can not be eliminated by reparametrization
[19]. Nevertheless, one parameter can be removed by a
remaining U�1� reparametrization freedom due to

 �1 ! ei��1; �2 ! �2: (32)

Since

 h� ! ei�h� (33)

represents the electromagnetic U�1�EM invariance of the
potential, the transformation of Eq. (32) amounts effec-
tively to a SO�2� rotation in the t1, t2 fields. Notice that
since h�1i � 0, the transformation of Eq. (32) does
not affect the VEVs. Choosing appropriately � in
Eq. (32), one can set one of the following parameters to
zero: �MN�12; �MN�13; �MN�23. In particular, choosing
�MN�23 � 0, we obtain a real symmetric Y and we con-
strain �23 � �03. For any choice the overall number of
free independent parameters should be 11. Of course,
different choices, such as �01 � 0 or �02 � 0, could be
alternatively chosen. Obviously, once a choice is made, one
cannot set more than one parameter to zero.

To ensure the vacuum in Eq. (17) is a local minimum, it
is sufficient to pick positive values for m2 (the mass
squared of h�) and for the three eigenvalues of MN (the
masses squared of ti). Such requirements guarantee that the
second derivative of the potential around the extremum is
positive semidefinite.

There remains the question of boundedness for the
potential defined with physical parameters (27). Firstly,
we have to choose �00 	 0 because taking r0 ! 1 but
jrj finite in Eq. (3) would make V4 acquire negative values
if �00 < 0. Moreover, the following statement can be

proved: For a potential V�r� defined as Eq. (1), satisfying
�00 � �i > 0 for all �i, i � 1, 2, 3, eigenvalues of ~�, it is
always possible to obtain ���r�r� > 0, for all r� satisfy-
ing Eq. (5), by making the substitution

 � 0 ! c�0; c > 0; (34)

with appropriately small c. The proof is shown in
appendix B.

The only problem that could make such physical pa-
rametrization not viable is the possibility that the potential
defined for a given set (27) possesses another minimum
that lies deeper than the one defined in (16). This possi-
bility is real and numerical examples can be quickly de-
vised. The problem is not so severe because at most two
distinct local minima are possible for bounded below
potentials containing two Higgs doublets [8]. Although,
in Ref. [24], some numerical examples of 2HDM potentials
with more than two minima were apparently devised [24].
On the other hand, this parametrization excludes potentials
without nontrivial minima by construction.

III. PHYSICAL PARAMETERS IN AN ARBITRARY
BASIS

For a general potential (1), the vacuum expectation value
(VEV) will not be in the form of Eq. (16). Nonetheless, we
can always parametrize a neutral vacuum as

 h�1i �
v���
2
p

0
cos�v

2

� �
; h�2i �

v���
2
p

0
ei� sin�v

2

� �
: (35)

The VEV in Eq. (18) corresponds to �v � 	 and � � 	. In
the MSSM, the angle �v corresponds to 2
.

To explicit the structure of the horizontal space where
basis transformations act, it is more convenient to define
[25]

 u � ��11; �21�
T; w � ��12; �22�

T: (36)

We can rewrite Eq. (35) as

 hui � �0; 0�T; hwi �
v���
2
p

�
cos

�v

2
; sin

�v

2
ei�
�
T
: (37)

More generally, we can rewrite

 hwi �
v���
2
p Uve2; (38)

where Uv is a unitary matrix in SU�2�H and ea, a � 1, 2,
are the canonical vectors defined by �ea�b � �ab. In terms
of r� we get

 hr�i �
v2

4
�1; cos� sin�v; sin� sin�v; cos�v� �

v2

4
R��n�;

(39)

where n� � �1; 0; 0;�1� and R�� can be related to Uv by
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 R���Uv� �
1

2
Tr
Uyv��Uv��� �

1 0
0 ~R

� �
; (40)

with ~R � fRijg, i; j � 1, 2, 3 being a rotation matrix in
SO�3�H.

We can rewrite the quadratic part of the potential in
Eq. (12) using u and w of Eq. (36), and their respective
VEVs in Eq. (37),

 V2jSSB � uyhMiu� wyhMiw� 1
2���s�s�; (41)

where

 s� �
1
2hwi

y��w� H:c: (42)

The first term of Eq. (41) corresponds to the mass term of
the charged scalars, one physical and one Goldstone, in an
arbitrary basis. The respective mass matrix is hMi, which is
defined by Eq. (14).

The relation between hMi in an arbitrary basis and its
diagonal form (19) in the PCH basis is given by

 UyvhMiUv � diag�m2; 0�: (43)

We can then reach the PCH basis by the substitutions

 �a � �Uv�ab�0b; h�ai � �Uv�abh�
0
bi; (44)

or equivalently

 w � Uvw
0; u � Uvu

0; (45)

with the same substitutions valid for their respective VEVs.
Since the basis for which fY;�; hrig is defined is com-

pletely arbitrary, the covariance of hMi is valid between
any basis and not only with respect to the PCH basis. (A
detailed account of the basis covariance of hMi is given in
appendix D.) Indeed, we can write [25]

 hMi � m2
12 � hŵihŵiy�; (46)

where hŵi � hwi=jhwij.
We can try to extend the basis covariance for the mass

matrix for the physical neutral scalars. We keep the nota-
tion MN to denote such mass matrix. Obviously, the
second and third term of Eq. (41) is covariant by basis
transformations for w, such as the transformation (45) with
arbitrary Uv. The question, however, is if we can find
appropriate fields ti with suitable transformation properties
that render MN covariant by some basis transformation,
keeping Eq. (23) form invariant. We obviously want to
recover Eq. (25) for MN and Eq. (24) for ti in the PCH
basis.

The immediate extension of Eq. (17) to define ti in any
basis is flawed because a basis transformation over w in
Eq. (17) would mix ti with the neutral Goldstone G0. In
other words, with w0 in the PCH basis given by

 w0 �
1���
2
p

t01 � it
0
2

�t03 � iG
0

� �
; (47)

we cannot define

 w �
1���
2
p

t1 � it2
�t3 � iG0

� �
(48)

because, in general,

 w � Uvw
0; (49)

such as for Uv � ei��1=2.
The solution is to promote Eq. (24) to define the real

fields ti as

 ti �
2

v
si; i � 1; 2; 3: (50)

The definition of Eq. (50) ensures that ti would transform
as vectors under SO�3�H when SU�2�H transformations are
applied to w and hwi in the definition (42) of si. The s0

component depends on ti by the basis invariant relation

 s0 �
v
2
hr̂i  t; (51)

where hr̂i is the unit vector in the direction of hri. The
relation (51) is proved in appendix C.

To write the second and third terms of Eq. (41) in terms
of ti it is necessary to find the parametrization ofw in terms
of ti and G0. The desired covariant relation is

 w �
1���
2
p �iG012 � ti�i�hŵi; (52)

where hŵi � hwi=jhwij. One can confirm that Eq. (52)
satisfies Eq. (50) using Eq. (13). The covariance can be
also checked,

 w0 � Uw �
1���
2
p �iG012 � t0i�i�hŵ

0i; (53)

where

 t0i � Rijtj; (54)

and Rij is related to U, a transformation in SU�2�H, sat-
isfying Eq. (8). The dependence onG0 is fixed by imposing
that Eq. (52) reduces to Eq. (17) in the PCH basis. Notice
Eq. (52) differs from Eq. (46) of Ref. [6] as the fields ti
transform as vectors under SO�3�H.

We can thus rewrite the second term of Eq. (41) in terms
of ti using Eqs. (46) and (52) as

 wyhMiw �
m2

2

t2 � �hr̂i  t�2�: (55)

The third term of Eq. (41) can be also easily rewritten in
terms of ti by using Eq. (50). The sum of the second and the
third terms of Eq. (41) defines the mass matrix for the
physical neutral scalars by

 wyhMiw� 1
2���s�s� �

1
2�MN�ijtitj; (56)

giving the basis covariant relation
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MN � m2

�
13 �

hrihriT

jhrij2

�
� jhrij

�
~���00

hrihriT

jhrij2

�

� hri�T
0 ��0hriT; (57)

where jhrij � v2=4. Equation (57) is the generalization of
Eq. (25) for an arbitrary basis.

Equation (57) illustrates two points: (i) the whole po-
tential after EWSB can be completely defined in terms of
the set

 fm2;�00;�0; hri;MNg; (58)

in an arbitrary basis, since ~� can be written in terms of the
set. Moreover, the objects in the set have the same trans-
formation properties under the reparametrization group
SU�2�H as the set fM0;�00;�0;M; ~�g that defines the
potential before EWSB [19]: two scalars [26], two vectors
and one rank-2 tensor. (ii) We can define a physical neutral
Higgs (PNH) basis, in contrast to the PCH basis, being the
basis where MN is diagonal. In general, this basis will
coincide neither with the PCH basis nor with the basis with
diagonal ~� (the canonical CP basis in Ref. [19]).

The relations (26) and (31) can be written in the basis
covariant form

 Y � 1
2
m

2 � hr0i�00 ��0  hri��12 � �ihr̂ii�

� 1
2�i�MN�ijhr̂ji: (59)

We made use of the relation

 1 2 � hŵihŵi
y � 1

2
12 � �ihr̂ii�: (60)

One can check Eq. (59) reduces to Eqs. (26) and (31) in the
PCH basis. It is also important to remark that Y in Eq. (59)
is independent on the particular VEV. For a different
minimum of the same potential (or extremum if we do
not require positive definite MN andm2), MN ,m2, and hri
differ in such a way that Y is the same. In addition, we can
write the �ij� � �33� component of Eq. (26) in the follow-
ing basis covariant form

 hŵiyYhŵi � �1
2hr̂ii�MN�ijhr̂ji: (61)

To obtain the interaction terms [25]

 V3jSSB � ���s�r�; (62)

 V4jSSB �
1
2���r�r�; (63)

in terms of the real fields ti, we should calculate r� in
Eq. (4) using Eq. (50). Splitting

 r� � x� � y�; (64)

where

 x� �
1
2u
y��u; (65)

 y� �
1
2w
y��w; (66)

we obtain the following covariant relations for y,

 y0 �
1
4
�G

0�2 � t2�; (67)

 yi �
1
4
�G

0�2 � t2�hr̂ii �
1
2�hr̂i  t�ti � 1

2G
0�t� hr̂i�i:

(68)

Since each component of u � �u1; u2�
T is a combination of

the physical charged Higgs h� and the charged Goldstone
G�, there is no need to write them in terms of real fields.
The expression (65) can be kept as the covariant relation.

A last observation about Eq. (68) concerns the trans-
formation properties of G0 under refections, i.e., CP sym-
metry. To keep the transformation properties of the last
term of Eq. (68) to be the same as the preceding terms we
conclude that G0 should be a pseudoscalar (scalar under
SO�3�H and changing sign under reflection or CP) and
consequently CP-odd irrespective of the CP properties of
the potential. (See appendix D of Ref. [6].)

IV. PHYSICAL BASIS (P-BASIS)

The physical basis (P-basis) should be defined as the
basis where all the fields possess definite masses. From
Sec. II, we conclude that the mass matrix for physical
neutral scalars (MN) in the PCH basis will be not diagonal
in general. From Sec. III, the basis where MN is diagonal
(PNH basis) would mix the physical charged Higgs h�

with the charged Goldstone G�. Thus, neither the PCH
basis nor the PNH basis coincide with the physical basis.

To achieve the P-basis, we need independent basis trans-
formations on the upper (u) and lower components (w) of
the doublets, i.e.,

 u! Uuu; w! Uww; (69)

where Uu, Uw are different transformations in SU�2�. The
transformations in Eq. (69) are legitimate basis transfor-
mations only after EWSB since they still preserve the EM
symmetry, for a neutral vacuum, but do not preserve the
SU�2�L �U�1�Y gauge structure of the doublets, except for
Uu � Uw. The general group of basis transformations
generated by Eq. (69) is SU�2� � SU�2� instead of
SU�2�H valid before EWSB.

The P-basis can be achieved either from the PCH basis
or from the PNH basis. The latter choice is more conve-
nient. Let us choose the PNH basis for which

 M N � diag�m2
1; m

2
2; m

2
3�: (70)

The VEV hwi will be in the general form of Eq. (38),
different from the PCH basis. The respective hr�i would
be parametrized in the form of Eq. (39).

In the PNH basis, the fields ti and G0, contained in w,
already have definite masses. The components of u, how-
ever, are combinations of the physical charged fields h�

and G�. The relation between u and the physical fields is

C. C. NISHI PHYSICAL REVIEW D 77, 055009 (2008)

055009-6



given by

 u � Uvu
0; (71)

where u0 refers to u in the PCH basis,

 u0 � �h�; G��T: (72)

In a basis invariant form, we know the component of u
parallel to hwi is the charged Goldstone,

 hŵiyu � G�: (73)

The orthogonal direction contains the physical h�.
Obviously, the quadratic part of the potential after

EWSB will be

 V2jSSB � m2h�h� � 1
2m

2
i t

2
i : (74)

The remaining task to completely define the potential after
EWSB is to write the interaction terms in Eqs. (62) and
(63) in terms of fti; G0; h�; G�g. The sole dependence of
those interaction terms on u comes from x� in Eq. (65).
The component x0 is basis independent and can be readily
written

 x0 �
1
2�G

�G� � h�h��: (75)

The spatial components can be written

 xi � � ~Rv�ijx
0
j; (76)

where � ~Rv�ij � Tr
Uyv�iUv�j� and

 x01 �
1
2�h
�G� � h�G��; (77)

 x02 �
�i
2
�h�G� � h�G��; (78)

 x03 �
1
2�G

�G� � h�h��: (79)

The variables s� can be written in terms of ti using
Eqs. (50) and (51) while the variables y� are defined in
Eqs. (67) and (68).

V. DISCUSSIONS

Equation (61) relates the depth of the potential in the
minimum with the mass matrix of the physical neutral
scalars. We can obtain bounds on the depth of the potential
from the relations

 V�hri� � 1
2V2�hri� � �V4�hri�; (80)

where hri represents an extremum while V2 and V4 refer,
respectively, to the quadratic and quartic part of the poten-
tial before EWSB, defined in Eqs. (2) and (3), evaluated in
the extremum. The first equality of Eq. (80) can be written
using Eq. (61) as

 V�hri� � �1
2hr0ihr̂iiT�MN�ijhr̂ji: (81)

From the relation above, we can deduce the following

bounds for the depth of a minimum hri,

 � 1
2hr0im2

3 � V�hri� � �1
2hr0im2

1; (82)

where m2
3 and m2

1 are, respectively, the greatest and the
least eigenvalue of MN . We can conclude that a minimum
will be deeper if the respective masses for the neutral
scalars and the value of v are greater.

A different physical bound can be extracted from con-
dition (B11) necessary for bounded below potentials and
from the positive definiteness of MN . From Eq. (57) and
eT?�

~���001�e? > 0 we arrive at

 m2 �m2
3 <

v2

4
�00; (83)

where e? is any unit vector orthogonal to hr̂i. The last
inequality means the mass of the charged Higgs can not be
arbitrarily large compared to the masses of the neutral
scalars.

In Sec. III we have found the set of Eq. (58) could be
chosen as the physical parameters that define the 2HDM
potential with a nontrivial vacuum. Among the elements of
the set, it is clear that the masses are physical observables.
On the other hand, the connection of the coupling constants
and mixing matrices appearing in the interaction terms
with physical observables is not direct. For example, de-
vising scattering observables to extract the three parame-
ters composing �0, present in V3 and V4, does not seem a
straightforward task. The form of V3 in terms of the physi-
cal fields, given in appendix E, reinforce such difficulty.
The explicit form of V3 and V4 in the physical basis can be
also found in Eqs. (57)–(60) of Ref. [6], although the
dependence on the mass matrix of the neutral scalars are
not explicitly shown. An attempt to extract the observable
parameters in the 2HDM, aiming to identify the presence
of discrete symmetries through measurements, was made
in Ref. [27]. Nevertheless, separating the set of Eq. (58)
and finding the relation of other parameters with the set is
important to establish the number of independent parame-
ters possible. The violation of any relation between pa-
rameters would indicate a model with a scalar sector
distinct of the 2HDM. These relations should be con-
strained by experimental data and studies of the bounds
on the mass of the physical charged Higgs [28,29] or of the
decay width of the physical Higgs bosons [2,30] already
exist in the literature. Of course, higher order effects, such
as the exchange of quarks, would modify these tree-level
relations. The number of minima may be also modified
when higher order contributions are taken into account.
The existence of at most two minima, for example, may not
be true beyond tree level [31].

Another aspect of the identification of physical parame-
ters concerns the remaining reparametrization freedom
such as the one in Eq. (32). That rephasing transformation
freedom is particularly important when counting the num-
ber of parameters of the mixing matrix ~Rv in Eq. (76).
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Since ~Rv appears in the couplings involving the physical
charged fields it may seem that it is a physical rotation
matrix, needing three angles for its parametrization.
However, only two angles are physical. The reason is
that the reminiscent reparametrization freedom induced
by Eq. (32) can remove one angle. Such reparametrization
freedom is equivalent to rotations around hri. An explicit
parametrization using two angles is available in Eqs. (E8)
and (E9) of appendix E.

The case of CP conserving potentials includes the
MSSM 2HDM potential (see Ref. [2]) and can be easily
analyzed by setting �2i � 0 for i � 2 and M2 � 0 (or real
Y). In addition, if there is no SPCV, we have hr2i � 0. In
this case, from Eq. (57), we see the neutral scalar t2 does
not mix with other scalars and corresponds to a CP-odd
field with mass

 m2
2 � m2 �

v2

4
�22: (84)

Relation (84) is equivalent to a known relation encountered
in the MSSM (see Eq. (10) of Ref. [11]), where the
pseudoscalar t2 is usually called A and v2

4 �22 � �m2
W .

The remaining neutral scalars t1, t3 are CP-even and their
mass matrix can be also read from Eq. (57).

It is important to stress that the original basis trans-
formations valid before EWSB forming the SU�2�H group
could be explicitly transposed to the fields after EWSB.
Although the possibility of transposition could be foreseen,
various properties of the transformations after EWSB
could not be anticipated. For example, the basis transfor-
mations after EWSB mix the physical charged Higgs h�

with the charged Goldstone while the neutral fields ti mix
among them [through the same SU�2�H � SO�3�H] with-
out mixing with the neutral Goldstone that transforms as a
scalar of SU�2�H.

From the discussions of Sec. IV, we can see there is an
important distinction between basis transformation and
reparametrization. The transformations of Eq. (69) consti-
tute legitimate basis transformations that preserve the
gauge structure after EWSB but they do not configure as
reparametrization transformations. On the one hand, only
the original SU�2�H basis transformations that preserve the
SU�2�L gauge structure configure as reparametrization
transformations. On the other hand, the maximal semi-
simple group of transformations which mix four real fields,
ti and G0, is SO�4�. In addition, if we do not impose the
kinetic part to be invariant, the reparametrization group
SU�2�H can be extended to SL�2; c� [9].

As a terminological issue, the term basis transformations
(or horizontal transformations) should be accompanied by
the gauge structure that they preserve, to be precise. For
example, for the 2HDM treated here, it is important to
specify if the basis transformations act before [SU�2�L �
U�1�Y] or after EWSB [U�1�EM].

In general, the horizontal group after SSB will be larger
than the horizontal group before SSB. It should be re-
marked that usually the physical mixing parameters belong
to the additional basis transformations only allowed after
SSB. For example, the CKM matrix for quarks comes from
the difference between the rotations on the fields
fuL; cL; tLg and fdL; sL; bLg necessary to diagonalize the
respective mass matrices; applying basis transformations
before EWSB, it is only possible to diagonalize one of the
up or down quark Yukawa coupling matrices. A similar
structure appears in 2HDMs for which the mixing among
neutral scalars, the matrix ~Rv, appears as the difference
between the PCH basis and the PNH basis.

For general N-Higgs-doublet models (NHDMs), the co-
variant relation for the mass matrix of neutral scalars can
be easily written by generalizing Eqs. (52) and (57) to N
Higgs doublets. The covariant relation for the mass matrix
of charged scalars hMi [32] was found in Ref. [25]. The
fields ti, however, will transform as a vector of adjSU�N�H,
living in a real vector space of N2 � 1 dimensions. Since,
in general, a transformation in SO�N2 � 1�, a larger group
than adjSU�N�H, will be required to diagonalize MN , the
PNH basis can not be reached by reparametrization but
only by general horizontal transformations valid after
EWSB. The corresponding basis transformation group
will be SO�N2 � 1� � SU�N�, the first factor acting on
the neutral scalars and the second on the charged scalars
independently. The enlargement of the basis transforma-
tion group after EWSB compared to the basis transforma-
tion group before EWSB is greater in NHDMs, with
N > 2, than in the two-Higgs doublet case (N � 2). But
the difference is not just quantitative. For the 2HDM
potential, the basis transformation group after EWSB,
SU�2� � SU�2�, is just the double of the basis transforma-
tion group SU�2�H before EWSB, which can be understood
as the original basis transformation acting independently
on the upper u and lower w components of the doublets, as
described in Eq. (69). For N > 2, the factor SO�N2 � 1�
necessary to diagonalize MN and, consequently, necessary
to reach the physical basis, cannot be thought of as the
original reparametrization group SU�N�H acting indepen-
dently on the lower components w of the doublets.

Finally, we can say that a nontrivial horizontal structure
in the scalar sector of a theory enriches the latter signifi-
cantly, opening the possibility of different phenomenology
such as different symmetry breaking patterns. At the same
time, the theory becomes less predictive as many more free
parameters are available. Nevertheless, useful physical
information can be extracted from the horizontal structure
by classifying the transformation properties of the parame-
ters appearing in the potential. These properties constrain
the relations between parameters before and after SSB,
relating, for instance, vectors of the horizontal group
with vectors. In the 2HDM potential analyzed here, we
could relate, for example, the rank-2 tensor ~�, appearing
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before EWSB, with the mass matrix of the neutral scalars
MN , only extractable after EWSB. Moreover, these rela-
tions were basis invariant. It is important to notice that the
transformation properties of the parameters refer to the
horizontal group SU�2�H acting on the Higgs doublets
before EWSB. Although the horizontal group acting on
the fields after EWSB could be larger, the transformation
properties of the parameters followed essentially from the
original horizontal group valid before EWSB. Obviously, a
transformation in the enlarged horizontal group is usually
necessary to reach the physical basis where all fields have
definite masses.
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APPENDIX A: EXTREMUM EQUATIONS

Any neutral extremum hr�i of the potential in Eq. (1)
should satisfy the following extremum equations [25]

 M0 ��00hr0i ��0  hri � m2; (A1)

 Mi ��i0hr0i �
~�ijhrji � �m2hr̂ii; (A2)

where i � 1, 2, 3 and m2 is the mass squared of the
physical charged Higgs. The minus sign on the right-
hand side of Eq. (A2) is reminiscent of the Minkowski
metric adopted in Ref. [25].

The original extremum equation on the doublets reads

 hMihwi � 0; (A3)

for hui � 0 and hwi � 0. Equation (A3) means hwi is an
eigenvector of hMi with null eigenvalue.

APPENDIX B: BOUNDED BELOW CONDITION

We seek here the necessary conditions for a bounded
below potential using a method distinct to the ones adopted
in Refs. [3,9]. We will restrict ourselves to positive definite
V4.

Rewriting V4 for r0 � jrj we obtain

 V4 �
1
2r

T�~���0013�r� jrjr �0: (B1)

All variables ri will be treated here as c-numbers. We seek
the direction r for which the potential increases more
slowly. We minimize then

 V 04 � V4 �
1
2��r

2 � 1�; (B2)

constraining r to be in the unit sphere using the Lagrange
multiplier method.

Differentiating,

 

@V04
@ri
� ~�ijrj ��00ri ��0ijrj � r̂i�r �0� � �ri; (B3)

 

@V04
@�
�

1

2
�r2 � 1�: (B4)

Equation (B3) yields

 r̂ � �
~�� ��00 � �� r̂ �0�13�
�1�0: (B5)

The values of r̂ �0 corresponding to an extremum is
given by the roots of

 r̂ �0 � f�r̂ �0 � ��; (B6)

constrained by

 

df�x�
dx

� 1; (B7)

for x � r̂ �0 � �. The function f�x� is defined by

 f�x� � ��0
T
~�� ��00 � x�13�

�1�0: (B8)

Equation (B6) is found by projecting Eq. (B5) to �0 while
Eq. (B7) is equivalent to the requirement r̂  r̂ � 1. The
components of r̂ perpendicular to �0 can be found from
Eq. (B5) once r̂ �0 is known.

For any extremum satisfying Eq. (B5) we find for
Eq. (B1) the value

 V4jextremum �
1
2r

2����jextremum: (B9)

We see all the Lagrange multipliers � corresponding to an
extremum should be negative. In particular, the greatest of
them should be negative.

In the basis for which ~���0013 � diag�a1; a2; a3�,
a1 > a2 > a3,

 f�x� � �
X3

i�1

�2
0i

ai � x
: (B10)

A plot of f�x�, with ai > 0, can be seen in Fig. 1 jointly
with the solution of greatest �. We see there are at least two
extrema corresponding to the least and greatest �. The
intermediary extrema may not exist depending on the
minimum slope of the curves. For example, in Fig. 1, for
�a2 � x � �a3, there is no solution for f0�x� � 1.

From the schematic view of Fig. 1 we see ai > 0 is
necessary to have positive �� and consequently positive
definite V4, unless �0i � 0 for nonpositive ai. In a general
basis, it is necessary that

 �00 � eigenvalues �~��> 0; (B11)

unless �0 have null projection in some eigenvector direc-
tion. To assure V4 is positive definite, it is necessary and
sufficient to have the greatest Lagrange multiplier

 max� < 0: (B12)
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From Eq. (B6), the distance between the greatest xmin and
the greatest � is jr̂ �0j � �r̂ �0.

Finally, if ai > 0 and one makes j�0ij small enough, we
can always find � < 0, proving the assertion preceding
Eq. (34). As j�0ij get smaller, the curves of f�x� get closer
to the x-axis. In special, from f�x� 	 f�x�ja1;a2!a3

, a3 �

min�ai�, we can conclude that

 2j�0j< a3 (B13)

is a sufficient condition.
For jr0j> jrj we can parametrize r0 � e�jrj, �> 0.

The analysis of the minimization of V4 for fixed jrj is
equivalent to the preceding analysis replacing �00 !
�00e

2� and �0i ! �0ie
�. If j�0j=�00 � 1, condition

(B13) is preserved for �> 0 once it is valid for � � 0. If
j�0j=�00 > 1 and �i > 0, a sufficient condition is

 

j�0j
2

�00

<min��i�; (B14)

where �i are the eigenvalues of ~�.

APPENDIX C: PROOF OF EQ. (51)

From the completeness of the �� matrices [33],

 

1
2 ����ab����cd � �ad�cb; (C1)

we can calculate, for a neutral vacuum hwi � 0,

 hr0is0 � hriisi �
1
4 Tr
hwihwiy���Tr
���whwi

y � H:c:��

� 1
2 Tr
�whwiy � H:c:�hwihwiy� � 2hr0is0;

(C2)

where hr0i � jhwij
2=2 � v2=4. Hence,

 s0 � hr̂iisi; (C3)

since hr0i �
��������������
hriihrii

p
. With the same reasoning, one can

prove

 s0y0 � siyi: (C4)

APPENDIX D: BASIS COVARIANCE FOR hMi

It is important to stress that the definition of the charged
mass matrix hMi is covariant by basis transformation (44)
in the following sense. The definition of the charged mass
matrix in Eq. (14) is valid in any basis, in particular, in the
PCH basis,

 diag �m2; 0� � hM0i � Y0 � 1
2���0��hr0�i: (D1)

The Eq. (43) can thus be written as

 Uyv�Y � 1
2�����hr�i�Uv � Y0 � 1

2���0��hr0�i; (D2)

where the relation between fY0;�0; hr0ig in the PCH basis
and fY;�; hrig in the original basis is

 Y0 � UyvYUv; (D3)

 hr0�i � RT
��hr�i; (D4)

 �0�� � RT
����
R
�; (D5)

and R�� � R���Uv� is given by Eq. (40). Hence, the first
term of (41) is form invariant,

 uyhMiu � u0yhM0iu0: (D6)

APPENDIX E: INTERACTION TERMS

The interaction terms can be simplified into
 v
2
V3jSSB � �
uyYu� wyYw�tk �m2
x0tk � x  t�

� hr0i�0?  t?

�
ju?j

2 �
1

2
t2
?

�
� �x� y�TMNt; (E1)

 

V4jSSB �
1

2
�00�r

2
0 � r2� � �r0 � hr̂i  r��0  r�

rTMNr
2hr0i

�
1

2

�
�00 �

m2

hr0i

�
r2
?; (E2)

where

 u? � u� hŵihŵiyu; (E3)

 tk � t  hr̂i; (E4)

 t? � t� hr̂itk; (E5)

 ju?j2 � x0 � x  hr̂i; (E6)

FIG. 1. Plot of typical f�x�. The dot lies at �xmin; f�xmin��
where xmin is the greatest value that satisfies f0�x� � 1.
Equation (B6) defines the value of � depicted as the intersection
of the line x� xmin � f�xmin� with the x-axis.
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 t 2
? � 2�y0 � y  hr̂i�; (E7)

and �0? is analogous to t?.
One can also explicit the matrices Uv and ~R�Uv� in

Eqs. (71) and (76) choosing an explicit parametrization:

 Uv � U��v; ��i�2; (E8)

 

~R v � ~R��v; �� ~R�	; 0� � ~R�Uv� (E9)

where

 U��;’� � e�i�1=2��3’e�i�1=2��2�: (E10)

 

~R��;’� � e�iJ3’e�iJ2�: (E11)

The generators of rotations are defined by i�Jk�ij � ijk.
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