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We consider a 3� 1 lattice QCD model with three quark flavors, local SU�3�c gauge symmetry, global
SU�3�f flavor symmetry, in an imaginary-time formulation and with strong coupling (a small hopping
parameter � > 0 and a plaquette coupling �> 0, 0<�� �� 1). Associated with the model there is an
underlying physical quantum mechanical Hilbert space H which, via a Feynman-Kac formula, enables us
to derive spectral representations for correlations and obtain the low-lying energy-momentum spectrum
exactly. Using the decoupling of hyperplane method and concentrating on the subspace H e �H of
vectors with an even number of quarks, we obtain the one-particle spectrum showing the existence of 36
meson states from dynamical first principles, i.e. directly from the quark-gluon dynamics. The particles
are detected by isolated dispersion curves w� ~p� in the energy-momentum spectrum. Besides the SU�3�f
quantum numbers (total hypercharge, quadratic Casimir C2, total isospin and its 3rd component), the basic
excitations also carry spin labels. The total spin operator J and its z-component Jz are defined using �=2
rotations about the spatial coordinate axes and agree with the infinitesimal generators of the continuum for
improper zero-momentum meson states. The eightfold way meson particles are given by linear combi-
nations of these 36 states and can be grouped into three SU�3�f nonets associated with the vector mesons
(J � 1, Jz � 0,�1) and one nonet associated with the pseudoscalar mesons (J � 0). Each nonet admits a
further decomposition into a SU�3�f singlet (C2 � 0) and an octet (C2 � 3). For � � 0, the particle
dispersion curves are all of the form w� ~p� � �2 ln�� 3�2=2� �1=4��2 P3

j�1 2�1� cospj� � �4r��; ~p�,
with ~p 2 ���;�	3 and jr��; ~p�j 
 const. For the pseudoscalar mesons, r��; ~p� is jointly analytic in � and
pj, for j�j and jImpjj small. At � � 0 the meson masses are given by m��� � �2 ln�� 3�2=2�
�4r���, with r�0� � 0 and r��� real analytic; for � � 0 the nonsingular part of the mass, m��;�� � 2 ln�,
is jointly analytic in � and �. For a fixed nonet, the mass of the vector mesons are independent of Jz and
are all equal within each octet. All singlet masses are also equal for the vector mesons. For � � 0, up to
and including O��4�, for each nonet, the masses of the octet and the singlet are found to be equal. All
members of each octet have identical dispersions. Other dispersion curves may differ. Indeed, there is a
pseudoscalar, vector meson mass splitting (between J � 0 and J � 1) given by 2�4 �O��6� at � � 0,
analytic in � and the splitting persists for �� �. Using a correlation subtraction method, we show the 36
meson states give the only spectrum in H e up to near the two-meson threshold of � �4 ln�. Combining
our present result with a similar one for baryons (of asymptotic mass �3 ln�) shows that the model does
exhibit confinement up to near the two-meson threshold.
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I. INTRODUCTION

A fundamental classification scheme in elementary par-
ticle physics is the eightfold way group theoretical con-
struction based on the global quark flavor symmetry
SU�3�f by Gell’Mann-Ne’eman (see Refs. [1,2]). This
scheme is expected to be incorporated in the dynamical
SU�3�c local gauge QCD model describing the interaction
of quarks and gluons. To understand the low-lying energy-
momentum (E-M) spectrum and confinement in QCD is a
challenging problem. In Ref. [3], these problems were
approached by adopting a lattice approximation in an
imaginary-time functional integral formulation. The use

of the lattice in different contexts turned out to be very
fruitful. For example, the strong coupling expansion was
employed to determine the particle content of the model
and to give answers to questions not attainable using
perturbation theory (see Refs. [3–5]).

A mathematically rigorous treatment in an imaginary-
time lattice formulation was devised in Ref. [6] where the
quantum mechanical physical Hilbert space H and E-M
operators were constructed. A Feynman-Kac (F-K) for-
mula was also established making an explicit connection
between the E-M operators and inner products in H , and
classical statistical mechanics correlations for lattice QCD.

The low-lying E-M spectrum (one-particle and two-
particle bound states) was rigorously determined exactly
in Refs. [7,8] for increasingly complex SU�3�c lattice QCD
models, with one and two flavors in the strong coupling
regime, i.e., we consider the model in the region of small
hopping parameter � and much smaller plaquette parame-
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ter � � 1=g2
0 (i.e., with a large glueball mass). In this

regime, more recently, the SU�3�f scheme was validated
in Refs. [9,10] by obtaining the spectrum of all the 56
gauge-invariant eightfold way baryons (of asymptotic
mass �3 ln�), and their antiparticles exactly, from the
quark-gluon dynamics in 3� 1 dimensional SU�3�c lattice
QCD with three flavors. These baryons can be grouped into
four decuplets of total spin J � 3=2, Jz � �3=2, �1=2,
and two octets (J � 1=2, Jz � �1=2). Considering the
subspace H o �H of vectors with an odd number of
quark fields the eightfold way baryon and antibaryon spec-
trum is shown to be the only spectrum in H o, up to near
the meson-baryon energy threshold ( � �5 ln�). Hence,
confinement is proven in H o. The baryon masses are
given by convergent expansions in the coupling parame-
ters. The reason for the restriction �<<� is that in this
region of parameters the hadron spectrum is the low-lying
spectrum. If, on the other hand, �
 � then the low-lying
E-M spectrum consists of only glueballs and their excita-
tions (see Ref. [11]).

We point out that even for � � 0 (no plaquette terms in
the action) there is still a nontrivial dependence on the
gauge field in the quadratic in Fermi fields hopping term.
One manifestation of this dependence is that the meson
dispersion curves have a small momentum behavior ap-
proximately proportional to �2 ~p2. For free fermions (such
as setting the gauge group elements equal to the identity)
the behavior is proportional to � ~p2 and the free fermion
mass is asymptotically � ln�.

Starting from a F-K formula, these results are obtained
from spectral representations for the two-baryon functions.
We emphasize that claiming spectral results based solely
on the behavior of a correlation function or its Fourier
transform unfortunately tells us nothing about the E-M
spectrum of the associated quantum mechanical version
of the model unless a connection is established between the
correlation functions and the energy-momentum operators
of the associated model. It is unfortunate that this basic fact
is not always taken into account. Moreover, we point out
that only establishing exponential decay of correlations, in
principle, says nothing about the spectrum and, even in
cases where the associated mass turns out to be a spectral
point, this procedure says nothing about what happens in
the spectrum above this mass. This is not enough to show
the upper gap property and to ensure that the dispersion
curves defining the particles are isolated.

We remark that earlier works (see Refs. [12,13]) devoted
to the determination of the low-lying energy-momentum
spectrum in lattice QCD, via the zeros of uncontrolled
expansions in the denominator of the Fourier transform
of approximate propagators, leaves unanswered the ques-
tion of the nature and the existence of the supposed singu-
larity which is identified with the mass.

Here, working also in the strong coupling regime, ex-
plicitly 0 
 �� �� 1, we complete the exact determi-

nation of the one-particle E-M spectrum by considering the
even subspace H e and show the existence of the eightfold
way mesons (of asymptotic mass�2 ln�). The three-flavor
model with global SU�3�f and local SU�3�c gauge symme-
tries that we consider is defined by the Wilson action

 S �
�
2

X
� a;�;f�u��

�e�
�� �gu;u��e��ab b;�;f�u� �e

��

�
X
u2Z4

o

� a;�;f�u�M�� a;�;f�u� �
1

g2
0

X
p

��gp�: (1)

The partition function is Z �
R
e�S� ; � ;g�d d � d��g�, and

for F� � ; ; g�, the normalized correlations are denoted by
hFi � 1

Z

R
F� � ; ; g�e�S� ; � ;g�d d � d��g�. In Eq. (1), be-

sides the sum over repeated indices �,� � 1, 2, 3, 4 (spin),
a � 1, 2, 3 (color), and f � 1; 2; 3 � u; d; s (flavor), the
first sum runs over u � �u0; ~u� � �u0; u1; u2; u3� 2 Z4

o �
f�1=2;�3=2;�5=2 . . .g � Z3, � � �1 and � � 0, 1, 2,
3. Here, 0 labels the time component and the direction 3 is
sometimes called the z-direction. e��0;1;2;3 are lattice unit
vectors. At a site u 2 Z4

o,  ̂a�f�u� are fermionic
Grassmann fields (the hat means the presence or absence
of a bar) and we refer to � � 1, 2 as upper spin indices and
� � 3, 4 (equivalently,� or� respectively) as lower ones.
For � � 0, h ‘1

�x� � ‘2
�y�i � ��1;�2

�a1a2
�f1f2

��x� y�, and
the Grassmann integral of monomials is given by Wick’s
theorem. For each nearest neighbor oriented bond hu; u�
e�i there is an SU�3�c matrix U�gu;u�e�� parametrized by
the gauge group element gu;u�e� and satisfying
U�gu;u�e���1 � U�gu�e�;u�. We sometimes drop the U
from the notation. ��U�gp�� is a plaquette term. M �
M�m;�� � m� 2�. Given �, m> 0 is chosen such that
M�� � ���, i.e. m � 1� 2� & 1. For more details about
notation and conventions, see Ref. [9].

The physical quantum mechanical Hilbert space H and
the E-M operators H and Pj, j � 1, 2, 3, are defined via
Feynman-Kac as in Refs. [6,7]. Polymer expansion meth-
ods (see Refs. [6,14,15]) ensure the thermodynamic limit
of correlations exists and truncated correlations have ex-
ponential tree decay. The limiting correlations are lattice
translational invariant and extend to analytic functions in
the global coupling parameters � and � � 1=g2

0, and also
in any finite number of local coupling parameters. In
particular, there exist �0 and �0 sufficiently small, and
satisfying �0 � �0, such that the correlation functions are
analytic in � and � for all j�j< �0 and j�j<�0, �� �.
For gauge-invariant F and G restricted to u0 � 1=2, we
have the F-K formula

 �G; �Tx
0

0
�Tx

1

1
�Tx

2

2
�Tx

3

3 F�H � h�T
x0

0
~T ~xF	�Gi; (2)

where Tx
0

0 , Tx
i

i , i � 1, 2, 3, denote translation of the func-
tions of Grassmann and gauge variables by x0 � 0; 1; . . . ,
~x � �x1; x2; x3� 2 Z3, T ~x � Tx

1

1 T
x2

2 T
x3

3 and � is an anti-
linear, order reversing operator which involves time reflec-
tion (see Ref. [6]). In Eq. (2), we do not distinguish
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between Grassmann, gauge variables (rhs) and their asso-
ciated Hilbert space vectors (lhs) in our notation. As linear
operators in H , �T��0;1;2;3 are mutually commuting; �T0 is
self-adjoint, with �1 
 �T0 
 1, and �Tj�1;2;3 are unitary.
So, �Tj � eiP

j
defines the self-adjoint momentum operator

~P � �P1; P2; P3� with spectral points ~p 2 T3 � ���;�	3

and �T2
0 � e�2H � 0 defines the self-adjoint energy opera-

torH � 0. We call a point in the E-M spectrum with ~p � ~0
a mass. Also, we let E�	0; ~	� be the product of the spectral
families of �T0, P1, P2, and P3.

We now briefly state our results. We show the existence
of 36 eightfold way meson states (of asymptotic mass
�2 ln�) and determine their masses and dispersion curves
exactly. Besides the usual quantum numbers associated
with the SU�3�f symmetry (total isospin I, its third com-
ponent I3, total hypercharge Y and quadratic Casimir C2),
these states also carry spin labels. To define the compo-
nents of the total spin operator in the Grassmann algebra,
we use the symmetries of �=2 rotations about the spatial
coordinate axes. Acting on improper zero-momentum me-
son states these agree with the infinitesimal generators of
the continuum. The total spin J and its z-component Jz are
the spin labels. The 36 eightfold way mesons are com-
prised of the spin 0 pseudoscalar meson flavor singlet and
octet and the spin 1 vector meson flavor singlet and octet.
Charge conjugation C leaves invariant each of the singlets
and octets so that these multiplets contain their antiparti-
cles. The mesons have asymptotic mass of � �2 ln�, and
their existence is manifested by isolated dispersion curves
in the E-M spectrum. Moreover, we show the meson
spectrum is the only spectrum in H e up to near the two-
meson threshold of � �4 ln�. Up to and including O��4�,
within the pseudoscalar meson flavor singlet and octet the
masses are equal; the states in the vector meson flavor
singlet and octet also have the same mass. However, by
an explicit calculation at � � 0, there is a state indepen-
dent O��4� mass splitting between the vector and pseudo-
scalar states for each member of the octet and singlet.
Using joint analyticity in � and � the splitting persists
for � � 0. The same mass splitting was obtained by
Wilson in Ref. [3] using a low order approximation for
the correlation functions and agrees with our result identi-
fying the hopping parameter K in Ref. [3] with our �=2.
We use a correlation subtraction method to show that the
only spectrum in H e, up to near the two-meson threshold,
is the one generated by the eightfold way mesons. Our
result, combined with the one for the baryon sector of
Refs. [9,10], shows that the only spectrum in all H is
generated by the eightfold way hadrons. Thus, we have
shown confinement up to near the two-meson threshold
( � �4 ln�).

It is worth noting that, as in Refs. [9,10], our results are
rigorously obtained using the hyperplane decoupling
method and a spectral representation for the two-point

function for the composite meson fields. For a pedagogical
presentation of the basic principles of the hyperplane de-
coupling method, see Ref. [15]. Besides, in our method, the
form, the multiplicities, and also the gauge invariance
(manifestation of confinement) of the mesonic excitations
emerge naturally from the QCD dynamics without any a
priori guesswork. Also, we show that the nonsingular part
of the masses m��;�� � 2 ln� are given by convergent
expansions and, in fact, analytic in � and �; thus we
have controlled the expansion to all orders in � and � (�
small, and �� �). We emphasize we have determined the
exact inverse propagator and have related the singularities
of the Fourier transform of the propagator to points in the
energy-momentum spectrum via the F-K formula.

We explain in more detail how we control the expansion
of the masses to all orders in � and �. By our methods,
using the joint analyticity in �, � of the correlation func-
tion and its convolution inverse as well as an auxiliary
function method (see Ref. [15]) we show, by casting the
problem into the framework of the analytic implicit func-
tion theorem (see Ref. [16]) that m��;�� � 2 ln� �
r��;��, the nonsingular part of the mass, is also jointly
analytic in � and �. The Taylor series coefficients admit a
Cauchy integral formula representation and Cauchy esti-
mates can then be used to bound the coefficients. To show
the pseudoscalar-vector meson mass splitting it is suffi-
cient to calculate the splitting in the lowest order in �; by
analyticity it persists for� � 0. In fact, taking into account
the decay of the correlation function to find the coefficient
of �n of the mass we only need to consider a finite volume
model, roughly a cube of side length 2�n=2.

The paper is organized as follows. In Sec. II, we use the
decoupling of hyperplane method to reveal the basic exci-
tation states. We also introduce a spectral representation
for the two-point correlation and explain our strategy to
detect points in the energy-momentum spectrum. In
Sec. III, we pass, by an orthogonal transformation, from
the basic excitation state basis, to a new basis, namely, the
particle basis, and identify the new states with the eightfold
way mesons. In Sec. IV, we obtain convergent expansions
for the mesons masses, dispersion curves and their multi-
plicities. In Sec. V, using a correlation subtraction method,
we show that the only spectrum in all H e is generated by
the eightfold way mesons. Finally, in Sec. VI we make
some concluding remarks.

II. BASIC EXCITATION MESON STATES

We use the hyperplane decoupling method to obtain the
basic excitation meson fields. Appropriate linear combina-
tions of these fields are later identified with the eightfold
way mesons. Also, we outline our strategy to find an
appropriate two-point function and to detect particle
masses and dispersion curves. We begin by defining the
general truncated two-point function, for arbitrary M, L 2
H e,

DYNAMICAL EIGHTFOLD WAY MESONS IN STRONGLY . . . PHYSICAL REVIEW D 77, 054503 (2008)

054503-3



 G ML�u; v� � hM�u�L�v�iT

� hM�u�L�v�i � hM�u�ihL�v�i: (3)

We apply the decoupling of hyperplane method to the
correlation of Eq. (3). This method consists of replacing,
in the action of Eq. (1), the coupling parameters for each
term with connections (fermion bonds or gauge connec-
tions from the plaquettes) crossing a given temporal hy-
perplane. In the hopping terms with connections crossing
the temporal hyperplane indexed by p, and separating u0

and v0, � is replaced by �p 2 C and� is replaced by�p 2
C. We expand GML�u; v� in �p and �p and we show that
the coefficients of �0

p and �1
p are zero. The terms contain-

ing powers of �p are seen to be subdominant and lead to
plaquette fields as creators of glueballs of asymptotic mass
�4 ln�. As seen below, the second �p derivative of GML at
�p � 0 reveals the form of the basic excitation fields and
the appropriate two-point function G. Intuitively, we pick
up a decay factor of �p for each vanishing �p derivative at
�p � 0. Given the appropriate G, this shows an analyticity
domain in p0 in the strip jImp0j<��2� 
� ln�. We
introduce �, the convolution inverse of G and show that
it has a faster temporal decay than G. Thus, its Fourier
transform ~��p�, ~G�p�~��p� � 1, has a larger analyticity
domain in p0 than ~G�p�, which turns out to be the strip
jImp0j<��4� 
� ln�. Then,

 

~��1�p� � �cof ~��p�	t= det�~��p�	;

provides a meromorphic extension of ~G�p�. The singular-
ities of ~��1�p� are solutions !� ~p� of the equation

 det�~��p0 � iw� ~p�; ~p�	 � 0: (4)

The solutions w� ~p� will be shown to be the meson disper-
sion curves and the masses correspond to w� ~p � ~0�.

To apply the hyperplane decoupling method, it is more
convenient to use a duplicate of variable representation
(see for more details Ref. [14]) for the truncated two-point
function of Eq. (3). Letting  ̂0 and g0 denote the duplicate
field variables, we have, for S � S� ; � ; g� and S0 �
S� 0; � 0; g0�,
 

GML�u; v� �
1

2Z2

Z
�M�u� �M0�u�	�L�v� � L0�v�	

� e�S�S
0
d d � d��g�d 0d � 0d��g0�

� hh�M�u� �M0�u�	�L�v� � L0�v�	ii: (5)

Expanding the rhs of Eq. (5) in �p, we get G�0�ML�u; v� � 0
[the coefficient of �rp at �p � 0 is denoted by the super-
script �r�], since the fields are on different sides of the
hyperplane decouple. Next, G�1�ML�u; v� � 0, noting that
each expectation factorizes and each factor has an odd
number of fermion fields. Finally, considering the second
derivative of G, using the gauge integral (Peter-Weyl)

 I 2 �
Z
ga1b1

g�1
a2b2

d��g� � �1=3��a1b2
�a2b1

; (6)

and, for the time ordering u0 
 p < v0,

 G �2�ML�u; v� �
X
~w

h�M�u� � hM�u�i	 �M ~� ~g�p; ~w�i
�0�

� hM ~� ~g�p� 1; ~w��L�v� � hL�v�i	i�0�;

(7)

where

 

�M ~� ~g �
1���
3
p � a;�‘;g1

 a;�u;g2
;

M ~� ~g �
1���
3
p  a;�‘;g1

� a;�u;g2

(8)

and �u (�‘) refers to upper (lower) spin indices, ~� �
��‘; �u� and ~g � �g1; g2�. Note that the fields in Eq. (8)
are gauge-invariant (colorless) local composites of fermion
fields. It will be seen that the fields �M of Eq. (8) are basic
excitation creating fields. We refer to the fields M as
auxiliary fields. Linear combinations of these fields corre-
spond to meson particles. We refer to the basis generated
by the �M as the individual spin and isospin basis (indi-
vidual basis, for short) and denote by H �M �H e the
subspace generated by the �M’s [see Eq. (12)]. Charge
conjugation C, which is a symmetry of the model, trans-
forms the �M as follows; C �M31;f1f2

� �M42;f2f1
,

C �M42;f1f2
� �M31;f2f1

, C �M41;f1f2
� �M41;f2f1

, C �M32;f1f2
�

�M32;f2f1
. From this, we see that H �M is invariant under C,

and the set of the eightfold way mesons coincides with the
one of their antiparticles.

From the vanishing of the zeroth and first hyperplane
derivatives, using joint analyticity in all �p’s and Cauchy
estimates, we obtain the global bound

 jGML�u; v�j 
 constj�j2ju
0�v0j�2j ~u� ~vj; (9)

where j ~u� ~vj �
P3
i�1 ju

i � vij and we recall that G is
jointly analytic in � and�. The spatial decay is obtained by
applying the hyperplane method to spatial hyperplanes.
From Eq. (9), the analyticity of ~GML�p� in the p0-strip
jImp0j<��2� 
� ln� follows.

For closure, meaning that correlations on the lhs and rhs
of Eq. (7) are the same, we take the fields M �M ~� ~f and

L � �M ~� ~h in Eq. (7) to obtain, for u0 
 p < v0, using that

h �M�u�i � hM�u�i � 0 (by parity symmetry P of
Ref. [7]),

 hM ~� ~f�u�
�M ~� ~h�v�i

�2� �
X
~w

hM ~� ~f�u�
�M ~� ~g�p; ~w�i�0�

� hM ~� ~g�p� 1; ~w� �M ~� ~h�v�i
�0�;

(10)

which we call the product structure property and write
schematically as G�2�ML�u; v� � �G

�0�

M �M
� G�0�ML	�u; v�. A
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similar expression is obtained for the other time ordering,
i.e. for u0 > p � v0. The importance of the product struc-
ture is that it feeds into the formula for the second �p
derivative of � showing that it is zero, giving rise to the
faster decay of �, as compared to G.

The appropriate two-point function for the excitation
fields is given by [GM‘

�M‘0
�u; v� � G‘‘0 �u; v� � G‘‘0 �x �

u� v�],

 G ‘‘0 �x� � hM‘�u� �M‘0 �v�i�u0
v0

� h �M‘�u�M‘0 �v�i
��u0>v0 ; (11)

and ‘0 � � ~�; ~h� are collective indices, and here � is the
characteristic function. Time-reversal T and parity P
symmetries of Ref. [7], for fixed u and v, shows that
G�u; v� is self-adjoint.

Note also that, for fixed u and v, the dimension of the
matrix G is 36 � �2� 3�2 where 2 is the spin space
dimension and 3 is the number of flavors.

By the F-K formula with u0 � v0 and using the spectral
representation of the E-M operators, G�x� can be written as
(x0 � 0), �M‘ �

�M‘�1=2; ~0�,

 G ‘‘0 �x� �
Z 1

�1

Z
Td
	jx

0j�1
0 ei ~	: ~xd� �M‘; E�	0; ~	� �M‘0 �H ;

(12)

and is an even function of ~x by parity symmetry. From
Eq. (12), we see that the composite field �M creates parti-
cles. After separating the equal time contribution, the
Fourier transform ~G‘‘0 �p� �

P
x2Z4G‘‘0 �x�e

�ip:x, satisfies

 

~G ‘‘0 �p� � ~G‘‘0 � ~p� � �2��
3
Z 1

�1
f�p0; 	0�d	0d� ~p;‘‘0 �	

0�;

(13)

where

 d� ~p;‘‘0 �	
0� �

Z
T3
�� ~p� ~	�d	0d ~	�

�M‘; E�	
0; ~	� �M‘0 �H ;

with f�x; y� � �eix � y��1 � �e�ix � y��1, and we have
set ~G� ~p� �

P
~xe
�i ~p: ~xG�x0 � 0; ~x�.

From Eq. (13), we see that singularities on the imaginary
p0 axis of ~G‘‘0 �p� are points in the E-M spectrum, and are
determined by the solutions of Eq. (4). The convolution
inverse � of G is defined by the Neumann series � �
�1� G�1

d Gn�
�1G�1

d �
P
i��1�i�G�1

d Gn	
iG�1

d where Gd is
given by Gd;‘‘0 �u; v� � Gd;‘‘0 �u; u��‘‘0�u;v, with G �
Gd � Gn. � is well defined using the global bound of
Eq. (9) and noting that Gd is 1 at � � � � 0 by the
normalization of the �M fields of Eq. (8).

Taking the hyperplane derivatives, using the relation
G��1��G, the Leibniz formula @r���

Pr�1
s�0�

r
s���

@r�sG@s�, we obtain ��r�0;1��u;v��0, for ju0�v0j�1.
Furthermore, ��2��u;v������0�G�2���0�	�u;v� and, by the
product structure of Eq. (10), is zero for ju0�v0j>1.

Also, by imbalance on the number of barred and unbarred
fermion fields, G�3��u; v� � 0, leading to ��3��u; v� � 0,
for ju0 � v0j> 1. From this follows the global bound

 j��u; v�j 
 cj�j2j�j4�ju
0�v0j�1��2j ~u� ~vj;

ju0 � v0j � 1;
(14)

with the rhs replaced by const�2j ~u� ~vj, if u0 � v0, and the
analyticity of ~��p� in the larger p0-strip jImp0j<��4�

� ln�. Also, � is jointly analytic in � and �.

III. PARTICLE BASIS: PSEUDOSCALAR AND
VECTOR MESON

We now consider operators associated with the SU�3�f
symmetry and spin operators. For F a function of the
Grassmann fields, we define Ij, the jth (j � 1, 2, 3) com-
ponent of total isospin, by Aj � lim�&0�W �U�F�
F�=�i��, with W �U�F � F�fU � g; f �U g�, where Uj �

Uj��� � exp�i	j�=2�, j � 1; . . . ; 8, is an element of
SU�3�f and the 	j are the usual Gell’Mann matrices
of Refs. [1,2]. For example, if F � �  and letting ij �
	j=2 then IjF � �ij � � � � ��ij �, where �ij is the complex
conjugate of the matrix ij. The total hypercharge Y is
defined as 2A8=

���
3
p

and the quadratic Casimir by C2 �P8
j�1 A

2
j . The linear operator W �U� lifts to a unitary

operator �W �U� on H by using the F-K formula and the

SU�3�f symmetry. The generators �Aj� lim�&0�
�W �U�F�

F�=�i�� of the eight one-parameter subgroups are self-
adjoint operators in H . �I3, �I2 � �I2

1 � �I2
2 � �I2

3, �Y, �C2 are
mutually commuting and their eigenvalues are quantum
numbers which are used to label the states. More precisely,
�I1, �I2, �I3 obey the usual momentum angular algebra, and I
of the eigenvalue I�I � 1� of �I2 is used as a state label. The
total spin operators Jx, Jy, and Jz are also defined similarly
on the Grassmann algebra only, with U � U2 �U2, U2 �
exp�i��j=2� 2 SU�2�. On improper zero-momentum
states of Eq. (15) this infinitesimal generator definition
agrees with that obtained by taking �2=i�� lnW�U�, with
� � �=2. For the rotation angle � � �=2 we have a lattice
symmetry and the transformation of the spin components
of the  ̂’s agrees with the continuum. The eigenvalues of Jz
and J of the eigenvalue J�J� 1� of ~J2 � J2

x � J
2
y � J

2
z are

also used to label the states.
We recall that the mesons dispersion relations w� ~p� are

given by the solutions of Eq. (4) (for ~p � ~0 we have the
masses). We remark that, due to the determinant in Eq. (4),
we are free to take any new basis related to the individual
spin or isospin basis by a real orthogonal transformation.
By fully exploiting the SU�3�f symmetry and additional
symmetries (more details ahead) the pseudoscalar and
vector mesons emerge from our analysis as linear combi-
nations of the basic excitation fields in Eq. (8). The linear
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combinations are associated with a real orthogonal trans-
formation that diagonalizes ~G�p0; ~p � ~0�. In the sequel,
we introduce a new isospin and spin basis and show the
conventional connection with the pseudoscalar and vector
mesons. For this purpose, for fixed ~� � ��‘; �u�, we de-
compose the individual isospin basis into the direct sum of
irreducible representations of SU�3�f. Precisely, we have a
1-dimensional flavor singlet (denoted by �M0

~�, with C2 �

0) and an 8-dimensional octet (f �Mk
~�g

8
k�1, with C2 � 3),

and the labeling distinguishes between them. The new
basis elements are listed below:
 

�M0
~��

1

3
� � a;�‘;u a;�u;u�

� a;�‘;d a;�u;d�
� a;�‘;s a;�u;s�;

�M1
~��

1

3
���
2
p � � a;�‘;u a;�u;u�

� a;�‘;d a;�u;d�2 � a;�‘;s a;�u;s�;

�M2
~��

1���
6
p � � a;�‘;u a;�u;u�

� a;�‘;d a;�u;d�;

�M3
~��

1���
3
p � a;�‘;u a;�u;d;

�M4
~��

1���
3
p � a;�‘;u a;�u;s;

�M5
~��

1���
3
p � a;�‘;d a;�u;s;

�M6
~��

1���
3
p � a;�‘;d a;�u;u;

�M7
~��

1���
3
p � a;�‘;s a;�u;u;

�M8
~��

1���
3
p � a;�‘;s a;�u;d: (15)

Using isospin orthogonality relations, the vectors in
Eq. (15) are eigenvectors of the generators �I3, �I2, �Y, �C2

and the superscript k � �I3; I; Y; C2� is a collective index
for the eigenvalues of those generators. More explicitly, we
have the identifications: (0, 0, 0, 0), (0, 0, 0, 3), (0, 1, 0, 3),
(1, 1, 0, 3), �1=2; 1=2; 1; 3�, ��1=2; 1=2; 1; 3�, ��1; 1; 0; 3�,
��1=2; 1=2;�1; 3�, and �1=2; 1=2;�1; 3�, for k �
0; 1; . . . ; 8, respectively. We refer to this basis as the total
isospin, individual spin basis. With fixed ~�, using the �M ~� ~f

ordering ~f � �u; u�, �d; d�, �s; s�, �u; d�, �u; s�, �d; s�, �d; u�,
�s; u�, �s; d�, the transformation matrix from the individual
basis to this new basis is explicitly given by B � B3 � I6

with �B3�11 � �B3�12 � �B3�13 � 1=
���
3
p

, �B3�21��B3�22�

�
���
2
p
�B3�23�1=

���
6
p

, �B3�31���B3�32�1=
���
2
p

, and
�B3�33 � 0. The two-point function in the total isospin,
individual spin basis decomposes into the direct sum of 8
identical 4� 4 blocks and one 4� 4 block, associated
with the flavor octet and singlet, respectively. The product
structure still holds in the new basis, as well as the global
bound of Eq. (14).

The 4� 4 block can be further reduced by using Gp, a
generalized local G-parity symmetry, which is a composi-
tion of charge conjugation C and discrete SU�3�f symme-
try, namely, permutation of flavor indices. More explicitly,
for k � 0, 1, 2, we have Gp � C, since the isospin index for
the antiquark and quark pair in �Mk is the same. For the
other vectors, �Mk �k � 3; . . . ; 8�, in Eq. (15) we need to
compose C with a permutation matrix P 2 SU�3�f. For

example, for �M3, the nonvanishing elements of P are
�P�12 � �P�21 � ��P�33 � 1. We decompose the space
�Mk

~� into eigenvectors of Gp given by (suppressing all
but the spin index) � �M31 �

�M42�=
���
2
p

with eigenvalue 1
and f �M32; � �M31 �

�M42�=
���
2
p
; �M41g with eigenvalue �1.

With this decomposition, the 36� 36 two-point function
matrix, for fixed u and v, reduces to a direct sum of nine
4� 4 blocks (8 identical blocks for the octet states), each
one decomposing as �1� 1� � �3� 3�. We denote the
eigenvectors of Gp by �MJ , which are related to �M ~� by
a real 4� 4 orthogonal transformation �A4� with nonvan-
ishing elements �A4�11 � �A4�12 � �A4�31 � ��A4�32 �

1=
���
2
p

, �A4�24��A4�43�1. Here, we are adopting the fol-
lowing ordering of ~� � ��‘; �u�: �3; 1�, �4; 2�, �4; 1�, �3; 2�.

It turns out that the decomposition provided by Gp is
precisely the decomposition into the total spin pseudosca-
lar and vector excitations. The vectors �MJ are eigenvec-
tors of ~J2 and Jz, with eigenvalues �0; 0�, �1; 1�, �1; 0�,
�1;�1�, respectively. Gp does not distinguish between
the states �J; Jz� � �1; 1�, �1; 0�, �1;�1�, but spin does.
We will label the vectors �MJ of the total isospin, total
spin basis by J � �J; Jz� in the order given above and
denote the two-point correlation in this basis by GJJ 0 �x�
and its convolution inverse by �JJ 0 �x�. We note that the
same global bounds of Eq. (14) hold for �J �x� as for ��x�
as again only orthogonal basis transformations are
involved.

We obtain further relations between the elements of
GJJ 0 �x� by exploiting a new local antilinear symmetry
which we call spin flip, denoted by F s (see Ref. [9]).
This symmetry is the composition �iT CT of nonlocal,
linear time reflection T, local linear charge conjugation C
and nonlocal antilinear time-reversal T symmetries. Using
the spin flip symmetry, we obtain the structure �GJJ 0 � �
A1 � A3, with A1 real associated with J � 0, and A3 a 3�
3 self-adjoint matrix associated with J � 1 and obeying
�A3�11 � �A3�33 and �A3�12 � �A3�23. This matrix structure
carries over to �JJ 0 , ~GJJ 0 �p

0 � i�; ~p� and ~�JJ 0 �p
0 �

i�; ~p� (� real). Summarizing, the matrix-valued two-point
correlation and its convolution inverse reduce to a direct
sum of nine 4� 4 blocks (eight identical ones associated to
the octet states), each one decomposing as �1�1���3�3�,
corresponding to total spin J � 0 and J � 1, respectively.

We make some remarks concerning the conventional
connection with particles, i.e. the pseudoscalar and vector
mesons. For the pseudoscalar mesons, �M�0;0�, we have the
identifications �M0

�0;0� � 
0, �M1
�0;0� � 
, �M2

�0;0� � �0,
�M3
�0;0� � ��, �M4

�0;0� � K�, �M5
�0;0� � K0, �M6

�0;0� � ��,
�M7
�0;0� � K�, �M8

�0;0� �
�K0, recalling the fields of

Eq. (15). In a similar way, we can identify the vector
mesons, such as �0�, K��, K�0, and �K�0, except for �
and ! which seem to be best described as strong mixtures
of �M0

�1;Jz�
and �M1

�1;Jz�
. The procedure just described per-
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mits us to label each eightfold way meson state by the
quantum numbers �I; I3; Y� which coincide e.g. with those
depicted in Fig. 5.11 of Ref. [2]. Note that 
0, 
 and �0 are
invariant under charge conjugation. Also, C�� � ��,
CK� � K� and CK0 � �K0. Hence, charge conjugation C
changes the sign of the hypercharge Y and the third com-
ponent of isospin I3 of a pseudoscalar state.

IV. EIGHTFOLD WAY MESON MASSES AND
DISPERSION CURVES

We now turn to the exact determination of the eightfold
way meson dispersion curves and masses. The argument is
given first for � � 0, then we give the modifications
needed for � � 0. We determine explicitly the masses
(dispersion curves) up to and including O��4� (O��2�)
and � � 0. For this, we need the low order in �, short
distance behavior of G and �, which is shown to be
independent of isospin. Hence, fixing a member of the
octet or singlet the mass-determining equation is
det~�JJ 0 �p0 � iM; ~0� � 0. ~�JJ 0 is seen to be diagonal by
using the symmetry of �=2 rotations about the e3 axis. For
each factor, we have the single equation ~�JJ � 0 and for
notational simplicity we write ~�J . The relation ~��1;1� �
~��1;�1� can also be obtained using e1 reflections instead of
F s.

The solution of det~�J � 0, for all ~p, runs out to infinity
as � goes to zero. To find the solutions of det~�J � 0
without approximation, we employ the auxiliary function
method (see Ref. [15]). We make a nonlinear transforma-
tion from p0 to an auxiliary variable w and introduce an
auxiliary matrix function HJJ 0 �w; �; ~p� (for the masses we
take ~p � ~0) to bring the solution for the nonsingular part
w� ~p� � 2 ln� of the dispersion curves from infinity to close
to w � 0, for small �. With this function, we can cast the
problem of determining dispersion curves and masses into
the framework of the analytic implicit function theorem.
To this end, with c2� ~p� � �1=4�

P3
j�1 2 cospj, we intro-

duce the new variable

 w � 1� c2� ~p��
2 � �2e�ip

0
; (16)

and the auxiliary function HJ �w; �; ~p� such that
~�J �p

0; ~p� � HJ �w � 1� c2� ~p��
2 � �2e�ip

0
; �; ~p�.

Using ��x0; ~x� � ���x0; ~x�, which follows by time rever-
sal and parity symmetries, the matrix function HJ �w; �; ~p�
is defined by
 

HJJ 0 �w; �; ~p� �
X
~x

�JJ 0 �0; ~x�e
�i ~p: ~x �

X
n�1; ~x

�JJ 0 �n; ~x�

� e�i ~p: ~x
��

1� w� c2� ~p��2

�2

�
n

�

�
�2

1� w� c2� ~p��2

�
n
�
;

with J � J 0. By the global bounds of � of Eq. (14), H is
jointly analytic in w and �, for jwj, j�j small.

The mass-determining equation becomes HJ �w; �� �

HJJ �w; �; ~p � ~0� � 0. In the sequel, we explicitly deter-
mine the masses up to and including O��4�. For this, we
separate all terms in H up to O��4� and we need ��x0 �
n; ~x�=�2n up to and including order �4. The normalization
conditionG�0��x � 0� � 1 implies ��0��x � 0� � 1 and, by
a simple argument, the product formula givesG�x � e0� �
�2 �O��6�, which implies ��x � e0� � ��2 �O��6�.
Backtracking paths, such as 0! e0 ! 0! e0, do not
contribute to G�e0� using the property (� � 0, 1, 2, 3, 
 �
�1): �
e

�
��
e

�
� 0, which we call the come and go

property. Other contributions are found by explicit calcu-
lation of the coefficients of the hopping parameter expan-
sion of G�x� and arise from nonintersecting paths
connecting the point 0 to x, and using the Neumann series
for ��x�. In nonintersecting paths, each link of the path is
composed of no more than two oppositely oriented bonds.
Taking into account 2n bonds (n > 1), two by two oppo-
sitely oriented, this is so because we would have contrac-
tions of the fields in the expectations at 0 and x giving zero
by the come and go property. For this purpose, we have
derived a general formula for calculating nonintersecting
path contributions given by (in the individual basis)

 hM ~� ~f�0�
�M ~� ~f0 �x�i�p

�
�
2

�
2L
� ~f ~f0�

p
�‘�‘

��p�u�u (17)

where ~� � ��‘; �u�, ~� � ��‘; �u�, ~f � �f1; f2�, ~f0 �
�f3; f4�, and L is the length of the path. In nonintersecting
paths only the gauge integral I2 of Eq. (6) occurs. The
subscript p in Eq. (17) above means that we take only the
contribution coming from a nonintersecting path, with
consecutive points of the path linked by two overlapping
bonds of opposite orientation. The notation �p�� (��p��)
means the �� element of the ordered product of (spin) �
matrices arising from the hopping terms, along the path
that connects 0 to x (x to 0). For example, if x � e0 � e1 �
e2, and the path is chosen such that 0! e0 ! e0 � e1 !
e0 � e1 � e2, we have �p � �0�1�2, where we have used
the notation �
e

�
� �
�. For the reversed path, we take the

product of the � matrices in the opposite direction, i.e.
��p � ��2��1��0. In general, if the path is determined
by 0! x1 ! x2 ! . . .! xn ! x then �p � �0!x �

�x1 �x2�x1 . . . �xn�xn�1 �x�xn and L � n� 1; ��p �
�x!0 � ���x�xn����xn�xn�1� . . . ���x2�x1���x1 . Using
Eq. (17), for 
, 
0 � �1, j � 1, 2, 3, and � � 0, we get
the short distance behaviors of (i � 1, 2 below)
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 GJ �x� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1�O��8�; x � 0;
�2 �O��6�; x � 
e0;
�1=4��2 �O��6�; x � 
ej;
�4 �O��8�; x � 2
e0;
�1=4��4 �O��8�; x � 2
ej;
�1=2��4 �O��8�; x � 
e0 � 
0ej;
�1=4��Jz;0�

4 �O��8�; x � 
e1 � 
0e2;
��1=8� � �Jz;0��J;0 � �J;1�	�

4 �O��8�; x � 
ei � 
0e3:

Similarly, from the Neumann series,

 �J �x� �

8>>>>>>>><
>>>>>>>>:

1� �19=8��4 �O��8�; x � 0;
��2 � �6 �O��8�; x � 
e0;
��1=4��2 �O��6�; x � 
ej;
��3=16��4 �O��8�; x � 2
ej;
���1=4��Jz;0 � 1=8��4 �O��8�; x � 
e1 � 
0e2;
�Jz;0��J;0 � �J;1��

4 �O��8�; x � 
ei � 
0e3:

The other points listed in G but not appearing in � con-
tribute to the matrix function H to O��6�. The improved
decay for these points is due to explicit cancellations in the
Neumann series and improve the global bounds obtained
by the decoupling of hyperplane method.

Taking into account contributions of HJ up to and
including O��4�, and setting bJ � 1=4, aJ � ��3�J;1 �
�J;0 � 3=2�, we can write HJ �w; �� in the form

 HJ � w� bJ�4 � �4=�1� w� � aJ�4 � �6rJ �w; ��;

(18)

where aJ is the angle contribution. These contributions
come from paths of the form 0! 
ei ! 
ei � 
0ej, ij �
12, 13, 23, 
, 
0 � �1 in the � expansion of G. Also,
rJ �w; �� in Eq. (18) is jointly analytic in w and �. We see
that HJ �0; 0� � 0 and �@HJ =@w��0; 0� � 1 so that the
analytic implicit function theorem applies and yields the
analytic function wJ ��� such that HJ �wJ ���; �� � 0: The
solution wJ ��� has the form wJ ��� � �4 � �aJ �
bJ ��4 �O��6�: Returning to Eq. (16), the mass is given
by

 MJ � lne�i�p
0�iMJ � � �2 ln�� ln�1� wJ � c2�~0��

2�

� �2 ln�� �3=2��2 � ��2� aJ ��4 �O��6�:

Thus, we see that the angle contribution aJ gives rise to a
mass splitting between the total spin one and total spin zero
states and is given by M�1;Jz� �M�0;0� � 2�4 �O��6�.

In what follows, suppressing the subscript J from the
notation, for each J , the implicitly defined wJ ��� has an
explicit representation in terms of the Cauchy integral,

 w��� �
1

2�i

I
jwj<�

w
H�w; ��

@H
@w
�w; ��dw; (19)

where �> 0 is sufficiently small (see Ref. [16]). From this

representation, we see that w��� is analytic in �. We note
that the integral formula of Eq. (19) permits us to deduce
an explicit formula for the nth Taylor coefficient of the
analytic function w���. For the general procedure to obtain
��1=n!�dnw=d�n	�0� from Eq. (19), we refer the reader to
Ref. [17]. In fact, tracing the � dependence in the integral
representation on � and G, the �n dependence of the mass
only depends on �m, m 
 n, of G. By taking into account
the �2jxj decay of G�x�, we only need to consider a finite
volume model, roughly a cube of side length 2�n=2.

We now pass to the discussion of meson mass determi-
nation in the � � 0 case. This case is treated as above
noting that H�w; �;�� is jointly analytic in w, �, and � by
the joint analyticity of ��x; �; ��. Also, H�0; 0; 0� � 1 and
@H=@w�0; 0; 0� � 1, so that again the analytic implicit
function theorem applies. It implies the existence of a
jointly analytic function w��;��. In turn, this implies
that the nonsingular contribution to the meson mass,
m��;�� � 2 ln� � r��;��, is also jointly analytic. The
Cauchy integral representation also holds by replacing
H�w; �� by H�w; �;��.

For the determination of the dispersion curves, we recall
the block decomposition of �GJJ 0 � � A1 � A3 which im-
plies ��JJ 0 � � D1 �D3, with Dn a n� n matrix.
Furthermore, by the formula for the inverse matrix, the
matrix ~D3�p

0 � i�; ~p� (� real) has the same structure as
~A3�p0 � i�; ~p�, which in turn is the same as that of A3. The
dispersion curves wc� ~p� (c � p, v with p, v referring to
the pseudoscalar and to any member of the vector mesons,
respectively) are given by

 wc� ~p� � �2 ln�� �3=2��2 � �1=4��2
X

j�1;2;3

2�1� cospj�

� �4rc��; ~p�;

jrc��; ~p�j � O�1�. rp��; ~p� is jointly analytic in � and each

NETO, O’CARROLL, AND FARIA DA VEIGA PHYSICAL REVIEW D 77, 054503 (2008)

054503-8



pj for j ~pj small, and is obtained by the auxiliary function
method (see Ref. [15]). We still do not know if the disper-
sion curves are the same for all the members of the flavor
octet and even for the singlet and any member of the octet.
This is so since, on the lattice, the spin operators only agree
with the continuum for zero spatial momentum. For the D3

block, we have factorization of det3�3
~D3�i�; ~p� � 0 using

Cardano’s formula for the roots of a cubic equation.
However, due to analytical difficulties, we cannot apply
the auxiliary function method, but Rouché’s theorem (prin-
ciple of the argument) can be applied to
det3�3H�w; �; ~p� � 0 to show that, for each fixed ~p, there
are exactly three solutions.

V. EXTENSION OF THE SPECTRAL RESULTS TO
ALL H e

Up to now, we have exactly determined the spectrum
generated by vectors in H �M �H e. But, it can happen
that other fields can generate spectrum in H e up to near
the two-meson threshold ( � �4 ln�). As in Ref. [7], we
use a correlation subtraction method to show that the
eightfold way meson spectrum is the only spectrum in all
H e, up to near the two-meson threshold of� �4 ln�. For
u0 � v0 and L 2H e, we have the spectral representation
and F-K formula (with P� the projection onto the vacuum
state � � 1)

 ��1� P��L; �Tjv
0�u0j�1

0
�~T
~v� ~u
�1� P��L�H � G�u; v�;

where, with M � �L,

 G �u; v� � GML�u; v��u0
v0 � GML�ut; vt��u0>v0

� GML�u; v��u0
v0 � G�LM�u; v��u0>v0 ;

and we have used the notation zt � ��z0; ~z� if z � �z0; ~z�.
L may have contributions to the energy spectrum in the

interval �0;��4� 
� ln�� that arise from states not in
H �M. We show this is not the case by considering the
decay of the subtracted function

 F � G � P�Q (20)

where the kernels of P , �, and Q are given by

 P �u:w� � GM �M�u;w��w0
u0 � GM �M�ut; wt��u0>w0

� GM �M�u;w��u0
w0 � G�LM�u; w��u0>w0 ;

Q�z; v� � GML�z; v��z0
v0 �GML�zt; vt��z0>v0

� GML�z; v��z0
v0 �G��MM
�z; v��z0>v0 ;

J �w; z� � GM �M�w; z��w0
z0 � GM �M�wt; zt��w0>z0

� GM �M�w; z��w0
z0 � G��MM
�w; z��w0>z0 ;

with ��w; z� � J�1�w; z�. The identities above are ob-
tained using time reversal which gives

 G ML�ut; vt� � G�LM�u; v�;GM �M�ut; wt� � G�LM�u; w�;

GML�zt; vt� � G��MM
�z; v�;GM �M�wt; zt� � G��MM

�w; z�:

The motivation for the definitions of the kernels of G, P ,
�, and Q is such that time reflected points give the same
value for the u0 < v0 and u0 > v0 definitions.

The kernels of P and Q also have spectral representa-
tions for noncoincident temporal points given by

 �L; �Tjv
0�u0j�1

0
�~T
~v� ~u �M�H � P �u; v�; u0 � v0

� �M; �Tjv
0�u0j�1

0
�~T
~v� ~u
L�H �Q�u; v�; u0 � v0:

We remark that, in the two equations above, we made use
of parity symmetry to write h �M�u�i � hM�u�i � 0.
Again, in the context of the hyperplane decoupling
method, it is sufficient to carry out the arguments at �p �
0; the results extend to � � 0, �� �, by analyticity.
Using the hyperplane decoupling method, we show below
that F �r��u; v� � 0, r � 0, 1, 2, 3, for ju0 � v0j> 2 and
�p � 0. This implies that ~F �p� is analytic in p0 in the strip
jImp0j 
 ��4� 
� ln�. But ~F �p� � ~G�p� �
~P �p�~��p� ~Q�p�, so that possible singularities of ~G�p� in
the strip are canceled by those in the term ~P �p�~��p� ~Q�p�.
From their spectral representations, it is seen that ~P �p� and
~Q�p� only have singularities at the one-meson particle
spectrum. The same holds for ~P �p�~��p� ~Q�p� since
~��p� is analytic in the strip. Thus, the singularities of
~G�p� and the spectrum generated by L in the interval
�0;��4� 
� ln�� are contained in the one-meson
spectrum.

Expanding F in Eq. (20) in powers of �p, we get the
result
 

F � F �0��0
p �F �1��p �F �2��2

p �O��3
p�

� �G�0� � P �0���0�Q�0���0
p � �G

�1� � P �1���0�Q�0�

� P �0���1�Q�0� � P �0���0�Q�1���p � �G
�2�

� P �2���0�Q�0� � P �0���2�Q�0� � P �0���0�Q�2�

� P �1���1�Q�0� � P �1���0�Q�1�

� P �0���1�Q�1���2
p �O��3

p�:

That F �r��u; v� � 0 (r � 0, 1, 3) follows from gauge
integration and imbalance of fermion fields appearing in
the expectations. We now calculate the second derivative of
F �u; v� for the time ordering u0 
 p < v0

 F �2� � G�2� � P �0���0�Q�2� � P �0���2�Q�0�

� P �2���0�Q�0�

� A1 � A2 � A3 � A4:

We will use in the sequel, for r0 
 p < s0, the following
special cases of Eq. (10)
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G�2�ML�r; s� � �G
�0�

M �M
� G�0�ML	�r; s�;

G�2�
M �M
�r; s� � �G�0�

M �M
� G�0�

M �M
	�r; s�;

G�2�ML�r; s� � �G
�0�

M �M
� G�0�ML	�r; s�;

G�2�
M �M
�r; s� � �G�0�

M �M
� G�0�

M �M
	�r; s�:

For the term A2, we have
 

A2 � �
X

w0;z0
p

P �0��u;w���0��w; z��G�0�
M �M

� G�0�ML	�z; v�

� �
X
~w

P �0��u; �p; ~w��G�0�ML��p� 1; ~w�; v�

� �G�0�
M �M
� G�0�ML	�u; v� � �A1;

where, in the equation above, we have extended the sum to
all z using the support properties of ��0� and G�0�.

For the term A4, we get similarly A4 � A2. Now, we
consider the term A3:

 A3 � �
X

w0
p;z0�p�1

P �0��u; w���2��w; z�Q�0��z; v�:

But, for w0 
 p, z0 � p� 1, we have ��2��w; z� �
����0�J �2���0�	�w; z�, which is obtained taking the second
derivative of the relation �J � 1, and observing that
���0�J �1���1�	�w; z� � ���1�J �1���0�	�w; z� � 0, for w0 

p, z0 � p� 1. With these restrictions on the sums, we get

 J �2��x; y� � G�2�
M �M
�x; y� � �G�0�

M �M
� G�0�

M �M
	�x; y�;

so that

 A3 �
X

w0 ;x0
p;
z0 ;y0�p�1

P �0��u; w���0��w; x��G�0�
M �M

� G�0�
M �M
	

� �x; y���0��y; z�Q�0��z; v�:

Extending the sum to all x0 and y0, we get

 A3 �
X
~w

P �0��u; �p; ~w��Q�0���p� 1; ~w�; v�

� �G�0�
M �M
� G�0�ML	�u; v� � A1:

Collecting the results above, we obtain that F �2��u; v� � 0,
for u0 
 p < v0.

The treatment is similar for the other time ordering, i.e.
u0 � p > v0, and we find that F �2��u; v� � 0, for u0 >
p� 1 and v0 < p. Finally, taking into account the two
time orderings, we get F �2��u; v� � 0 for time separations
ju0 � v0j> 2. Similarly to the case F �1��u; v� � 0, by
imbalance of fermion fields, the third derivative
F �3��u; v� vanishes for ju0 � v0j � 1.

VI. CONCLUDING REMARKS

In this work, concentrating our analysis in the even
subspace H e, we determined the low-lying energy-
momentum spectrum exactly and showed the existence of
all the eightfold way mesons (of asymptotic mass �2 ln�)
from dynamical first principles, in the strong coupling
regime. It is shown that the masses admit representations
which are jointly analytic in � and � and, in particular,
expansions in this parameters are controlled to all orders.
For � � 0, we obtained a pseudoscalar vector meson mass
splitting explicitly given by 2�4 �O��6� and, calculate the
splitting to lowest order in �, by analyticity it persists for
� � 0. Our result, combined with a similar one for baryons
(of asymptotic mass�3 ln�) (see Refs. [9,10]), shows that
the model exhibits confinement up to near the two-meson
threshold ( � �4 ln�).

We have found no isospin singlet, isospin octet mass
splitting up to and including order �4 at � � 0. Splitting
may occur at higher orders in � and � or may take place by
breaking the SU�3�f symmetry with a heavier strange
quark mass. For this splitting in the continuum model,
see the U(1) problem in Ref. [18].

The difficulty encountered here in obtaining explicitly
dispersion curves for the vector mesons disappears for the
continuum if the vector fields transform under the Poincaré
group where, the three identical dispersion curves are, of
course, the relativistic ones.

In closing, we remark that the determination of the one-
meson spectrum opens the way to attack interesting open
questions, such as, the existence of tetraquarks and penta-
quarks, for example, meson-meson and meson-baryon
bound states.
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