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In a theory with broken supersymmetry, gaugino couplings renormalize differently from gauge
couplings, as do higgsino couplings from Higgs boson couplings. As a result, we expect the gauge
(Higgs boson) couplings and the corresponding gaugino (higgsino) couplings to evolve to different values
under renormalization group evolution. We reexamine the renormalization group equations (RGEs) for
these couplings in the minimal supersymmetric standard model (MSSM). To include threshold effects, we
calculate the � functions using a sequence of (nonsupersymmetric) effective theories with heavy particles
decoupled at the scale of their mass. We find that the difference between the SM couplings and their SUSY
cousins that is ignored in the literature may be larger than two-loop effects which are included, and further
that renormalization group evolution induces a nontrivial flavor structure in gaugino interactions. We
present here the coupled set of RGEs for these dimensionless gauge and Yukawa-type couplings. The
RGEs for the dimensionful soft-supersymmetry-breaking parameters of the MSSM will be presented in a
companion paper.
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I. INTRODUCTION

Renormalization group equations (RGEs) have played
an important role in extracting phenomenological predic-
tions of theories valid at very high energy scales. One of
the best known examples of this is the prediction of the
weak mixing angle from the simplest SUSY SU�5� grand
unified theories (GUTs): the equality of the gauge cou-
plings atQ � MGUT, which implies sin2�W�MGUT� � 3=8,
leads to the measured value of sin2�W only when these
couplings are evolved to the scale Q� 100 GeV relevant
to experiments [1]. Since at least the 1980’s, RGEs have
played a role in the analysis of the implications of widely
different models of new physics, including supersymmetric
models, the subject of this paper [2].

Supersymmetry (SUSY) is a novel symmetry that links
bosons and fermions, providing a level of synthesis never
before attained [3–6]. Since supersymmetry implies a
superpartner for every chirality state of the standard model
(SM) with the same internal quantum numbers, it implies
an approximate doubling of the degrees of freedom.
Supersymmetry, even if softly broken, fixes the dimension-
less couplings that determine the tree-level interactions of
the superpartners with SM particles and with one another
(i.e. interactions via mass dimension four), so that in this
sense the theory is completely predictive. The interest in
SUSY phenomenology was sparked once it was under-
stood that the SUSY nonrenormalization theorem implied
the stability of the hierarchy between the weak and GUT or

Planck scales to radiative corrections [7]. Since SUSY is
clearly not manifested in the observed spectrum of ele-
mentary particles, SUSY must be (explicitly or spontane-
ously) broken. Moreover, the mass scale of SM
superpartners—at least of those that couple sizably to
the Higgs sector—must be smaller than O�1� TeV, in
order for SUSY breaking not to destabilize the hard-won
hierarchy between the weak and GUT scale just men-
tioned. In view of our complete ignorance of the mecha-
nism of SUSY breaking, it is expedient to parametrize
SUSY breaking by introducing soft-supersymmetry-
breaking (SSB) operators with dimension � 3 that respect
Lorentz, gauge, and any other symmetries into the effective
Lagrangian of the theory. These include gaugino mass
parameters, the SSB Higgs mass parameter b, often written
as B�, sfermion mass matrices, and trilinear scalar cou-
pling parameters, usually denoted by Aijk [8].

We emphasize that the proliferation of SSB parameters
is a result of our ignorance of how SUSY breaking is
communicated to MSSM superpartners. Until this is under-
stood, we are led to resort to a variety of models [9–12].
Typically these models, which are based on differing as-
sumptions about high scale physics, lead to different ansä-
tze for the pattern of SSB parameters, in a Lagrangian
renormalized at this high scale Qhigh. This Lagrangian
cannot directly be used to perturbatively extract phenome-
nological predictions at the E� 100 GeV scale of our
experiments, because large logarithms log�Qhigh=E� would
invalidate (fixed order) perturbation theory. Instead, RGEs
are used to evolve all the Lagrangian parameters to the
scale E, and this resulting ‘‘low energy’’ Lagrangian is
used to evaluate its implications [2].
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Since supersymmetric models automatically contain
many scalars with the same gauge quantum numbers, there
are potential new sources of flavor violation [7,13]. Within
the parametrization of the SSB terms described above,
these are encapsulated in the sfermion mass matrices and
in the A parameters (which may be regarded as matrices
in the flavor space). Our ultimate goal is to develop a
program that will enable a general study of flavor violation,
for arbitrary values of SSB parameters at Q � Qhigh.
For the present, we confine ourselves to quark flavor
violation.1

Toward this end, we need to know the RGEs for all
dimensionless and dimensionful parameters. These are al-
ready known, both in the SM [14] and in the MSSM [15–
18] at the two-loop level. Working to two-loop accuracy
means that we must include threshold effects in the one-
loop RGEs, since these can numerically be as large as the
two-loop terms, and perhaps even larger if the sparticle
spectrum is very split. It is in this connection that we
extend the existing literature [19,20] as described below.
As in these studies, we implement SUSY and Higgs parti-
cle thresholds as step functions in our evaluation of the �
functions. We consider first the evolution of the dimen-
sionless couplings. We assume that for any particle with
mass Mi between the weak scale and the scale Qhigh

introduced above, the effective theory used to calculate
the � function includes this particle if Q>Mi, but not
otherwise. Thus, at a high scale Q above the masses of all
sparticles and Higgs bosons, the � functions are those of
the MSSM. As we come down in scale, the SUSY particles
and the heavy Higgs bosons decouple one by one until we
are left with just the SM particles, and the � functions for
the dimensionless couplings of the SM. Although this
sounds quite straightforward in principle, there are several
issues that need to be confronted to implement this pro-
gram.

(i) The step-function decoupling of particles at the scale
of their mass makes sense for couplings of fields
only in their (at least, approximate) mass basis. For
instance, in the MSSM Higgs sector, it is quite clear
where the spin-zero mass eigenstates h or H (or A
and H�) decouple, but the decoupling point for the
hu or hd fields (or for the higgsinos) is ambiguous,
because the mass eigenstates are combinations of the
hu- and hd-type fields (or the corresponding higgsi-
nos). Moreover, since the Higgs bosons and higgsi-
nos acquire mass from different origins, these are not
‘‘diagonalized’’ by a common rotation, so that in
order to implement the decoupling we must, in prin-
ciple, work with Higgs boson/higgsino bases that are

not SUSY transforms of one another. See, however,
Sec. III for a simplification.

(ii) Since we decouple the superpartners but not the
lighter SM particles, the effective theory below the
scale of the heaviest sparticle ‘‘knows’’ about SUSY
breaking, and necessarily includes new dimension-
less couplings. For instance, while in the SUSY
limit, the coupling of the gauge boson to quarks is
exactly the same for the corresponding gaugino-
quark-squark coupling, below the scale where we
begin to decouple heavy particles, these couplings
no longer run together. For every gauge coupling gi,
the low energy theory may include additional dis-
tinct gaugino-particle-sparticle couplings ~g�

i
(labeled by the scalar �) that evolve differently
from gi. For instance, if m~q � m~g, below Q � m~g

the bino coupling ~g0Q evolves differently from g0.
Moreover, ~g0Q and ~g0L (as well as other ~g0� cou-
plings) also do not evolve in the same way. Indeed,
as we will see later, these couplings also develop
flavor-violating components and so become matri-
ces in the flavor space, which we will denote by ~g�

i ,
once again labeled by the scalar �.

(iii) The proliferation of these new fermion-fermion-
scalar couplings also extends to the Higgs sector.
For instance, if the heavier Higgs bosons H�, A,
and H all decouple at the scale Q ’ mH that is
hierarchically larger than j�j, and squarks are light,
the effective theory in the range j�j<Q<mH

includes both higgsino doublets ~hu and ~hd coupling
to various flavors of quarks and squarks, but with
quark (and squark) pairs coupling only to the light
SM-like Higgs boson h. Thus, we must also have
independent higgsino coupling matrices that we
denote by ~f�

u;d;e, once again, labeled by the scalar.
We see that even for the dimensionless couplings, there

are new complications which (to our knowledge) have not
been included in previous studies, but must be taken into
account for a proper implementation of threshold effects
into the (one-loop) RGEs. Motivated by the fact that our
goal is to study flavor violation in sparticle decays in a
general way, we derive the RGEs for all the relevant
dimensionless couplings of the MSSM, including flavor-
violating superpotential interactions, in this paper. The
number of RGEs for the dimensionless couplings now
expands from those for the three gauge couplings and three
Yukawa coupling matrices to those for the three gauge
couplings, nineteen scalar-fermion-fermion coupling ma-
trices and four Higgs-higgsino-gaugino couplings. We
should mention that, in addition, there are numerous
quartic scalar couplings arising from the D-terms or the
F-terms in the scalar potential. Although these are given by
the ‘‘squares’’ of gauge or superpotential Yukawa cou-
plings in the SUSY limit, they will also renormalize differ-
ently below the SUSY thresholds. We do not discuss the

1The analysis can readily be extended to lepton flavor viola-
tion. Although lepton flavor violation may be more striking and
experimentally easier to access than quark flavor violation, it
may depend on yet other unknowns such as the structure of any
singlet neutrino mass matrix.
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evolution of these couplings which are less important
phenomenologically. Fortunately, these couplings do not
enter the evolution of the dimensionless couplings that we
do consider in this paper. We derive the RGEs for the
dimensionful parameters, the scalar masses (matrices in
the case of squarks), the trilinear coupling matrices, and the
SSB B� parameter, which have their own complications,
in a companion paper [21].

Since, as we mentioned above, the threshold effects
necessarily involve SUSY breaking, we derive our RGEs
from the RGEs in a general (i.e. not necessarily super-
symmetric) field theory that have been worked out in the
literature. We use the seminal papers by Machacek and
Vaughn [14] to derive the RGEs for the dimensionless
couplings, while we use the work by Luo, Wang, and
Xiao [22] to derive those for the dimensionful couplings
of the MSSM. These studies both use the two-component
spinor formalism. In contrast, most phenomenologists are
much more familiar with the four-component formalism.
To facilitate the use of the general RGEs, we recast the
formulas for the RGEs for dimensionless couplings into
four-component notation in Sec. II. In Sec. III we discuss
the transition to the ‘‘mass basis’’ necessary for the im-
plementation of the MSSM thresholds. The actual deriva-
tion of the RGEs is carried out in Sec. IV. In Sec. V we
show numerical examples of the solutions to some of the
RGEs and discuss the impact of the new effects we have
included in our analysis. We summarize in Sec. VI. The set
of RGEs for the dimensionless couplings is listed in the
Appendix.

II. FORMALISM

The one-loop � functions for gauge couplings are well
known and take the form [23]

 �4��2�gj1�loop � �g
3

�
11

3
C�G� �

2

3

X
fermions

S�RF�

�
1

3

X
scalars

S�RS�
�
; (1)

where C�G� is the quadratic Casimir for the adjoint repre-
sentation of the associated Lie algebra, and S�RF� and
S�RS�, respectively, are the Dynkin indices for the repre-
sentations RF, RS under which the fermions and (complex)
scalars transform. For the Lie algebra of SU�N�, C�G� �
N, while S�R� � 1=2 for the fundamental N-dimensional
representation, and S�R� � N for the adjoint representa-

tion. For the U�1�Y gauge coupling g0, C�G� � 0 while
S�R� � �Y=2�2. Heavy scalars and fermions are decoupled
simply by excluding them from the sums on the right-hand
side of (1).

The derivation of the RGEs for ‘‘Yukawa-type’’ cou-
plings of scalars with fermions is more involved. As dis-
cussed in Sec. I our strategy for deriving the RGEs is to first
cast the general two-component results in Refs. [14,22]
into four-component notation, match the parameters with
those of the MSSM Lagrangian density, and write down the
RGEs. Toward this end, we begin with the Lagrangian
density written in terms of two-component spinor fields
 p and real scalar fields �a, as

 

L�2� � i yp��D� p 	
1

2
D��aD��a �

1

4
F��AF

��
A

�
1

2

�mf�pq 

T
p� q 	 H:c:� �

1

2!
m2
ab�a�b

�

�
1

2
Ya
pq Tp� q�a 	 H:c:

�
�

1

3!
habc�a�b�c

�
1

4!
�abcd�a�b�c�d: (2)

The antisymmetric matrix � � i�2, which is included to
make the spinor bilinears Lorentz invariant, also ensures
that the Yukawa coupling matrices Ya (labeled by the
scalar field that couples to the spinors) are symmetric in
the fermion field type indices p, q. The spinor mass
matrices mf are likewise symmetric, but not necessarily
Hermitian. The coefficients mab, habc, and �abcd are real
and completely symmetric under permutations of all their
indices.2

We now turn to the corresponding Lagrangian density in
the four-component notation with Dirac and Majorana
spinor fields and complex scalar fields, �a, usually used
by phenomenologists. The familiar four-component Dirac
spinor �D has unrelated left- and right-chiral components
and is, therefore, made up of two independent two-
component spinors,  L and  R, according to �D �
� L;�� 
R� (where we really mean to write this equation
as one for the column matrix �D). In contrast, the left- and
right-chiral components of a Majorana spinor which, by
definition, satisfies �M � C ��T

M are related. Thus, for ex-
ample, a Majorana spinor may be written in terms of a
single two-component spinor as �M � � L;�� 
L� or,
alternatively, as �� 
R;  R�. The general form of the
Lagrangian density that we work with in the context of
the MSSM with a conserved R parity then takes the form

2The factor 1
2 in front of the Yukawa couplings, which is a

reflection of the symmetry of the Yukawa coupling matrices, was
included in Ref. [22] but not in Ref. [14].
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L�4� �
i
2

��j	�D��j 	 �D��a�
y�D��a� �

1

4
F��AF

��
A �

1

2

�mX�jk ��Mj�Mk 	 i�m0X�jk ��Mj	5�Mk�

	

�
1

2!
Bab�a�b 	 H:c:

�
�m2

ab�ya�b �

�
�U1

a�jk ��DjPL�Dk�a 	 �U2
a�jk ��DjPL�Dk�

y
a 	 �Va�jk ��DjPL�Mk�a

	 �Wa�jk ��MjPL�Dk�
y
a 	

1

2
�X1

a�jk ��MjPL�Mk�a 	
1

2
�X2

a�jk ��MjPL�Mk�
y
a 	 H:c:

�

	

�
1

2!
�yaHabc�b�c 	 H:c:

�
�

1

2!

1

2!
�abcd�ya�yb�c�d �

�
1

3!
�0abcd�ya�b�c�d 	 H:c:

�
: (3)

In (3), Yukawa couplings of Dirac fields to scalars �a are
denoted by the matrices U1

a and U2
a, while couplings of

scalars to one Majorana and one Dirac field are denoted by
the matrices Va and Wa. These matrices have no particular
symmetry (or hermiticity) properties under interchange of
the fermion field indices j and k. These indices label the
fermion field type (quark, lepton, gaugino, higgsino) and
also carry information of flavor and other quantum num-
bers (e.g. weak isospin and color). On the other hand, the
matrices X1

a and X2
a that couple scalars to two Majorana

fields are symmetric under j$ k because of the symmetry
properties [3] of the Majorana spinor bilinears that appear
in (3). The scalar mass squared matrix m2 is Hermitian in
the scalar field indices a, b, while the matrix B is sym-
metric. The Majorana fermion mass matrices mX and m0X
are both Hermitian and symmetric. The matrix mX is the
familiar mass matrix, while m0X is the coefficient of the
CP-violating Majorana fermion bilinear [3], whose effects
in the two-component spinor language show up as phases
in the entries of the fermion mass matrix mf in (2). The
trilinear and quartic scalar couplings �, �0, and H are
symmetric under interchanges a$ b and/or c$ d for �,
under interchanges of b, c, d for �0, and finally under b$
c for H.

Before proceeding further, we should point out that the
Lagrangian density in (3) is not the most general one that
we can write. For instance, we have not included mass
terms for Dirac fermions. Also, in writing the Yukawa
interactions of fermions, we have not included terms with
the operators

 

��MPL�D� and ��DPL�M�y:

Dirac fermion masses appear in the MSSM only upon the

spontaneous breakdown of electroweak symmetry, while
the omitted Yukawa terms do not appear in the MSSM with
R-parity conservation because Dirac fermions then carry a
baryon or lepton number which is assumed to be conserved
by these renormalizable operators. Likewise, we have also
written only the subset of all scalar interactions that we
need for our analysis of the MSSM.

Upon substitution of the four-component spinors in
terms of their two-component cousins, and decomposing
the complex field

 �a �
�aR 	 i�aI���

2
p

into its real and imaginary pieces, both of which are real
fields, we can recast (3) into the general form of (2),
involving only two-component spinors and real scalar
fields. This then allows us to translate the parameters in
(3) into the corresponding parameters in (2). We can now
use the general results for the RGEs for the dimensionless
[14] and dimensionful [22] parameters of a general quan-
tum field theory to obtain the RGEs for the dimensionless
Yukawa coupling matrices as well as for the mass and
trilinear coupling parameters that appear in (3). We then
use these to obtain the RGEs for the parameters of the
MSSM, including the effects of the decoupling of various
sparticles.

Since our focus in this paper is on the RGEs for the
dimensionless parameters contained in the matrices U1

a,
U2
a, Va, Wa, X1

a, and X2
a, we begin by recasting the

corresponding terms into two-spinor component notation
to find

 

L�4� 3 �

2
6641

2
� ~ �T�

1���
2
p

0 �U1T
a 	 U2T

a � Wa
T

�U1
a 	 U2

a� 0 Va

Wa Va
T �X1

a 	X2
a�

0
BB@

1
CCA� ~ ��aR

	
1

2
� ~ �T�

i���
2
p

0 �U1T
a � U2T

a � �Wa
T

�U1
a � U2

a� 0 Va

�Wa Va
T �X1

a �X2
a�

0BB@
1
CCA� ~ ��aI

3
775	 H:c: (4)
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where

 

~ �
 L
 R
 M

0@ 1A;
with the Dirac spinor �D � � L;�� 



R� and the Majorana

spinor �M � � M;�� 


M�. Notice that the two-

component spinor fields are coupled to real scalar fields,
�aR and �aI , via symmetric (but not necessarily
Hermitian) matrices, as expected. We can now use the
one-loop RGE for the Yukawa matrices Y that appear in
(2) [14,22],3

 

�4��2�aYj1-loop �
1
2
Y

T
2 �F�Y

a 	 YaY2�F�� 	 2YbYayYb

	 Yb Trf12�Y
byYa 	 YayYb�g

� 3g2fC2�F�;Yag; (5)

to obtain the one-loop � functions for the various dimen-

sionless couplings in (3). Here, Y2�F� � YbyYb and
C2�F� � tAtA, where tA are the group generators in the
reducible representation that includes all the fermion
fields. Clearly, the matrices Ya, Y2�F�, and C2�F� all
have the same dimensionality, determined by the total
number of two-component fermion fields in the system.
We also draw the reader’s attention to the fact that in the
four-component notation the sum over a; b; . . . runs over
the different complex scalar fields, whereas in the two-
component notation, we must not only sum over the vari-
ous field types, but also separately over the real and imagi-
nary parts of the same complex field. In other words, we
have two distinct Yukawa matrices Ya, one when a refers
to �aR and the other when a refers to �aI . The trace that
appears above is a sum over the fermion types.

The � functions for the Yukawa coupling matrices in (3)
can then be readily found to be

 �4��2�U1
a
j1-loop �

1
2
�U

1
bU1y

b 	 U2
bU2y

b 	 VbVyb �U
1
a 	 U1

a�U
1y
b U1

b 	 U2y
b U2

b 	Wy
bWb�� 	 2
U1

bU2y
a U2

b 	 U2
bU2y

a U1
b

	 VbX2y
a Wb� 	 U1

b Trf�U1y
b U1

a 	 U2y
a U2

b� 	
1
2�X

1y
b X1

a 	X2y
a X2

b�g 	 U2
b Trf�U2y

b U1
a 	 U2y

a U1
b�

	 1
2�X

2y
b X1

a 	X2y
a X1

b�g � 3g2
U1
aCL

2 �F� 	CR
2 �F�U

1
a� 	

1
2Va�V

y
bU1

b 	X2y
b Wb� 	 2U1

bWy
aWb

	 U1
b TrfWy

aWb 	 VybVag; (6)

 �4��2�U2
a
j1-loop �

1
2
�U

1
bU1y

b 	 U2
bU2y

b 	 VbVyb �U
2
a 	 U2

a�U
1y
b U1

b 	 U2y
b U2

b 	Wy
bWb�� 	 2
U1

bU1y
a U2

b 	 U2
bU1y

a U1
b

	 VbX1y
a Wb� 	 U2

b Trf�U2y
b U2

a 	 U1y
a U1

b� 	
1
2�X

2y
b X2

a 	X1y
a X1

b�g 	 U1
b Trf�U1y

b U2
a 	 U1y

a U2
b�

	 1
2�X

1y
b X2

a 	X1y
a X2

b�g � 3g2
U2
aCL

2 �F� 	CR
2 �F�U

2
a� 	

1
2�U

2
bWy

b 	 VbX1y
b �Wa 	 2VbVyaU2

b

	 U2
b TrfWy

bWa 	 VyaVbg: (7)

Within the MSSM with R-parity conservation, the last three terms of each of these equations vanishes because Wa and Va
vanish for the a values for which U1

a and U2
a are nonzero. Continuing,

 

�4��2�X1
a
j1-loop �

1
2
�WbWy

b 	 VT
bV
b 	X1

bX1y
b 	X2

bX2y
b �X

1
a 	X1

a�W

bWT

b 	 VybVb 	X1y
b X1

b 	X2y
b X2

b��

	 2
WbU2y
b Vb 	 VT

bU2

a WT

b 	X1
bX2y

a X2
b 	X2

bX2y
a X1

b� 	X1
b Trf�U1y

b U1
a 	 U2y

a U2
b�

	 1
2�X

1y
b X1

a 	X2y
a X2

b�g 	X2
b Trf�U2y

b U1
a 	 U2y

a U1
b� 	

1
2�X

2y
b X1

a 	X2y
a X1

b�g

� 3g2
X1
aCL

2 �F� 	CR
2 �F�X

1
a� 	

1
2
�WbU2y

b 	X1
bVyb �Va 	 VT

a �U2

b WT

b 	 V
bX1
b��

	 2
WbWy
aX1

b 	X1
bW


aWT
b � 	X1

b TrfWy
aWb 	 VybVag; (8)

3Equation (5) is slightly modified from that in Ref. [14]. We have written the YT2 �F� instead of Yy2 �F� in the first term and
symmetrized the trace with respect to a and b. The second modification also appears in Ref. [22], while the first one preserves the
symmetry of the Yukawa coupling matrix.
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�4��2�X2
a
j1-loop �

1
2
�WbWy

b 	 VT
bV
b 	X1

bX1y
b 	X2

bX2y
b �X

2
a 	X2

a�W

bWT

b 	 VybVb 	X1y
b X1

b 	X2y
b X2

b��

	 2
WbU1y
a Vb 	 VT

bU1

a WT

b 	X1
bX1y

a X2
b 	X2

bX1y
a X1

b� 	X2
b Trf�U2y

b U2
a 	 U1y

a U1
b�

	 1
2�X

2y
b X2

a 	X1y
a X1

b�g 	X1
b Trf�U1y

b U2
a 	 U1y

a U2
b� 	

1
2�X

1y
b X2

a 	X1y
a X2

b�g

� 3g2
X2
aCL

2 �F� 	CR
2 �F�X

2
a� 	

1
2
�V

T
bU1


b 	X2
bW


b�W
T
a 	Wa�U

1y
b Vb 	Wy

bX2
b��

	 2
VT
bV
aX2

b 	X2
bVyaVb� 	X2

b TrfWy
bWa 	 VyaVbg: (9)

The last three terms of each of (8) and (9) vanish in the R-parity conserving MSSM, again because Wa and Va are zero.
Finally,
 

�4��2�Va j1-loop �
1
2
�U

1
bU1y

b 	 U2
bU2y

b 	 VbVyb �Va 	 Va�W

bWT

b 	 VybVb 	X1y
b X1

b 	X2y
b X2

b��

	 2
U1
bWy

aX2
b 	 U2

bWy
aX1

b 	 VbW

aWT

b � 	 Vb TrfWy
aWb 	 VybVag � 3g2
VaCL

2 �F� 	CR
2 �F�Va�

	 1
2
�U

2
bWy

b 	 VbX1y
b ��X

1
a 	X2

a� 	 �U1
a 	 U2

a��U
1y
b Vb 	Wy

bX2
b��

	 2
U2
b�U

1y
a 	 U2y

a �Vb 	 Vb�X
1y
a 	X2y

a �X2
b� 	 Vb Trf
U1y

b �U
1
a 	 U2

a� 	 �U
1y
a 	 U2y

a �U2
b�

	 1
2
X

1y
b �X

1
a 	X2

a� 	 �X
1y
a 	X2y

a �X2
b�g; (10)

 

�4��2�Wa
j1-loop �

1
2
�WbWy

b 	 VT
bV
b 	X1

bX1y
b 	X2

bX2y
b �Wa 	Wa�U

1y
b U1

b 	 U2y
b U2

b 	Wy
bWb��

	 2
VT
bV
aWb 	X1

bVyaU2
b 	X2

bVyaU1
b� 	Wb TrfWy

bWa 	 VyaVbg � 3g2
WaCL
2 �F� 	CR

2 �F�Wa�

	 1
2
�WbU2y

b 	X1
bVyb ��U

1
a 	 U2

a� 	 �X1
a 	X2

a��V
y
bU1

b 	X1y
b Wb��

	 2
Wb�U
1y
a 	 U2y

a �U1
b 	X1

b�X
1y
a 	X2y

a �Wb� 	Wb Trf
U2y
b �U

1
a 	 U2

a� 	 �U
1y
a 	 U2y

a �U1
b�

	 1
2
X

2y
b �X

1
a 	X2

a� 	 �X
1y
a 	X2y

a �X1
b�g: (11)

The last three lines of each of (10) and (11) do not con-
tribute in the R-parity conserving MSSM because each of
U1
a, U2

a, X1
a, and X2

a vanish for the values of a for which Va
and Wa do not.

The quantities CL
2 �F� and CR

2 �F� that appear in Eqs. (6)–
(11) are the quadratic Casimirs C2�F� separated into con-
tributions from left-handed, right-handed, and Majorana
fermions, so that

 C 2�F� � diag�CL
2 �F�;C

R
2 �F�;C

M
2 �F��:

The traces that appear in (6)–(11) denote a sum over
fermion types, which sometimes, but not necessarily, are
traces over fermion flavors when we refer to the MSSM.
Note also that, in the context of the MSSM, the index a
may itself include a flavor (or even color) index, for
instance when �a � ~cL.

The reader may legitimately wonder what we have
gained by writing the RGE which took the much simpler-
looking form (5) in the much more cumbersome-looking
and definitely much longer forms given by Eqs. (6)–(11).
The reasons for doing so are twofold. First, many authors
are more familiar with the MSSM couplings written in
four-component notation, so that the longer four-
component equations can be more directly used. Second,
and perhaps the more important reason, is that much of the
work that would be needed to obtain the MSSM RGEs, even
starting with the couplings in two-component notation, has

already been done when the RGEs are written as in (6)–
(11). The many terms that appear here are indeed present in
the MSSM RGEs (as we will see), and starting with the
compact notation of (5) only means that part of the work
has to be repeated each time we use it to get the RGE that
we need.

Before closing this section, we remark that the RGEs for
the dimensionless gauge couplings and those for the di-
mensionless ‘‘Yukawa-like’’ couplings form a closed set,
uncoupled to the RGEs for the dimensionful parameters.
Dimensionless quartic couplings of scalars also do not
enter these RGEs. Since we have made no assumption
about supersymmetry, this is true even with threshold
effects included.4 In the next section, we turn to a discus-
sion of how threshold effects are to be included in the
MSSM RGEs. Of course, since we want to work to two-
loop accuracy, it suffices to include the threshold effects
only in the one-loop terms, which is the reason for our
focus on the one-loop RGEs of a general quantum field
theory. We mention here that the authors of Refs. [14,22],
which is our starting point, use the MS renormalization
scheme rather than the DR scheme better suited for the
analysis of radiative corrections in supersymmetric theo-
ries. We can, however, use their general expressions (only

4Of course, in this case, information about the SUSY spectrum
enters via the location of the thresholds.
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for the one-loop part) to obtain our RGEs, since there is no
scheme dependence at this level. We can then augment
these with the two-loop terms (without threshold correc-
tions) of the MSSM RGEs [15] to obtain two-loop accu-
racy in the DR scheme.

III. PARTICLE DECOUPLING

We are now equipped to derive the RGEs for the dimen-
sionless couplings in any quantum field theory with an
arbitrary set of Dirac and Majorana spinor fields together
with spin-zero fields (with nontrivial gauge quantum num-
bers) whose Lagrangian can be written in the form (3). This
is, as we have already noted, not the most general form for
the Lagrangian density since some field operators, such as
mass terms for Dirac fermions or dimension four operators
of the form ��MPL�D� and ��DPL�M�y, that do not
occur in the MSSM with R-parity conservation imposed
have been omitted. Since (3) makes no reference to super-
symmetry, we can continue to use it even when SUSY is
broken via the inclusion of SSB terms. The procedure for
obtaining the one-loop RGEs is now straightforward. We
simply write down the Lagrangian density for the MSSM,
including the SSB terms consistent with Lorentz and
MSSM gauge symmetries and the assumed conservation
of R parity, compare the dimensionless couplings with
those in (3) to construct the matrices U1

a, U2
a, . . ., Wa,

and then use (6)–(11) to get the required RGEs. This
program has two complications that we must take care of
in its implementation. Although we have referred to these
in Sec. I, it does not hurt to repeat them here.

(i) For Q values above all SUSY thresholds, the effec-
tive theory is supersymmetric, and couplings of SM
particles are related by SUSY to corresponding spar-
ticle couplings, so that the particle and sparticle
couplings evolve the same way. This is, however,
not necessarily the case below the SUSY thresholds.
Then, while the � function for, say, the hypercharge
gauge coupling still depends only on the hyper-
charge gauge coupling (because of Ward identities,
its one-loop evolution is governed by just the ‘‘vac-
uum polarization corrections’’), the � functions for
the corresponding ‘‘Yukawa-like’’ couplings ~g0~f of
the bino to the fermion-sfermion pair will, in gen-
eral, depend on gauge as well as all ‘‘Yukawa’’
couplings, including those from superpotential inter-
actions. There is no principle that precludes this once
supersymmetry is broken. However, above all SUSY
thresholds, this� function must reduce to that for the
gauge coupling, so that all dependence on super-
potential Yukawa couplings must cancel. This pro-
vides a nontrivial check on our formulas. Thus our
system must be extended to include the couplings ~g�

i

as well as the couplings ~f�
i , the additional ‘‘Yukawa-

like’’ couplings of gauginos and higgsinos, respec-

tively, which as we have noted become matrices in
the flavor space.

(ii) To implement SUSY and Higgs particle thresholds,
we need to have an idea of the spectrum as well as
the couplings in the corresponding mass basis. Of
course, the exact spectrum is only obtained after
extracting the weak scale values of all SSB parame-
ters, and then diagonalizing the various mass matri-
ces. Since the positions of the thresholds only enter
logarithmically in the solutions to the RGEs for the
various gauge and ‘‘Yukawa-like’’ couplings, it suf-
fices to include these in a reasonable approximation.
Obviously, this entails rewriting the interactions in
terms of the approximate mass basis for the fields. A
discussion of how we do so forms the subject of the
remainder of this section.

The mass basis and MSSM thresholds

In addition to the sparticles of the SM, the MSSM
includes squarks and sleptons, gluinos, charginos, and
neutralinos, and the additional spin-zero particles A, H,
and H� in its Higgs sector. At a scale Q larger than the
masses of all these particles, the RGEs are given by those
of the MSSM, and as we reduce Q, these morph into those
of effective theories that interpolate between the MSSM
and the SM, and ultimately at the scale Q�mt, reduce to
those of the SM, assuming that all sparticles and additional
Higgs bosons are significantly heavier than mt. This will
serve as another check of our formulas.

Assuming for the moment that ~fL and ~fR are also
approximate sfermion mass eigenstates, i.e. that mixing
among the sfermions is modest, decoupling the sfermions
is straightforward. Simply exclude any sfermion field (and
all its couplings) in the effective theory at a scale Q below
its mass, and evaluate the RGEs using this truncated theory.
The same is true for gluinos which, being color octets,
cannot mix with any other fermion since SU�3�C is un-
broken. The decoupling of charginos, neutralinos, and the
additional Higgs bosons is more complicated because these
are frequently strongly mixed.

Our procedure for decoupling these fields is guided by
the observation that threshold effects that we are trying to
evaluate are significant only if there are several well-
separated mass scales Mi in the spectrum. If this is not
the case, then we can decouple all the additional particles
at a common scaleMSUSY, since any error would only be of
O� 1

16�2 lnMSUSY

Mi
�, and so would become negligible as Mi !

MSUSY.
In the Higgs boson sector, threshold effects are, there-

fore, important only if the mass scale of the additional
bosons � mh, in which case mA ’ mH ’ mH� � mh <
mt. We can then decouple all the additional spin-zero
bosons at a common scale that we take to be mH, below
which h plays the role of the SM Higgs boson. To imple-
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ment the decoupling, we must rewrite the Lagrangian
couplings in terms of the (approximate) mass eigenstates
contained in the SU�2� doublets5

 

G	

h

� �
� s

h	u
h0
u

� �
	 c

h�
d
h0

d

� �
; (12)

 

H	

H

� �
� c

h	u
h0
u

� �
� s

h�
d
h0

d

� �
; (13)

where the electrically neutral, complex fields h and H are
given by

 h �
h	 iG0���

2
p ; H �

�H 	 iA���
2
p ;

and s � sin� and c � cos�. Above Q � mH, the theory
includes two Higgs doublets which we may take to be hu
and hd, or any two orthogonal combinations of these.
However, at Q � mH, it is specifically the doublet (13)
that decouples, and the effective theory includes just one
spin-zero doublet which couples to quarks and leptons via
Yukawa coupling matrices �u � fu sin�, �d � fd cos�,
and �e � fe cos�, with these relations imposed at Q �
mH. For Q<mH, we will be interested in the evolution of
the �i’s, which are the couplings of the doublet (12) that
remains in the theory. We stress again that supersymmetry
is broken, and the decoupling of the second doublet makes
no statement about the decoupling of the corresponding
higgsinos. The effective theory below Q � mH may or
may not contain higgsinos, depending on, as we will see
next, the value of �.

In the chargino-neutralino sector, threshold corrections
are small if j�j and the SSB gaugino masses all have a
magnitude �MZ, since their effects will then persist down
to the weak scale. Threshold effects are significant only
when at least one of these is hierarchically larger than the
weak scale, in which case gaugino-higgsino mixing effects
are small, and the gaugino-higgsino mass eigenstates can
be approximated by the bino, the wino-triplet, and the two
Majorana higgsino doublet fields,6

 

~h 1;2 �
 hd �  hu���

2
p : (14)

To implement decoupling, we must rewrite interactions of
gauginos and higgsinos in the basis consisting of bino,
winos, and these two higgsino doublets. Above the scale
of the higgsinos, we could have worked with any two
orthogonal linear combinations of the higgsino doublets,
whereas belowQ � j�j, both higgsinos decouple from the
effective theory. We note here that we have to perform
different rotations in the spin-zero and spin- 1

2 Higgs sectors
to go to the mass basis. This appears to be different7 from
what has been done in the literature [19,20]. There is one
additional complication that enters when we rewrite the
Lagrangian density in the (approximate) ‘‘mass basis.’’
Some of the fermion fields have negative eigenvalues,
and we are led to make field redefinitions [3] �k !
�i	5�

�k�k, where �k � 0�1� if the corresponding mass
eigenvalue is positive (negative), on Majorana spinors to
get their masses in canonical form. While this introduces
additional 	5’s and phases in the interactions, we have
checked that the RGEs are independent of these, as may
be expected since these RGEs do not depend on the
masses.

Finally, let us return to mixing effects in the sfermion
sector. We have ignored these in our analysis. For the
squarks of the first two generations, flavor-physics con-
straints typically restrict the size of intergeneration mixing
effects (in the basis where the corresponding quark
Yukawa couplings are diagonal). There is, however, no
principle that dictates intrageneration mixing to be small,
even though this is usually assumed to be the case for first
and second generation fermions in many models, while
third generation sfermions are expected to mix via their
Yukawa couplings.8 This said, barring large, accidental
cancellations, we would expect that the physical sfermion
masses are approximately of the same order, in which case
threshold effects from intrageneration mixing are not im-
portant, or the diagonal SSB terms are themselves hier-
archical so that the unmixed sfermions ~fL and ~fR are
approximate mass eigenstates, and can be decoupled at
their physical masses.

IV. APPLICATION TO THE MSSM

A. Interactions

We now use the RGEs for the general quantum field
theory that we obtained in Sec. II to derive the RGEs for
the dimensionless couplings of the R-parity conserving
MSSM. In the notation of Ref. [3], the superpotential for
the MSSM is given by

5We use the notation of Ref. [3] where the left-chiral up-type
Higgs superfield Ĥu transforms as a 2 of SU�2�, while the left-
chiral down-type Higgs superfield transforms as a 2
. The
doublets that make up the linear combinations in (12) and (13)
both transform as a 2 of SU�2� and have a positive weak
hypercharge.

6 hu and  hd are the fermionic components of the SU�2�
doublet left-chiral superfields Ĥu and Ĥd. Following Ref. [3],
we denote the charged and neutral components of  hu by
� h	u ;  h0

u
� and of  hd by � h�d ;  h0

d
�.  h	u is a Majorana spinor

whose left-chiral component destroys positively charged higgsi-
nos, while its right-chiral component destroys negatively
charged higgsinos, and similarly for  h�d .

7We mention though that, because we choose to decouple both
higgsinos at the common scale j�j, this rotation of the higgsino
fields is irrelevant for practical purposes.

8Substantial intragenerational mixing may occur via the tri-
linear sfermion-fermion-Higgs boson SSB parameter, which is,
after all, independent of the corresponding superpotential
Yukawa coupling.
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f̂ � ~�Ĥa
uĤda 	 �fu�ij
abQ̂

a
i Ĥ

b
uÛ

c
j 	 �fd�ijQ̂

a
i ĤdaD̂

c
j 	 �fe�ijL̂

a
i ĤdaÊ

c
j ; (15)

while the SSB terms may be written as

 

LSSB � �f~u
y
Lk�m

2
Q�kl~uLl 	 ~dyLk�m

2
Q�kl

~dLl 	 ~uyRk�m
2
U�kl~uRl 	 ~dyRk�m

2
D�kl

~dRl 	 ~�yLk�m
2
L�kl~�Ll 	 ~eyLk�m

2
L�kl~eLl

	 ~eyRk�m
2
E�kl~eRl 	m

2
Hu
h0y
u h0

u 	m2
Hu
h	yu h	u 	m2

Hd
h0y
d h

0
d 	m

2
Hd
h�yd h�d g 	 f~u

y
Rk�a

T
u �kl~uLlh0

u � ~uyRk�a
T
u �kl ~dLlh	u

	 ~dyRk�a
T
d �kl

~dLlh
0
d 	

~dyRk�a
T
d �kl~uLlh

�
d 	 ~eyRk�a

T
e �kl~�Llh

�
d 	 ~eyRk�a

T
e �kl~eLlh

0
d 	 H:c:g

�
1

2

M1

��0�0 	M2
��p�p 	M3

�~gA~gA� �
i
2

M01 ��0	5�0 	M02 ��p	5�p 	M03 �~gA	5 ~gA� 	 fb�h	u h�d 	 h

0
uh

0
d� 	 H:c:g;

(16)

where the matrix indices i; j; � � � label the (s)particle fla-
vors. The sfermion mass squared matrices m2

Q, m2
U, . . . are

Hermitian, whereas the Yukawa coupling matrices fu;d;e
that appear in the superpotential, as well as the trilinear
SSB scalar coupling matrices au;d;e, have no hermiticity or
symmetry property. Finally, the gaugino mass parameters
Ma and M0a are real, while the SSB Higgs mass parameter
may, in general, be complex. Since the RGEs for the
dimensionless couplings do not depend on any dimension-
ful parameters, we do not really need LSSB for their
derivation. The SSB parameters only enter the analysis in
that they determine the positions of the various thresholds.

In order to be able to compare our results (above all
thresholds) with the standard results already in the litera-

ture [15–18], we need the following conversion between
the notation used here and that in Ref. [15]: f � YT , a �
�hT , b � �B. Moreover, the complex gaugino mass pa-
rameters (Ma) in Ref. [15] are equivalent to Ma � iM0a in
(16).

It is clear that, in order to obtain the RGEs, we need to
extract the various matrices U1;2

� , X1;2
� , V�, and W�, whose

elements are the couplings between the various scalars, �,
and fermions of the MSSM. Thus fermion-fermion-scalar
interactions play an important role in our derivation. The
interactions of quarks and squarks with Higgs bosons and
higgsinos may be obtained from the superpotential, and are
given by

 

L3�
 �uj�fu�Tjih
0
uPLui� �uj�fu�Tjih

	
u PLdi	 �dj�fd�Tjih

�
d PLui	 �dj�fd�Tjih

0
dPLdi	 �ej�fe�Tjih

�
d PL�i	 �ej�fe�Tjih

0
dPLei	H:c:�

� 
 ��h0
u
~uyRj�~f

uR
u �TjiPLui	 �uj�~f

Q
u �
T
ji~uLiPL�h0

u
� ��h	u ~uyRj�~f

uR
u �TjiPLdi� �uj�~f

Q
u �
T
ji

~dLiPL�h	u 	
��h�d

~dyRj�~f
dR
d �

T
jiPLui

	 �dj�~f
Q
d �
T
ji~uLiPL�h�d

	 ��h0
d

~dyRj�~f
dR
d �

T
jiPLdi	 �dj�~f

Q
d �
T
ji

~dLiPL�h0
d
	 ��h�d

~eyRj�~f
eR
e �TjiPL�i	 �ej�~f

L
e �
T
ji~�LiPL�h�d

	 ��h0
d
~eyRj�~f

eR
e �TjiPLei	 �ej�~f

L
e �
T
ji~eLiPL�h0

d
	H:c:�: (17)

We have written these interactions with a left-chiral pro-
jector sandwiched between the four-component spinors to
facilitate comparison with Eq. (3). Notice that the cou-
plings of matter fermions to Higgs bosons are denoted the
same way as the superpotential Yukawa matrices. In con-
trast, we have denoted the couplings of the fermion-
sfermion system by a matrix with a tilde on it, labeled
by the scalar that enters the corresponding interaction.
Above the scale of all particles and Higgs boson thresh-
olds, the effective theory is the MSSM and these ~f�

couplings are the same as the corresponding superpotential

couplings f, but may be different below this scale. For
instance, if j�j<mH, the low energy theory just below
Q � mH contains two higgsinos, but just the one scalar
doublet in (12). The effective theory below Q � mH then
contains only the couplings �u;d;e along with the couplings
~f�
u;d;e, but no fu;d;e. As we will see, the evolution of ~f�

u;d;e
differs from the ‘‘would-have-been’’ evolution of fu;d;e for
this range of Q.

The remaining fermion-fermion-scalar interactions are
those with the gauginos, and are given by

 

L 3 �
1���
2
p

�
�~uyLj; ~dyLj�GQPL

ui
di

 !
	 �~�yLj; ~e

y
Lj�GLPL

�i
ei

 !
	 �uj�~g0uR�ji

�
�

4

3

�
~uRiPL�0 	 �dj�~g0dR�ji

�
2

3

�
~dRiPL�0

	 �ej�~g0eR�ji�2�~eRiPL�0 	 H:c:
�
�

���
2
p �
�~g~qL
s �ji��i�

�~g ~qyLj �~gA
�A
2
PLqi � �~g

~qR
s �ji��i�

�~g �qj
�A
2
PL~gA~qRi 	 H:c:

�

�
1���
2
p

�
�h	yu ; h0y

u �GhuPL
�h	u

�h0
u

 !
	 �h�yd ; h0y

d �GhdPL
�h�d

�h0
d

0@ 1A	 H:c:
�
; (18)
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where we have defined the following matrices:

 G Q �
�~gQ�ji ��3	

1
3 �~g

0Q�ji ��0 �~gQ�ji� ��1� i ��2�

�~gQ�ji� ��1	 i ��2� ��~gQ�ji ��3	
1
3 �~g

0Q�ji ��0

 !
;

(19)

 G L �
�~gL�ji ��3 � �~g0L�ji ��0 �~gL�ji� ��1 � i ��2�

�~gL�ji� ��1 	 i ��2� ��~gL�ji ��3 � �~g0L�ji ��0

 !
;

(20)

 G hu �
~ghu ��3 	 ~g0hu ��0 ~ghu� ��1 � i ��2�
~ghu� ��1 	 i ��2� �~ghu ��3 	 ~g0hu ��0

� �
; (21)

 G hd �
�~ghd ��3 � ~g0hd ��0 ~ghd�� ��1 � i ��2�
~ghd�� ��1 	 i ��2� ~ghd ��3 � ~g0hd ��0

� �
: (22)

Here, �0 and �p denote the (Majorana) hypercharge and
SU�2� gauginos. Just as the higgsino couplings in (17) may
differ from the corresponding Higgs boson couplings, be-
low the various thresholds the effective theory is no longer
supersymmetric, and the couplings of gauginos may de-
viate from the corresponding gauge boson couplings.
Moreover, unlike gauge couplings, the renormalization of
these fermion-fermion-scalar interactions depends also on
the couplings f and ~f�, so that the ~g�’s can acquire a
nontrivial flavor structure, as allowed for in (18) above.
Above the scale of the highest thresholds, however, the
RGEs for these ~g�-type couplings must coincide with
those for the gauge couplings (in the matrix sense).

B. Gauge coupling RGEs

The one-loop RGEs for gauge couplings (including
threshold effects) are well known. We will, however, write
these for completeness. As explained in Sec. I, we will
decouple particles using the ‘‘step approximation’’ [19,20].
Toward this end, for any particle P , we define

 

�P � 1 if Q>MP ;

0 if Q<MP :

Throughout this paper, we will assume that Q>mt so that
the SU�2� gauge symmetry is unbroken in the effective
theory, and that there are three matter generations.
Applying (1) for the MSSM particle content, and using

 N~f �
X3

i�1

�~fi
;

leads to the familiar gauge coupling RGEs,

 

�4��2�g1
j1-loop � g3

1

�
4	

1

30
N ~Q 	

4

15
N~uR 	

1

15
N~dR

	
1

10
N ~L 	

1

5
N~eR 	

1

10
��h 	 �H�

	
1

5
��~h1
	 �~h2

�

�
; (23)

 

�4��2�gj1-loop � g3

�
�

22

3
	 4	

1

2
N ~Q 	

1

6
N ~L

	
1

6
��h 	 �H� 	

1

3
��~h1
	 �~h2

� 	
4

3
� ~W

�
;

(24)

 

�4��2�gs j1-loop � g3
s

�
4	

1

3
N ~Q 	

1

6
N~uR 	

1

6
N~dR

	 2�~g � 11
�
: (25)

Here, g1 is the scaled hypercharge gauge coupling that
unifies with the SU�2� and SU�3� couplings when the
MSSM is embedded in a GUT: g02 � 3

5 g
2
1. We mention

that, although we have shown two distinct higgsino thresh-
olds above, since we are working in the approximation that
both higgsinos have the mass j�j, we will, from now on,
write

 �~h � �~h1
� �~h2

:

C. RGEs for Yukawa and Yukawa-type couplings

Turning now to the RGEs for fermion-fermion-scalar
couplings, we see that there is a large number of such
‘‘Yukawa-type’’ couplings in the Lagrangian. These are
as follows: the usual Yukawa couplings to Higgs bosons,
fu, fd, and fe; the couplings of higgsinos to the various
fermion-sfermion pairs, ~fQu , ~fQd , ~fLe , ~fuRu , ~fdRd , ~feRe ; hyper-
charge gaugino couplings, ~g0Q, ~g0L, ~g0uR , ~g0dR , ~g0eR , ~g0hu ,
~g0hd ; the SU�2� gaugino couplings, ~gQ, ~gL, ~ghu , ~ghd ; and
finally, the gluino couplings, ~gQs , ~guRs , ~gdRs . While the RGEs
for the gauge couplings still form a closed set, those for the
usual matter fermion Yukawa couplings do not. It is only
the RGEs for all these fermion-fermion-scalar couplings
that, together with those for the gauge couplings, form a
closed system. These new couplings must coincide with the
corresponding gauge or usual Yukawa coupling in the
SUSY limit, i.e. above the scale of the highest threshold.
This serves as the boundary condition for the RGEs for
these new couplings.

To implement decoupling of particles as described in
Sec. III, we must construct the matrices U1

�, U2
�, V�, W�,

X1
�, and X2

�, for all �, in the (approximate) mass basis for
the various fermion fields. We choose this basis to com-
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prise the Dirac fermions fui; di; �i; eig together with
the Majorana fermions f~h0

1; ~h0
2; ~h�1 ; ~h�2 ; �0; �1; �2; �3; ~gAg.

Here, ~h0
1;2 and ~h�1;2 are the neutral and charged components

of the Majorana spinor ~h1;2 introduced in (14).9 The sub-
script i (which runs from 1 to 3) for the Dirac fermions is a
flavor index which can be suppressed if the Yukawa terms
are written as matrices in flavor space. This means that, in
the MSSM, U1

� and U2
� will be �4� 4� blocks of �3� 3�

matrices when � is one of the Higgs bosons in (12) or (13).
Similarly, since flavor is carried by the sfermion scalar
index, � � ~fi, V ~fi

will be a �4� 9� matrix where the
number of rows can be further expanded to show each of
the three matter fermion flavors. Likewise, W ~fi

is a �9� 4�

matrix where now the number of columns can be similarly
expanded to exhibit these flavors. Thus, when fully written
out, V ~fi

is a �12� 9� matrix, while W ~fi
is a �9� 12�

matrix; see (29)–(32). Finally, X1
� and X2

� will both be
�9� 9� matrices.

Within the MSSM with R-parity conservation, the ma-
trices U1;2

� and X1;2
� are nonzero only for � �

fh;H ; G	; H	g. They can be readily worked out by com-
paring (3) with the MSSM Yukawa interactions in (17). It
would take up too much space to display each of these
matrices explicitly, so we will only present one example for
each type of matrix. If � � h, we have

 U 2
h �

0 0 0 0
0 cfTd 0 0
0 0 0 0
0 0 0 cfTe

0BB@
1CCA; (26)

where we use a bold-type 0 to indicate a �3� 3� matrix in
flavor space whose entries are all zero. The corresponding
U1

h matrix has its only nonvanishing entry in the (1,1)
block. The matrix X2

h takes the form

 X 2
h �

1

2

0�4�4� �2
h

�2T
h 0�5�5�

 !
; (27)

where

 � 2
h �

�s~g0hu 0 0 s~ghu 0
s~g0hu 0 0 �s~ghu 0

0 �s~ghu �is~ghu 0 0
0 s~ghu is~ghu 0 0

0
BB@

1
CCA: (28)

The eight X1
� and X2

� matrices can be obtained from (18)
in conjunction with (21) and (22). The reader will need to

write these as symmetric matrices using the symmetry
properties of Majorana spinor bilinears. Note that all the
entries in the last row and last column of these matrices are
zero because the Higgs boson has no coupling to gluinos.10

It is also clear from the MSSM Lagrangian that X1
� con-

tains only the ~g0hd and ~ghd couplings, while X2
� contains

only ~g0hu and ~ghu .
The V� and W� matrices, on the other hand, are non-

zero only for � � f~uL; ~dL; ~eL; ~�L; ~uR; ~dR; ~eRg. From the
interactions in (17) and (18), we can see that for left-
handed sfermions, V ~f contains just ~f�-type couplings
while W ~f contains only ~g�-type couplings. The opposite
is the case for the right-handed sfermions. In the case
where ~f � ~uLi, we have

 V ~uLi �
1���
2
p

V ~uLi 0�6�5�

0�6�4� 0�6�5�

� �
; (29)

with

 V ~uLi �
��~fQu �T�i �~f

Q
u �
T
�i 0�3�1� 0�3�1�

0�3�1� 0�3�1� �~f
Q
d �
T
�i �

~fQd �
T
�i

 !
: (30)

As alluded to above, since the scalar labels on V ~f and W ~f

carry sfermion flavor, we need to be careful when writing
these if we choose not to expand out the matter fermion
flavor. Here we denote this suppressed quark flavor index
by the �, so that �~fQu �T�i is really a �3� 1� column matrix
(since the index i is fixed by the squark flavor). Similarly

 W ~uLi �
1���
2
p

0�4�6� 0�4�6�

W ~uLi 0�5�6�

 !
; (31)

with

 W ~uLi �

1
3 �~g

0Q�i� 0�1�3�

0�1�3� �~gQ�i�
0�1�3� �i�~gQ�i�
�~gQ�i� 0�1�3�

2��A2 ��~g
Q
s �i� 0�1�3�

0BBBBBB@

1CCCCCCA: (32)

Notice that the positions of the suppressed fermion index
and the (fixed) sfermion flavor index, i, are swapped be-
tween the matrices (30) and (32). Once again, we have
suppressed the color index on the quark (and squark) field.
Also note that the couplings to the gluino enter only via the
W ~f matrix for ~qL, and only via the V ~f matrix for ~qR, for all
flavors of squarks.

We are now ready to proceed with the derivation of the
RGEs. Before we begin our real derivation, we perform a
pedagogical exercise to facilitate comparison with earlier
literature and also provide checks on our procedure. Since
earlier studies did not make the distinction between cou-
plings of quarks to gauge and Higgs bosons (or g’s and f’s)

9As already mentioned, since we are working with a common
threshold for higgsinos, we could have stayed in the original
basis. We will see below that performing this rotation (by an
arbitrary angle) gives us another check on our procedure. We
also draw attention to the fact that we have combined the
higgsinos of the 2 and 2
 representations, so that although ~h�1;2
are Majorana spinors, their chiral components do not annihilate a
definite sign of the charge.

10We have suppressed the color index which would otherwise
expand the last row/column.
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and the corresponding couplings (~g’s and ~f’s) of the quark-
squark system to the gauginos and higgsinos, we first
derive the RGE for �sfu� without separating out ~f’s and
~g’s from f’s and g’s, respectively. It is also instructive to
illustrate the additional complexity that results from keep-
ing distinct thresholds for A, H, and H�, and an arbitrary
rotation angle for the higgsinos instead of the 45� rotation
used in (14); i.e.

 �~h0
1
� �i	5�

�1�c0�h0
d
� s0�h0

u
�;

�~h0
2
� �i	5�

�2�s0�h0
d
	 c0�h0

u
�;

(33)

and

 �~h�1
� �i	5�

�1�c0�h�d
� s0�h	u �;

�~h�2
� �i	5�

�2�s0�h�d
	 c0�h	u �;

(34)

where s0 � sin�0 (set equal to � in Ref. [19]) so that this
rotation is independent of the one for the scalars. The
factors �i	5�

�1;2 allow for the possibility that either higg-
sino could have had a negative mass eigenvalue, as noted
below (14). As we saw earlier, the RGE is not dependent on
where or whether we include the �i	5�

� factors. We stress
again that we do not mean for the equation that immedi-
ately follows to be the correct RGE, but write it only to
facilitate comparison, and to illustrate some issues.
Ignoring the separation of tilde terms on the couplings in
the Lagrangian, we find

 

�4��2
d�sfu�ij
dt

�
3s
2

�
s2

3
��h 	 �G0 	 �G	� 	

c2

3
��H 	 �A 	 �H	�

�
�fufyufu�ij

	
s
2

fs02��~h0

1
	 �~h�1

� 	 c02��~h0
2
	 �~h�2

�g� ~Qk
�fufyu �ik�fu�kj 	 fs02�~h0

1
	 c02�~h0

2
g�~uk�fu�ik�f

y
ufu�kj�

	 s
s2��h � �G0� 	 c2��H � �A���fufyufu�ij 	
s
2

c2�G	 	 s

2�H	 � 4c2��G	 � �H	���fdfydfu�ij

	
s
2

fc02�~h�1

	 s02�~h�2
g�~dk
�fd�ik�f

y
dfu�kj� 	 s�fu�ij
3�s2�h 	 c

2�H�Trffyufug 	 c2��h � �H�

� Trf3fydfd 	 fye feg� � �fu�ij

�
3

5
g2

1

�
s

17

12
� s

�
1

36
� ~Qj
	

4

9
�~ui

�
� ~B

�

�
s
2

�s0s	 c0c�2�~h0

1
	 �s0c� c0s�2�~h0

2
��h 	

c
2
�s0c� c0s��s0s	 c0c���~h0

1
� �~h0

2
��H

	 
s0�s0s	 c0c��~h0
1
� c0�s0c� c0s��~h0

2
�

�
1

3
� ~Qj
�

4

3
�~ui

��
� ~B

�

	 g2
2

�
s

9

4
� s

3

4
� ~Qj

� ~W �

�
s
2

�s0s	 c0c�2�~h0

1
	 �s0c� c0s�2�~h0

2
	 2�s02s2 	 c02c2��~h�1

	 2�s02c2 	 c02s2��~h�2
��h 	

c
2

�s0c� c0s��s0s	 c0c���~h0

1
� �~h0

2
� 	 2sc�s02 � c02���~h�1

� �~h�2
���H

� 
s0�s0s	 c0c��~h0
1
� c0�s0c� c0s��~h0

2
	 2s�s02�~h�1

	 c02�~h�2
��� ~Qj

�
� ~W

�
	 g2

3

�
8s� s

4

3
�� ~Qj

	 �~ui��~g

��
:

(35)

A sum over repeated flavor indices k; l; . . . is implied,
including over those with three repeated indices, one of
which is a �~fk

, e.g. � ~Qk
�fufyu �ik�fu�kj on line 2. Several

comments are worth noting.
(i) In writing the RGE as in (35), where we have ignored

the differences between the usual gauge/Yukawa
couplings and their tilde counterparts, we have re-
tained distinct thresholds for each of the Higgs bo-
sons as well as for the higgsinos. This is partly to
facilitate comparison with Ref. [19], and partly to
indicate the origins of the various terms.

(ii) We see that if we take the MSSM limit, where all the
�’s are set equal to unity, we recover the usual, well-
known MSSM RGE [15–18]. This is evident if the
rotation angle that defines the doublets in (12) and

(13) is treated as a scale-independent parameter. In
this case, the right-hand side of (35) is proportional
to sin�, which cancels out leaving the MSSM RGE
for fu.11 Notice also that, in the MSSM limit, the
dependence on the higgsino rotation angle, �0, also
disappears, as it must.

11If instead we consider scale-dependent rotations, then the
rotated fields themselves have an explicit scale dependence. The
RGEs in Refs. [14,22] that were our starting point assume, of
course, no such scale dependence of fields. However, we know
that, above all thresholds, the rotation (which is merely a field
redefinition) cannot change the RGEs. In other words, there must
be additional compensating terms in the RGEs which effectively
allow us to take the sin� out of the derivative on the left-hand
side, so the RGE once again reduces to the MSSM RGE.
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(iii) If, on the other hand, we set all the �’s other than
�h, �G0 , and �G	 to zero, the theory includes just
the SM fermions, gauge bosons, and the single
Higgs doublet (12) that couples to SM quarks and
leptons via the coupling matrices �u � fu sin�,
�d � fd cos�, and �e � fe cos�. It is then easy
to see that we recover the relevant RGE for the
Yukawa couplings in the SM [24]. Indeed, all de-
pendence on the f’s in (35) disappears in favor of
dependence on the SM �’s.

(iv) Since SU�2�L remains a symmetry of the theory at
low energy, we should expect that the couplings
related to one another by SU�2�L should have the
same RGE. We have checked that this is indeed the
case, but only if we set a common value for all the
heavy Higgs boson thresholds, and an independent
common value for the higgsino thresholds. This
should not be surprising since any splitting between
the extra Higgs bosons, or between the higgsinos, is

an SU�2�L breaking effect (and would entail intro-
ducing even more couplings into the low energy
theory). We do not regard as reliable those terms in
(35) that come from SU�2� breaking effects because
we are then using an inconsistent approximation.

(v) Below the mass scale of the heavy Higgs bosons we
may expect that, since there is just one Higgs boson
doublet in the theory, only the �u;d;e couplings enter.
We can easily see that this is not the case if higgsi-
nos are lighter than mH. There will still be two
higgsino doublets in the low energy theory, and
these couple via the matrices ~f�

u;d;e (notice the tilde
on the f).

(vi) We have compared (35) using a common threshold
for the higgsinos with the corresponding RGE in
Ref. [19]. We find agreement for all but the terms
involving SU�2�L and U�1�Y gauge couplings. We
find

 

�4��2
d�sfu�ij
dt

3 �s�fu�ij

�
3

5
g2

1

�
17

12
�

�
1

36
� ~Qj
	

4

9
�~ui

�
� ~B �

�
1

2
�h 	

1

3
� ~Qj
�

4

3
�~ui

�
�~h0

1
� ~B

�

	 g2
2

�
9

4
�

3

4
� ~Qj

� ~W �

�
3

2
�h � 3� ~Qj

�
�~h0

1
� ~W

��
;

to be contrasted with [19]

 �4��2
d�sfu�ij
dt

3 �s�fu�ij

�
3

5
g2

1

�
17

12
	

3

4
�~h0

1
�

�
1

36
� ~Qj
	

4

9
�~ui 	

1

4
�~h0

1

�
� ~B

�
	 g2

2

�
9

4
	

9

4
�~h0

1
�

3

4
�� ~Qj

	 �~h0
1
�� ~W

��
:

There is a similar point of disagreement in the RGEs for the down-type Yukawa RGEs.12

(vii) We found it difficult to perform a corresponding comparison with Ref. [20], where there the RGEs appear to be
written without doing any rotation of the Higgs fields, so that we could not abstract the relationship between the
Higgs bosons h, A,H, and H�, and the thresholds that appear in their RGE. For the same reason, we could not see
how to reduce this RGE to the SM RGE below the scale of all sparticles and heavy Higgs bosons. The MSSM limit
is, however, correctly obtained.

We reiterate that (35) is not the correct RGE to use. If we derive this RGE keeping the distinction between gi and ~g�
i and

between fu;d;e and ~f�
u;d;e, and independently set common thresholds for the heavy Higgs scalars (�H) and the higgsinos (�~h),

along with a common threshold at mh for the ‘‘light Higgs doublet’’ (�h), we find that the RGE for the coupling of the up-
type quarks to Higgs bosons becomes

12The SM as well as the MSSM limits come out right. Since an even number of SUSY particles couple at any vertex, we do not,
however, understand how �~hi

could enter without being multiplied by a second � for another SUSY particle.
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�4��2
d�sfu�ij
dt

�
s
2
f3
s2�h 	 c

2�H��fufyu �ik 	 
c2�h 	 s
2�H��fdfyd �ik 	 4c2
��h 	 �H��fdfyd �ikg�fu�kj

	 s�fu�ik

�
�~h� ~Ql

�~fQu �
y
kl�

~fQu �lj 	
4

9
� ~B�~ul�~g

0uR�
kl�~g
0uR�Tlj 	

4

3
�~g�~ul�~g

uR
s �
kl�~g

uR
s �Tlj

�

	
s
4

�
2�~h�~uk�

~fuRu �ik�~f
uR
u �
y
kl 	 2�~h�~dk

�~fdRd �ik�~f
dR
d �
y
kl 	 3� ~W� ~Qk

�~gQ�Tik�~g
Q�
kl 	

1

9
� ~B� ~Qk

�~g0Q�Tik�~g
0Q�
kl

	
16

3
�~g� ~Qk

�~gQs �Tik�~g
Q
s �
kl

�
�fu�lj 	 s�~h� ~Qk

�
�3� ~W�~g

hu�
�~gQ�Tik 	
1

3
� ~B�~g

0hu�
�~g0Q�Tik

�
�~fQu �kj

�
4

3
s� ~B�~h�~uk�~g

0hu�
�~fuRu �ik�~g0uR�Tkj 	 s�fu�ij
�s
2�h 	 c

2�H�Trf3fyufug 	 c2��h � �H�Trf3fydfd 	 fye feg�

	
s
2
�~h�fu�ijf3� ~W
j~g

hu j2�s2�h 	 c
2�H� 	 j~g

hd j2�c2�h � c
2�H��

	 � ~B
j~g
0hu j2�s2�h 	 c2�H� 	 j~g0hd j2�c2�h � c2�H��g � s�fu�ij

�
17

12
g02 	

9

4
g2

2 	 8g2
3

�
: (36)

Here, as with (35) and in all the RGEs that follow, includ-
ing those in the Appendix, repeated flavor indices k; l; . . .
are summed over, including indices repeated thrice, once in
a � and twice in couplings.

It is easy to see the reduction to the MSSM, and as
before, to the SM RGE for the Yukawa coupling matrix
�u. Indeed, for Q<mH, this RGE becomes the RGE for
the coupling, �u � sin�fu, of up-type quarks to the light
Higgs doublet in (12), even if higgsinos, gauginos, or
matter sfermions remain in the low energy theory. The
factors of sin� and cos� in the first pair of curly braces
can clearly be absorbed to turn all the f’s into the corre-
sponding �’s. This is not, however, true in the next set of
terms in square brackets, where there is just one factor of
sin� that combines with the �fu�ik outside the square
bracket to yield ��u�ik. Notice, however, that the remaining
couplings on this line have tildes on them, and do not
correspond to the quark-quark-gauge/Higgs boson cou-
plings. Indeed, it is interesting to see that we get just the
right powers of sin� and cos� on the right-hand side for all
the MSSM couplings of matter fermions to Higgs bosons to
reduce to those of the SM when all �’s other than �h vanish.
Notice also that the ~g couplings have a nontrivial matrix
structure. Since it is these couplings (and not the corre-
sponding gauge boson couplings) that directly enter the
decays of squarks and sleptons, it behooves us to keep
careful track of these in a study of flavor physics of
sparticles.

While it is straightforward to derive the MSSM
RGEs starting from the general forms in (6)–(11), we
reiterate that the reader should keep clear the distinction
between the use of i; j; . . . as fermion field type indices
in the general form from their use as flavor indices in
the MSSM RGEs such as (36). Thus, in contrast to the

trace in (36), the trace in (6) refers to a sum over the
fermion field types, not just flavor. This means that not
all trace terms in (6)–(11) lead to a trace in the RGEs of
the MSSM, and further, sometimes the trace in the
MSSM RGEs may originate in terms that are not traces
in the general RGEs. We illustrate this with some ex-
amples. For instance, in the derivation of (36), starting
from (6):

(i) Since the matrix indices j, k on �U1
a�jk and �U2

a�jk
denote Dirac fermion type and flavor, there will be a
different matrix index for each quark and lepton
flavor. As a result, the term U1

b TrfU1y
b U1

a 	 U2y
a U2

bg
in (6) leads to the trace over flavors found in (36).

(ii) The matrix indices in �X1
a�jk and �X2

a�jk refer to
Majorana fermions, and so do not carry any flavor.
Tracing over these in (6) can, therefore, never lead
to a trace in the MSSM RGEs. This trace term
results in the term that immediately follows the
trace term in (36).

(iii) The situation is also different for the �Va�jk and
�Wa�jk in (6). For Va, flavor is located in the a and j
indices, and for Wa, in the a and k indices. When
there is a sum over squarks or sleptons (i.e. a sum
over the scalar index), we include a �~qi , where i is a
flavor index, to keep only the active sfermions at
that scale. This means that we can keep usual
matrix multiplication with the proviso that the con-
tribution from each squark flavor is associated with
a different �. For example, the sum over left-
handed squarks in 2VbX2y

a Wb leads to
�3s�~h� ~Qk

� ~W�~g
hu�
�~gQ�Tik�~f

Q
u �kj.

As a different example, consider the RGE for �~g0uR�
derived using (10):
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: (37)

Here, the terms involving a trace over flavors may not be
immediately evident. One such trace term, found on line 2,
is

 

1
2� ~B�~g

0uR�ij

1
3� ~Ql
�~g0Q�ykl�~g

0Q�lk�;

in which the trace is not explicitly written since we need to
keep information about the position of the squark thresh-
olds. We point out the following:

(i) The terms involving the trace over flavors in (37) do
not originate from the trace term in (10). The trace in
(37) can only originate when the external quark and
squark flavor indices on the left-hand side occur in
the same Va or Wa matrix on the right-hand side. We
see upon inspection that this is the case only for the
second term on the first line of (10), which neces-
sarily leads to the trace over flavors in (37). An
analogous discussion applies to the derivation of
the RGE for, say, ~g0Q, starting from Eq. (11). Note
also that, when we are checking reduction to the
MSSM, gaugino coupling matrices such as �~g0uR�
reduce to g0 � 1, so that we obtain an extra factor
of 3 when we take a trace over the flavors.

(ii) When inserting thetas, we must, of course, only
put thetas which correspond to summed internal
indices. To obtain, for example, the term
��~h� ~Qk

�~fQu �Tik�~g
0Q�kl�~f

uR
u �
lj, which comes from

2VbW

aWT

b in (10), where we have picked out the
left-handed squarks in the sum over b, we insert a
� ~Qk

, with k summed over squark flavors. Similarly,
we insert a �~h which comes from picking out the
higgsino terms in the sum over Majorana fermi-
ons.13 Finally, even though we have ~fuRu in our
example term, there is no �~u because the ~uR squark
is the same as the one which appears on the left-
hand side, and hence is necessarily an active squark.

(iii) In the one-loop RGEs for ~guRs , ~gdRs , and ~gQs there are
no contributions from X1 or X2, which is to be
expected since, as mentioned before, the Higgs
boson does not couple to the gluino.

(iv) Special care must be taken when considering inter-
actions with gluinos to correctly evaluate the sum
over colors. For example, the RGE for ~guRs has some
terms which may initially seem to lead to a trace
which includes ~g0uR . However, the term in question
is

 � �dc

�
�A
2

�
cd
�~g0uR�ykl�~g

uR
s �lk;

where l, k are flavor indices and c, d are color
indices. This term is clearly zero, since Trf�A2 g � 0.

The RGEs for all the dimensionless couplings can be
similarly obtained. We list these in the Appendix.

V. SOLUTIONS TO THE RGES AND FLAVOR
VIOLATION IN THE MSSM

Since our ultimate goal is to examine flavor violation in
sparticle interactions, and in sparticle decays in particular,
we are naturally led to examine the flavor structure of
various couplings, renormalized at the scale of the sparticle
mass, i.e. at scales Q typically between �100 GeV and a
few TeV.

The couplings of neutral gauge bosons remain flavor
diagonal under renormalization group evolution even at
higher loops, since any intergeneration couplings would
violate current conservation. This does not mean that their
evolution is independent of Yukawa couplings: Yukawa
couplings can, and do, enter the evolution of gauge cou-
plings via two-loop contributions to the RGEs, but only as
a ‘‘flavor-blind trace.’’ As a result of this, and the fact that
the charged current weak interaction only couples to the
left-handed fermions and their superpartners, intergenera-
tion couplings in the charged current weak interaction are
completely determined by the Kobayashi-Maskawa [25]
(KM) matrix.

13We also sum over quark flavors, l, but there is no correspond-
ing theta since we are always working at scales above mt.
Therefore, all quarks are active over the whole range of validity
of our RGEs.
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We thus turn to an examination of the flavor structure of
fermion-fermion-scalar interactions. These include the fa-
miliar Yukawa couplings of quarks with Higgs bosons, as
well as the couplings of the quark-squark system with
gluinos, charginos, and neutralinos. Although we will con-
fine ourselves to the quark/squark sector, our considera-
tions readily extend to the lepton sector. In this case,
however, the MSSM would need to be extended to include
effects from the flavor structure of the singlet neutrino/
sneutrino mass matrix and interactions.

It may appear simplest to work in a basis where the
Yukawa coupling matrices in (17) are diagonal at one
chosen scale, so that quarks are mass eigenstates, rather
than in the ‘‘current quark basis’’ which we have used to
write the superpotential (15) and the interactions (16)–(18)
as well as the RGEs. The two bases are related by the
transformations

 V L�u�u
M
L � uL; VL�d�d

M
L � dL;

VR�u�uMR � uR; VR�d�dMR � dR;
(38)

where the unitary matrices VL�u� and VR�u� [VL�d� and
VR�d�] diagonalize the Yukawa coupling matrix fu [fd] via

 V T
L�u�fuV
R�u� � fdiag

u ; VT
L�d�fdV
R�d� � fdiag

d : (39)

Of course, the matrices fdiag
u and fdiag

d are diagonal only at
one scale, which we take to be Q � mt. The KM matrix
that enters the interactions of W� bosons with quarks is
then given by

 K � VyL�u�VL�d�:

The problem with choosing to work in the quark mass basis
is that using different transformations for the left-handed
up and down quarks breaks the SU�2�L symmetry. As a
result, interactions of, say, the charged and neutral Higgs
bosons with quarks are no longer simply related by an
SU�2�L transformation, but involve an additional matrix
(which in the case of the MSSM is the KM matrix).14

It is convenient to work instead in the basis where just
one of the up- or down-type (but not both) Yukawa cou-
pling matrices is diagonal at mt. The interactions and the
RGEs that we have written in the last section continue to
hold in this special ‘‘current quark’’ basis, provided we
define the squark fields as the superpartners of these quark
fields. In the following, we will choose the basis so that the
up-quark Yukawa couplings are diagonal at mt, i.e. the up-
type quarks are in their mass basis at this scale. This does
not imply that the up-type squarks are also in the mass
eigenstate basis. This would be the case in the exact SUSY
limit, but the SSB squark mass matrices and the trilinear

SSB scalar couplings may independently violate flavor in
the squark sector. In writing our RGEs with independent
thresholds for the squarks, we have, however, assumed that
mixing between up-type squarks is small in this basis so
that ~uLi and ~uRi are approximately also mass eigenstates,
and likewise for down-type squarks.

With this preamble, let us turn to an examination of the
flavor-violating dimensionless couplings of the MSSM.
Let us begin with the Yukawa couplings of quarks to
neutral Higgs bosons. We will assume that we have diago-
nalized the SM Yukawa coupling matrices at the scaleQ �
mt, and examine the solutions for the various elements of
the up-quark Yukawa coupling matrix for larger values of
Q. We thus need to solve the system of RGEs listed in the
Appendix. Notice that, though the RGEs for the dimen-
sionful SSB parameters are decoupled from the RGEs for
dimensionless couplings, the weak scale values of the
dimensionful parameters nonetheless enter our analysis
in that they determine the various thresholds. This depen-
dence is, fortunately, only logarithmic, and it suffices to
approximate the location of the thresholds as discussed in
Sec. III. To solve the RGEs we rotate the Yukawa coupling
matrices to the current basis using (39), with matrices
VL;R�q� chosen to reproduce the KM matrix. Next, we
evolve these along with the values of gauge couplings to
the scale Q � MGUT using the RGEs with all the �’s set to
unity, i.e. the MSSM RGEs. We then evolve back down to
Q � mt, but this time including thresholds and the cou-
plings with tildes.15 We reset the gauge couplings and
current-basis Yukawa coupling matrices back to their input
values, run back up toMGUT, and iterate the procedure until
it converges with the required precision. We can then read
off the couplings in any basis at the desired values of Q.

Rather than show numerical results for many cases in
many SUSY models that have been considered, we have
chosen to illustrate our analysis for a simplified scenario
where the sfermions and the electroweak gauginos are all
at a mass scale �600 GeV while the heavy Higgs bosons
and gluinos have a mass �2 TeV. Thus, our effective
theory is supersymmetric for Q> 2 TeV, includes only
sfermions, charginos, and neutralinos together with SM
particles for 600 GeV<Q< 2 TeV, and is the SM for

14This matrix is the KM matrix for the MSSM where one of the
Higgs doublets couples to up-type quarks, and the other to down-
type quarks. In the general two Higgs doublet model, this is no
longer the case.

15This procedure would be somewhat modified if, instead of
choosing the location of heavy Higgs boson and sparticle thresh-
olds ‘‘by hand’’ as we do here, these were to be obtained using
GUT scale boundary conditions for SSB parameters. Universal
boundary conditions, such as the ones used in mSUGRA, can of
course be used in any sfermion basis, but in all other cases we
have to be specific about the choice of basis in which we specify
these SSB boundary conditions. This will be discussed in more
detail in Ref. [21]. As an aside, we also note that, to get the
solutions of the RGEs in this paper, it is only necessary to evolve
beyond the highest threshold during the iterations to obtain
convergence. We have evolved all the way to MGUT only because
we anticipate that this will be the Q value where SSB boundary
conditions will be specified in many realistic scenarios.
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Q< 600 GeV. In the intermediate range between 600 GeV
and 2 TeV, we will have to separately examine the cou-
plings ~g� and ~g0� (but not ~g�

s ) and ~f�
u;d;e as these split off

from the usual gauge and Yukawa couplings.

A. Quark Yukawa couplings

The values of the running quark mass parameters deter-
mine the Yukawa coupling matrices in the mass basis.
These can be rotated to an arbitrary current basis using
(38), or to the particular basis with diagonal up-type
Yukawa couplings by choosing the four matrices suitably.
In models where the SSB interactions are flavor-blind (at
any one scale), the four matrices are separately unphysical,
and physics is determined by just the KM matrix. In more
general scenarios though, physical quantities will depend
on more than just the KM matrix. In our numerical illus-
tration, we have used the program ISAJET [26] to extract
quark Yukawa couplings at the scale Q � mt in their mass
basis.16 Starting from this boundary condition, we have
iteratively solved the system of RGEs for a toy scenario,
where the SUSY thresholds are taken to be clustered either
at 600 GeV (M1,M2, j�j, and m~f) or at 2 TeV (mH,m~g), as
mentioned in the previous paragraph.

The results of this calculation for the elements of fu are
shown in Fig. 1. Specifically, we show j�fu�ijj if Q>mH,
and j��u�ijj= sin� (which joins continuously to the corre-
sponding element of fu atQ � mH) forQ<mH. Since the
KM matrix includes a complex phase which we take to be
60� [and since the matrices in (38) can themselves be
complex], these elements are, in general, complex num-
bers.17 In Fig. 1, we have plotted the absolute values of
these elements, in the basis where the up-quark Yukawa
coupling matrix is diagonal at Q � mt, versus the energy
scale Q. In our calculation, we include two-loop terms
albeit without threshold corrections which are numerically
completely negligible, as even the two-loop corrections
have only a small effect on our results. The three roughly
horizontal lines show the scale dependence of the diagonal
Yukawa couplings. This is largely governed by the strong
interaction gauge coupling terms in the RGE, and for large

Q values is a calculable power of this gauge coupling.18

There are kinks in these curves at 600 GeV and 2 TeV, but
these are not visible on the scale of this figure: see, how-
ever, Fig. 5. The off-diagonal elements of (the scaled) j�uj
all start off at zero atQ � mt, but rapidly increase to values
that, though small, may as in the case of �fu�23 become as
large as 10�6. The most striking thing about the figure is
the dip in all the off-diagonal elements at a value of Q in
the few hundred GeV range, close to the expected value of
squark masses in our example. An understanding of this
feature is of more than mere academic interest, since we
shall see that it also appears in the corresponding ~f cou-
plings, which directly enter the amplitudes for flavor-
violating squark decays.

To understand this curious feature, let us first consider a
further simplification where the two SUSY thresholds
coalesce into a single one at Q � M. We will, of course,
return to the case in Fig. 1 shortly. ForQ>M, the RGE for
fu becomes the corresponding MSSM RGE,

 

�4��2
d�fdiag

u �

dt
� 3�fdiag

u ��f
diag
u �y�f

diag
u �

	K
�fdiag
d ��f

diag
d �

yKT�fdiag
u �

	 �fdiag
u �Trf3�fdiag

u �y�f
diag
u �g

� �fdiag
u �

�
13

15
g2

1 	 3g2
2 	

16

3
g2

3

�
; (40)

while for Q<M, we have the SM RGE for the Yukawa
coupling matrix,

1e+04 1e+06 1e+08 1e+10 1e+12 1e+14 1e+161e+02
Q (GeV)

1e-18

1e-15

1e-12

1e-09

1e-06

1e-03

1

M
ag

ni
tu

de
 o

f 
Y

uk
aw

a 
C

ou
pl

in
g

(i,j)=

(2,2)

(1,1)
(2,3)

(1,3)

(3,2)

(1,2)

(3,1)

(2,1)

(3,3)

FIG. 1 (color online). Evolution of the magnitudes of the
elements of the up-quark Yukawa coupling matrix for the
MSSM with thresholds, shown by arrows, clustered at
600 GeV and 2 TeV, as discussed in the text. Above mH
( � 2 TeV) we plot j�fu�ijj, whereas below mH , where the
effective theory includes just one scalar Higgs doublet, we plot
j��u�ijj= sin� which is equal to j�fu�ijj at Q � mH � 2 TeV.

16ISAJET currently does not include flavor mixing among the
quarks. It does, however, include important radiative corrections
to the relationship between quark masses and the Yukawa
couplings. We expect that, because this flavor mixing is small,
its effect on the quark masses will also be small. In any case, we
expect to incorporate these RGEs into ISAJET, at which stage
flavor-mixing effects can be included in the iterative procedure
used to extract the Yukawa couplings. Since our discussion here
is meant only to be illustrative, it is not crucial that we use
absolutely precise values for the Yukawa couplings.

17We have solved these equations in a randomly chosen current
basis, i.e. one with a random choice of the matrices in (38), and
then rotated back to the basis where up-type quark Yukawa
couplings are diagonal at Q � mt. Our results are independent
of the initial choice of current basis, as they should be, providing
a nontrivial check on the code.

18For the (3,3) element, contributions from the third generation
Yukawa coupling are also significant.
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9

4
g2

2 	 8g2
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�
: (41)

The KM matrix K appears in these equations because we
have written them in the basis with all Yukawa couplings
diagonal and real at the scale Q � mt.

That the real or imaginary parts of the off-diagonal
elements all have a zero is simple to understand. First,
we observe that, since �u and �d start off as real and
diagonal at Q � mt, off-diagonal elements develop only
because the KM matrix has off-diagonal components.
Also, the imaginary parts of �u;d develop only via the
phase in the KM matrix. Next, notice that the ‘‘seed of
flavor violation,’’ i.e. the term involving the KM matrix in
the RGEs, which is also the seed for the imaginary part of
the off-diagonal elements, enters with opposite signs in the
SM and in the MSSM RGEs. This means that if this seed
term causes the real or imaginary part of any off-diagonal
element of, say, the up-type Yukawa coupling to evolve
with a negative slope in the SM, it would cause the same
element to evolve with a positive slope in the MSSM, and
vice versa. The evolution for mt < Q<M is governed by
the SM RGE, which causes the real part of an off-diagonal
element to evolve to, say, negative values. However, for
Q>M, the evolution is governed by the MSSM RGE, and
the real piece of this Yukawa coupling now begins to
evolve in the opposite direction, so that it first becomes
less negative, then passes through zero and continues to
positive values. Of course, at Q � M, we must remember
to switch from the SM couplings �u;d;e to the MSSM
couplings fu;d;e. The imaginary piece of the off-diagonal
Yukawa couplings similarly passes through zero. However,
we see from the sharp dips in Fig. 1 that the real and
imaginary parts have a zero at (almost) the same value of
Q, and furthermore, this location appears independent of
the choice of the flavor indices i and j. To understand this,
we need to analyze the equations further.

In the following we will collectively denote the solutions
of these equations by U, D, and E, i.e. U � fu for Q>M,
while U � �u for Q<M, and analogously for D and E.
For example, the RGE for U in the basis where both up-
and down-type quark matrices are diagonal at Q � mt can
be written in the form
 

�4��2
dUij

dt
� A1UikU

y
klUlj 	 A2�K
DDyKTU�ij

	 Uij TrfA3UyU	 A4DyD	 A5EyEg

	 UijG� ~
�t��: (42)

Here, ~
�t� denotes the collection of the three gauge cou-
plings. Of course, the coefficients Ai and the function G
differ for the SM and the MSSM. As already mentioned,
the evolution of the diagonal elements of U and D is
dominantly governed by the last term in these equations,
which contains the gauge couplings. If we drop all other
terms on the right-hand side, the RGE for the diagonal
Yukawa terms can be easily integrated, and we find

 U ii�t� � Uii�t0�F� ~
�t��; no sum on i: (43)

It is important to note that the function F is independent of
the quark flavor.19

Note now that the trace as well as the gauge coupling
terms are flavor independent. Assuming that the diagonal
Yukawas saturate the trace [remember that we just argued
that these diagonal terms are a function only of the gauge
couplings ~
�t�], we can combine these terms so that the
second and third lines on the right-hand side of (42) can be
written as

 U ij�t�f�t�;

again with f being independent of flavor. Next, let us look
at the term involving the KM matrix. Noting that the
diagonal elements of U and D are much larger than the
off-diagonal ones, we can write

 �K
DDyKTU�ij ’
X
k

K
ikDkk�t�Dkk�t�KjkUjj�t�;

where i and j are unsummed, fixed indices. In writing this,
we have used the reality of the diagonal elements of the
Yukawa matrices under renormalization group evolution
(discussed below). From the analogue of (43) for D�t�, we
see that this term has the structure

 M ij�t0�G�t�;

with Mij�t0� � K
ikDkk�t0�Dkk�t0�KjkUjj�t0�, and G a
flavor-independent function of just the gauge couplings,
which themselves depend just on t. Ignoring, for the mo-
ment, the first term in the RGE for U (the one cubic in U),
we see that we have managed to decouple the RGEs for Uij

which (if the first term is dropped) take the form

 DUij �
dUij

dt
�Mij�t0�G�t� 	 f�t�Uij�t�;

where f�t� and G�t� are known functions of t. The solution

19In the approximation where we retain just the last gauge
coupling terms in (40) and (41), these equations take the form

 �4��2
dUii

dt
� Uii�a1g

2
1 	 a2g

2 	 a3g
2
s �:

They can be readily integrated to give

 U ii�t� � Uii�t0��
3
r�1�gr�

ar=br ;

where br is the coefficient of the one-loop gauge coupling �
function, �r�gr� �

1
16�2 brg

3
r .
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to this may be written as

 U ij�t� �Mij�t0�
1

D� f
G�t� 	 U0

ij�t�;

where 1
D�f is the resolvent operator, and

 U 0
ij�t� � U0

ij�t0� exp
�Z t

t0
f�t�dt

�
is the solution to the corresponding homogeneous differ-
ential equation. For the SM evolution starting at Q � mt,
U0
ij�t0� vanishes (if i � j), and we are left with the solution

of interest,

 U ij�t� �Mij�t0�H �t�; (44)

where the function H �t� � 1
D�f G�t� is independent of

flavor. All the flavor information is contained in the
‘‘boundary value,’’ Mij�t0�. To clarify, we use the boundary
conditions on the SM Yukawa couplings to obtain U up to
the (common) SUSY threshold. The values of U and D at
Q � 2 TeV now serve as the boundary condition for
MSSM evolution. The central point of this analysis is
that the flavor dependence is completely captured in the
first factor Mij�t0�, where t0 corresponds toQ � mt for SM
evolution, and to the SUSY threshold for MSSM evolution.

To the extent that we can ignore the first ‘‘cubic term’’ in
the U RGEs, we see that the flavor structure of the evolu-
tion of �ij is given by (44). We make the following
observations.

(i) This structure is independent of the coefficients in
the various terms in the RGEs as well as independent
of which matrices enter into the trace. The same
structure is thus obtained for both SM and MSSM
evolution. The important approximation was that the
diagonal elements of the Yukawa matrix dominate in
the basis where these are diagonal at the low scale.

(ii) Equation (44) was obtained without any assump-
tions about the hierarchical structure of the KM
matrix.

We can immediately obtain two corollaries from (44).

(1)
UR
ij�t�

UI
ij�t�

, where the superscripts R and I, respectively,

denote the real and imaginary parts, is independent
of t.

(2)
UR=I
ij �t�

UR=I
kl �t�

is independent of t.

Our program is to start at Q � mt with the ‘‘diagonal
boundary conditions’’ for the SM Yukawa couplings and
evolve �u;d;e to the scale Q � mH. We then scale the up-
and down-type Yukawa couplings by 1= sin� and 1= cos�,
respectively, and finally continue this evolution to higher
values of t using the MSSM RGEs. By corollary 1 above
we see that, when the real part of any off-diagonal Yukawa
coupling vanishes (as it must for some value of Q>M),
the imaginary part of this coupling also vanishes. Corollary
2 then tells us that the other off-diagonal elements likewise

vanish for this same value of Q. This is, of course, exactly
the qualitative feature in Fig. 1 that we started out to
explain.

Before turning to other issues, let us briefly return to the
first term that we have ignored up to now. If we saturate the
product UUyU with two diagonal elements in each of the
three terms and also remember that the diagonal elements
are real, i.e. write �UUyU�ij ’ UiiUiiUij 	 UjjUjjUij 	

UiiUjjU
ji, we find that, like terms we have considered up
to now, two of these terms do not couple Uij with anything
else, while the third term couples Uij to U
ji. Equation (44)
is thus violated only by this last term. We have indeed
checked that the positions of the zeros are not exactly
coincident but have a very tiny spread of a few GeV not
visible on the figure. We have also checked that increasing
the coefficient of the cubic term increases this spread,
while altering the other coefficients has no effect on it, in
keeping with expectations from our analysis.20

Our analysis of Fig. 1, up to now, has assumed a com-
mon location for the threshold for all non-SM particles
which is, of course, not the case in the figure. It is, however,
clear that the bulk of the change in the slope of the curve
occurs from the thresholds at 600 GeV where the coeffi-
cient of the term involving the KM matrix changes its sign,
causing the magnitudes of the off-diagonal couplings to
decrease until they pass through zero, beyond which the
magnitude starts increasing once again. The kink in the
various curves at Q � 2 TeV marks the position of the
second threshold. It should, therefore, be clear that the
location of the zero is largely determined by the spectrum,
and is insensitive to other details.21

Finally, we remark that the imaginary parts of the off-
diagonal couplings (recall that these have their origin in the
phase in the KM matrix) may, depending on which matrix
element we are considering, be of comparable magnitude
to the corresponding real part, or much smaller. The rela-
tive size of the imaginary part is largely determined by the
relative size of the imaginary part in the corresponding
element of the ‘‘seed term,’’�K
DDyKTU in the RGE. It
is easy to see that this ‘‘seed’’ is real for the diagonal
elements of U (or D), which, therefore, continue to remain
real. For the case study in the figure, the (1,3) element has

20We have also numerically solved the RGEs using a fictitious
KM matrix with large off-diagonal entries. We found the same
behavior as in the figure, in keeping with our observation that the
analysis does not depend on the hierarchical structure of the KM
matrix.

21We checked also that using a fictitious KM matrix with large
off-diagonal entries changes the evolution of the off-diagonal
couplings (for instance, the relative size of the imaginary parts)
as expected, but hardly affects the location of the zero which is
determined by the mass spectrum. As mentioned previously, the
location of the zeros is also largely insensitive to the coefficients
of the various terms in the RGEs, unless of course, a coefficient
happens to be so large that the solution blows up before the zero
can be reached.
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the largest imaginary part O�10�7�, while the imaginary
part of other off-diagonal elements is smaller by 3–6
orders of magnitude over most of the range of Q.

We should mention that in a complete diagrammatic
calculation there would be other nonlogarithmic correc-
tions to the couplings not included in our calculation. The
corrections to the diagonal elements of the Yukawa cou-
pling matrices are already included in ISAJET using the
formulas in Ref. [27], and so will be automatically in-
cluded when these RGEs are embedded into the ISAJET

code. In contrast to a diagrammatic approach, our method
(also the one used in ISAJET) automatically sums the po-
tentially large logarithms that arise when the MSSM spec-
trum is significantly split. We also remark that, in Fig. 1 (as
well as in the other figures below), we have ignored any
finite shifts in the coupling constants coming from the
matching of the two effective theories (with and without
the heavy particle) when we decouple particles at their
mass scale [28]. This would potentially give jumps in the
couplings as we cross the various thresholds, which must
be taken into account to achieve true two-loop accuracy.
The RGEs that we have derived are, of course, unaffected.

B. Higgsino and gaugino couplings to quarks
and squarks

We now turn to a study of the evolution of the couplings
of gauginos and higgsinos to the quark-squark system.
Above all thresholds, i.e. forQ>m~g � mH in our numeri-
cal study, these are equal to the corresponding gauge and
quark Yukawa couplings, but differ from them for the
range of Q between the lower threshold at the sfermion,
higgsino, and electroweak gaugino masses and the high
threshold. Of course, for Q values below this lower thresh-
old, the effective theory is the SM and the couplings ~g, ~g0,
~fu, and ~fd cease to be meaningful quantities in our simple-
minded approach with thresholds being incorporated by
step functions. Note also that because the gluino is the
heaviest SUSY particle in our illustration, there is no ~gs
coupling. Above all thresholds, supersymmetry relates
gaugino and gauge couplings so that flavor violation via
gaugino interactions is not allowed. For Q<mH, the
connection between the gauge couplings and gaugino cou-
plings is broken, and flavor-violating interactions of gau-
ginos are no longer forbidden by any symmetry. Although
these ~g�-type couplings start off proportional to unit ma-
trices at Q � mH, contributions to their renormalization
group evolution from terms involving Higgs boson and
higgsino couplings to quarks and squarks [see, e.g.,
Eq. (A12) of the Appendix], which cancel out if all thetas
are set to unity, cause these to develop off-diagonal ele-
ments for Q<mH.

These off-diagonal components of ~g and ~g0 (and also of
the corresponding Yukawa couplings) induce flavor-
violating decays, ~qi ! qj ~Zk, of squarks even if there is
no explicit flavor mixing in the SSB sector (i.e. all flavor

violation is induced via superpotential Yukawa couplings
as is the case in many models), and hence are phenomeno-
logically relevant. In this case, the partial widths for flavor-
violating decays will be small, so that these decays will
likely be most important for those squarks for which flavor-
conserving, tree-level, two body decays are kinematically
forbidden. Thus, the neutralino in the flavor-violating de-
cay is most likely to be the lightest supersymmetric particle
(LSP). Since the LSP is bino–like in many models, it
would seem that the couplings ~g0 would be the most
relevant, but this would of course depend on the size of
the corresponding off-diagonal component, relative to the
same component of the other couplings.

We begin by showing the magnitudes of the off-diagonal
components of the electroweak gaugino-quark-squark cou-
plings in Fig. 2 for (a) the matrices ~g0Q and ~g0uR , and (b) the
matrices ~gQ (there is no ~guR). We obtain these from the
corresponding evolution equations with the boundary con-
dition that these matrices are equal to the corresponding
gauge coupling times the unit matrix at Q � mH. On the
low Q side, we terminate these curves at the lower SUSY
threshold, below which these couplings no longer exist.
Also shown for comparison is the (2,3) element, the one
with the largest magnitude, of the up-quark Yukawa cou-
pling matrix fu. Remember that we are plotting these
matrix elements in the basis where the up-quark (but not
the down-quark) Yukawa couplings are diagonal at Q �
mt. There are several features worth remarking about.

(1) The off-diagonal elements of the gaugino coupling
matrices vary over the same broad range as the
corresponding elements of the Yukawa coupling
matrices shown in Fig. 1. Indeed the magnitude of
some of these elements considerably exceeds the
largest element of the quark Yukawa coupling ma-
trix. It would, therefore, be dangerous to simply
disregard these when discussing sparticle flavor
physics, particularly in models where Yukawa cou-
plings are the sole source of flavor violation.

(2) The off-diagonal couplings of the ~g0Q matrix are
several orders of magnitude larger than those of
~g0uR . The reason for this can be traced to their
RGEs, which are listed in the Appendix. We see
from (A10) and (A12) that the evolution of the
matrices ~g0Q depends on the down-type Yukawa
couplings, while that of ~g0uR does not have any
such contributions. In the basis that we are working
in, these contributions are much larger than those
from up-type Yukawa matrices (and larger than
those from the gaugino coupling matrices which
start off as unit matrices at Q � mH), so that it is
no surprise that the off-diagonal elements of ~g0Q

attain larger values than those of ~g0uR . A similar
remark applies to the magnitudes of the elements
of ~gQ shown in frame (b).

(3) We also see from the figure that the magnitudes of
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the gaugino coupling matrices are symmetric under
the interchange of the two indices. We have checked
that this symmetry is not exact but (for our illustra-
tion) holds to a few parts per mille. The reason for
the symmetry is that in the course of their evolution,
starting from a unit matrix at Q � mH, the gaugino
coupling matrices remain (approximately)
Hermitian. This is simplest to see for the ~g0Q matri-
ces, retaining only the dominant terms involving the
down-type Higgs and higgsino coupling matrices on
the right-hand side of (A10). If we now ignore the
small difference between the Higgs and higgsino
coupling matrices in the RGE, and keep in mind
that the matrices ~g0Q and ~gQ on the right-hand side
are almost the unit matrices, it is not difficult to see
that the gaugino coupling matrices ~g0Q and ~gQ re-
main Hermitian with, but only with, our approxima-
tions. A similar, but somewhat more involved,

argument also holds for the off-diagonal elements
of ~g0uR , where we have to look at all the terms in
(A12) since, in the absence of down-type Yukawa
matrices on the right-hand side, no single term
dominates. Nonetheless, we have checked that, if
the difference between Higgs boson and higgsino
coupling matrices on the right-hand side can be
ignored, and the gaugino coupling matrices can be
approximated by unit matrices, the renormalization
group evolution preserves the (approximate) hermi-
ticity of ~g0uR , explaining why the magnitudes of the
corresponding off-diagonal elements are symmetric
in the flavor indices.

Next, we turn to the off-diagonal elements of the ~f matri-
ces. We know that these will deviate from the elements of
the corresponding Yukawa coupling matrix only below the
threshold at Q � mH, but have magnitudes similar to the
corresponding Yukawa coupling matrix elements, whose
absolute values are shown in Fig. 1. It is the difference
between the couplings of Higgs bosons and higgsinos that
will be the main focus of our attention. In Fig. 3, we show
the evolution of the real and imaginary parts of the (1,3)
element of (i) the Yukawa coupling matrix, fu for Q>mH
and �u= sin� (which connects continuously to fu) for Q<
mH, and (ii) the higgsino coupling matrices ~fQu , and ~fuRu
whose evolution is given by (A4) and (A7), respectively, of
the Appendix. There is no particular reason for our choice
of the (1,3) element (which happens to have a comparable
real and imaginary piece) for the illustration in the figure.
Here we have focused on the lower end of Q, where the fu
and ~f�

u couplings are different, while the inset shows the
evolution all the way to MGUT. Several points may be
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of the range of Q, where the Higgs boson and higgsino coupling
differ from one another, while the inset shows the evolution all
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FIG. 2 (color online). Evolution of the magnitudes of the
complex off-diagonal elements of the gaugino coupling matri-
ces: (a) ~g0Q and ~g0uR , and (b) ~gQ defined in the text for the
MSSM, with the positions of the sparticle and Higgs thresholds
(again denoted by arrows) as in Fig. 1. Also shown for compari-
son is the magnitude of the (2,3) element, the one with the largest
magnitude, of the up-quark coupling matrix fu. The legend is in
the same order (from top to bottom) as the curves. The magni-
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symmetric in the flavor indices to a good approximation, as
explained in the text.
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worthy of notice.
(i) For Q>mH where the effective theory is supersym-

metric, we see that the real and imaginary parts of
the Higgs boson and higgsino couplings separately
come together as expected.

(ii) The reader can easily check that the ratio of the real
and imaginary parts of the Higgs boson Yukawa
couplings is independent of the scale, as we had
discussed in Sec. VA.

(iii) For Q<mH, the higgsino couplings are split from
the corresponding Higgs boson couplings as well as
from one another by a factor of several. For in-
stance, at the scale of squark masses, the real
(imaginary) parts of the (1,3) element of both ~fQu
and ~fuRu are quite different from the real (imaginary)
parts of �fu�13. It seems to us that the use of the
evolved Higgs boson coupling in place of the cor-
responding higgsino coupling could be a poor
approximation.

(iv) Notice that while the real and imaginary parts of
�~fQu �13 and �~fuRu �13 come to zero at the same point,
the position of the zero differs for the two
couplings.

Up to now we have focused our attention on flavor off-
diagonal couplings. Before closing our discussion, we
briefly consider the effect of the thresholds on the evolution
of flavor-diagonal couplings. As an illustration, we show
the evolution of the hypercharge gauge coupling g0 and the
(3,3) elements of the hypercharge gaugino coupling matri-
ces ~g0Q and ~g0uR in Fig. 4.

The black solid line denotes the result of our complete
calculation of the gauge coupling including both threshold
and two-loop effects. Also shown by green dashed and blue
dotted lines are the corresponding results obtained at the
one- and two-loop levels, but ignoring threshold effects.
The evolution of the (3,3) element of ~g0Q breaks away from
the evolution of g0 at Q � mH, and is shown as the violet
dot-dashed curve that terminates at Q � 600 GeV. The
insets on the left and right show zooms of these curves at
the low and high ends, respectively. In the inset on the left,
we have also shown the evolution of the (3,3) element of
~g0uR as the orange short-dashed line. We have checked that
all the diagonal elements of both ~g0Q and ~g0uR have a
similar behavior. Moreover, the (1,1) and (2,2) elements
all evolve essentially together with only the (3,3) elements
split from these due to top Yukawa couplings.22 The gauge
coupling curves use the measured value of the coupling at
the low scale as the boundary condition, while the gaugino
coupling curves are obtained assuming that the corre-
sponding matrix equals the hypercharge coupling times

the unit matrix at Q � mH. Several points are worth not-
ing:

(1) Since the value of the gauge coupling is fixed atQ �
mt in our illustration, the difference between one-
and two-loop evolution (without threshold effects) is
seen at the high Q end where the curves are termi-
nated at Q � MGUT, defined as the point where the
SU�2� and the scaled hypercharge couplings meet.
Notice that MGUT is different in the two cases, as is
the value of the gauge coupling at Q � MGUT. This
relative difference is O� 1

16�2�, roughly the expected
magnitude of a higher loop effect. The full calcu-
lation of the evolution depicted by the solid black
line differs the most from the other two curves at the
low end, because we start off with the evolution
using the � function of the SM and, as we pass
through the various thresholds, join up at Q � mH
to the MSSM evolution. Beyond Q � mH, the full
and two-loop curves evolve with the same � func-
tion, but the latter ends up lower because threshold
effects caused it to start off lower atQ � mH, as can
be seen in the inset on the left. That it ends up so
close to the one-loop curve is a coincidence, but its
proximity reflects the conventional wisdom that
two-loop effects in the evolution are numerically
comparable in magnitude to the threshold correc-
tions in the evolution at one loop.

(2) Turning to the gaugino couplings at the low end, the
most striking feature is that, below Q � mH, these
evolve in the opposite direction to the gauge cou-
plings. This behavior can be understood if we rec-
ognize that forQ<m~g the evolution of the diagonal
gaugino couplings now depends on the much larger
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FIG. 4 (color online). Evolution of the hypercharge gauge
coupling at the one-loop (green dashed line) and two-loop
(blue dotted line) levels (excluding threshold effects), and with
the full calculation (solid black line). Also shown is the evolution
of the (3,3) element of ~g0Q (and ~g0uR in the left inset). The main
figure shows the evolution of these couplings between Q � mt
and Q � MGUT, while the insets on the left and right zoom in on
the range of Q near the TeV scale and near MGUT, respectively.

22In our illustration, where we have tan� � 4, the curves for
the (1,1) and (2,2) elements fall in between the dot-dashed violet
curve for �~g0Q�33 and the orange-dashed curve for �~g0uR �33 in
Fig. 4.
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gluon coupling even at the one-loop level. As we can
see from (A10), the terms involving ~gQs cancel the
terms depending on the QCD coupling constant gs if
Q>m~g. However, forQ<m~g the terms with �~g are
no longer operative, and this cancellation is incom-
plete, causing a large change in the � function, and
hence in the slope of the curve. It is striking to see
that, even though we have maintained both thresh-
olds not far from the TeV scale, the corresponding
gaugino and gauge couplings can develop a differ-
ence of�4%. The existence of a difference between
a gauge boson coupling and the corresponding gau-
gino coupling has been discussed in Ref. [29]
(although without any flavor structure), where it
was suggested that its determination at an e	e�

linear collider [30] would give an idea of the split-
ting between sparticle masses, even if the heavy
sparticles are not kinematically accessible.

Finally, we turn to flavor-conserving Higgs and higgsino
interactions. As an illustration, we show the evolution of
the (3,3) elements of fu, of ~fQu , and of ~fuRu in Fig. 5. Just as
in the previous figure, we show results for the complete
calculation at the two-loop level, including threshold ef-
fects as well as differences between the couplings of
Higgs/gauge bosons and of higgsinos/gauginos by the solid
black line. We also show the results that we obtain with just
MSSM evolution all the way to Q � mt using one-loop
RGEs (the green dashed curve) and two-loop RGEs (the
blue dotted curve). In all three cases we start with the same
value for the Yukawa coupling at Q � mt. Also shown by
the violet dot-dashed and orange short-dashed lines is the

evolution of the (3,3) element of the matrices ~fQu and ~fuRu ,
respectively. The two insets are similar to those in the
previous figure. We note the following:

(1) We see that the complete calculation of the Yukawa
coupling leads to a large difference from the two-
loop calculation without thresholds over most of the
range of Q. This is not new and is largely due to the
difference between the evolution of Yukawa cou-
plings in the SM and in the effective theories that
interpolate between the SM and the MSSM.23

Below the kink at Q � 600 GeV in the solid black
curve, the evolution of the Yukawa coupling is as in
the SM, while above Q � mH it is as in the MSSM.
Notice that in this case, threshold effects are con-
siderably larger than the difference between one-
and two-loop evolution.

(2) It can be clearly seen from the left inset that the
higgsino couplings evolve quite differently from the
corresponding Higgs boson couplings once Q is
below mH. Once again, this difference is largely
due to incomplete cancellations in terms involving
‘‘strong’’ interaction couplings of gluons and glui-
nos, as may be seen from (A4) and (A7) of the
Appendix.

VI. CONCLUDING REMARKS

RGEs provide the bridge that allows us to extract pre-
dictions of theories with simple physical principles valid at
very high energy scales, many orders of magnitude larger
than energies accessible in experiments. Because of renor-
malization effects, these same simple principles lead to
complex predictions at accessible energies. Since super-
symmetric theories allow sensible extrapolation to high
energy, RGEs have played a central role in the analysis
of many supersymmetric models, generally assumed to
reduce to the MSSM (possibly augmented by right-handed
neutrino superfields) in the range between the weak and
GUT or Planck scales.

In this article, the first of a series of two papers, we have
reexamined the threshold corrections to the RGEs for the
dimensionless couplings of the MSSM, incorporating also
the effects from flavor mixing of quarks and squarks.
Above the scale of all new particle thresholds, the effective
theory is the MSSM, with just three gauge couplings and
three different Yukawa coupling matrices (that specify the
interactions of matter fermions with Higgs bosons) being
the independent dimensionless couplings of the theory. All
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FIG. 5 (color online). Evolution of the (3,3) element of the
Yukawa coupling, fu, at the one-loop (green dashed line) and
two-loop (blue dotted line) levels (excluding threshold effects),
and with the full calculation (solid black line). Also shown is the
evolution of the (3,3) element of ~fQu (and ~fuRu in the left inset).
The main figure shows the evolution of these couplings between
Q � mt and Q � MGUT, while the insets on the left and right
zoom in on the range of Q near the TeV scale and near MGUT,
respectively. As in Fig. 1, we have plotted �u= sin� below Q �
mH.

23Notice in the left inset that the solid black line ‘‘curves’’
significantly between Q � 600 GeV and Q � mt. This high-
lights the advantage of our approach (also used in the event
generator ISAJET), which ‘‘sums logs of the ratio of the low and
high thresholds by solving the RGEs,’’ over that sometimes used
in the literature where MSSM evolution is used all the way down
toQ � mt and then corrected for ‘‘via a single step’’ evolution to
take into account the difference between the running in the
MSSM and in the SM.
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other dimensionless couplings, for instance those of gau-
ginos or higgsinos to the fermion-sfermion system, or
quartic scalar couplings, are related to these by supersym-
metry. These relations are, however, no longer valid once
supersymmetry is broken, so that then the couplings to
gauginos and higgsinos will renormalize differently from
gauge and Yukawa couplings, respectively. In a consistent
treatment of threshold corrections, the RGEs for these
couplings will therefore differ from the RGEs for the gauge
and quark Yukawa couplings that are available in the
literature.

We have adapted the RGEs for a general (i.e. nonsuper-
symmetric) field theory [14,22] and rewritten them in four-
component spinor notation that we use when we obtain the
RGEs of the MSSM. The details of our procedure may be
found in Secs. II and III, and the application to the MSSM
in Sec. IV. The complete set of RGEs for the dimensionless
couplings between SM particles and their superpartners
(but not for the quartic couplings of scalars) is given in
the Appendix. These quartic couplings are less important
from a phenomenological perspective, though some of
these do enter the squark and slepton mass matrices. The
important thing for the present discussion is that these do
not enter into the RGEs for the fermion-fermion-scalar
couplings, which can then be evolved independently
from the quartic couplings.

We have presented some sample numerical results for
the evolution of various couplings in Sec. V. The analysis
here is meant only to give a sampling of effects that, to our
knowledge, have not been previously pointed out in the
literature. Since flavor physics in the sparticle sector has
been the main motivation for our analysis, we point out that
when threshold effects are included, gauginos are not
different from higgsinos in that neutral gauginos also
develop flavor-changing couplings to quarks and squarks.
As seen from Fig. 2, while these flavor-violating gaugino
couplings vary over several orders of magnitude, they
can be comparable, or even larger, than the correspon-
ding couplings to Higgs bosons. An illustration of flavor-

violating higgsino couplings is shown in Fig. 3. The scale
dependence of these is quite different from that of the usual
Yukawa couplings of quarks to Higgs bosons. We stress
that the induced flavor-violating couplings of gauginos and
higgsinos, evaluated at the scale of any particular squark
mass, will contribute to the amplitude for the flavor-
violating decay of this squark. Such a contribution is dis-
tinct from the usually evaluated contribution from the
induced flavor violation in the squark mass matrix. Both
types of contributions need to be included. Finally, we
point out one last striking feature of our analysis. We see
from Figs. 4 and 5 that the inclusion of SUSY threshold
corrections leads to a difference of a few percent between
the flavor-diagonal electroweak couplings of gauginos and
gauge bosons, and of higgsinos and Higgs bosons, traced to
SUSY QCD contributions in even the one-loop RGEs. This
could have a noticeable effect on the evaluation of sparticle
masses as well as of thermal relic densities of neutralino
dark matter created in the big bang.

In summary, we have presented the RGEs of the dimen-
sionless couplings of the MSSM in this paper. In a follow-
up paper under preparation [21], we will present the RGEs
for the dimensionful parameters, again including threshold
and flavor-mixing effects. This complete set will facilitate
the examination of flavor phenomenology in SUSY models
with arbitrary ansätze for flavor in the SSB sector.
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