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Next-to-leading-order QCD corrections to J= plus �c production in e�e� annihilation at
���
s
p
�

10:6 GeV are calculated in this paper, and an analytic result is obtained. By choosing proper physical
parameters, a K factor (ratio of next-to-leading order to LO) of about 2, which is in agreement with the
result in Y.-J. Zhang, Y.-j. Gao, and K.-T. Chao, Phys. Rev. Lett. 96, 092001 (2006), is obtained. The plot
of the K factor vs the center-of-mass energy

���
s
p

shows that it is more difficult to obtain a convergent result
from the perturbative QCD without resummation of ln�s=m2

c� terms as the
���
s
p

becomes larger.
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I. INTRODUCTION

Perturbative quantum chromodynamics calculations are
essential in the effort to describe large momentum transfer
processes. To apply it to heavy quarkonium physics, the
nonrelativistic QCD (NRQCD) factorization approach [1]
has been introduced. It allows a consistent theoretical
prediction to be made and to be improved perturbatively
in the QCD coupling constant �s and the heavy-quark
relative velocity v. However, the J= polarization mea-
surement at the Fermilab Tevatron in proton-antiproton
collisions [2] and J= production in B factories [3–5]
have shown that the leading order (LO) theoretical predic-
tions in NRQCD could not match the experimental results.
The large discrepancy was found in the double charm
production in e�e� annihilation at B factories. The exclu-
sive production cross section of double charmonium in
e�e� ! J= �c at

���
s
p
� 10:6 GeV measured by Belle

[3,4] is ��J= � �c� � B�c�	 2� � �25:6
 2:8

3:4� fb, and by BABAR [5] it is ��J= � �c� � B�c�	
2� � �17:6
 2:8�1:5

�2:1� fb, where B�c�	 2� denotes the
branching fraction for the �c decaying into at least two
charged tracks. Meanwhile, the NRQCD LO theoretical
predictions in the QCD coupling constant �s and the
charm-quark relative velocity v, given by Braaten and
Lee [6], Liu, He, and Chao [7], and Hagiwara, Kou, and
Qiao [8], are about 2:3� 5:5 fb, which is an order of
magnitude smaller than the experimental results. Such a
large discrepancy between experimental results and theo-
retical predictions brings a challenge to the current under-
standing of charmonium production based on NRQCD.
Many studies have been performed in order to resolve
the problem. Braaten and Lee [6] have shown that the
relativistic corrections would increase the cross section
by a factor of about 2, which boosts the cross section to
7.4 fb. And the next-to-leading-order (NLO) QCD correc-
tion of the process has been studied by Zhang, Gao, and
Chao [9], which can enhance the cross section with a K
factor (the ratio of NLO to LO) of about 2 and reduce the
large discrepancy. Again the relativistic corrections have
been studied by Bodwin, Kang, Kim, Lee, and Yu [10] and
by He, Fan, and Chao [11], which are significant, and when

combined with the NLO QCD corrections, may resolve the
large discrepancy. In Ref. [12], ��4s� ! J= � �c was
considered by Jia, but its contribution is small. Ma and Si
[13] treated the process by using the light-cone method. A
similar treatment was performed by Bondar and Chernyad
[14] and Bodwin, Kang, and Lee [15]. More detailed treat-
ment, such as including the resummation of a class of
relativistic correction, has been take into consideration
by Bodwin, Lee, and Yu [16].

Since the calculation of the NLO QCD correction for
this process is quite complicated and plays a very impor-
tant role in explaining the experimental data, in this paper
we perform an independent calculation by using the pack-
age Feynman Diagram Calculation (FDC) [17] with a one-
loop part built in and obtained analytic result. The numeri-
cal result is in agreement with the previous result in
Ref. [9].

This paper is organized as follows. In Sec. II, we give the
LO cross section for the process. The calculation of NLO
QCD corrections is described in Sec. III. In Sec. IV, nu-
merical results are presented. The conclusion and discus-
sion are given in Sec. V. In the appendixes, some useful
details are presented.

II. THE LO CROSS SECTION

There are four Feynman diagrams for this order: two are
shown in Fig. 1, while the other two can be obtained by
reversing the arrows of the quark lines. Momenta for the
involved particles are labeled as

 e��p1� � e
��p2� ! J= �p3� � �c�p4�: (1)

In the nonrelativistic limit, we can use the NRQCD facto-
rization formalism and obtain the square of the scattering
amplitude as
 

jMLOj
2 �

214�2�2�2
se2
cjR

J= 
s �0�j2jR

�c
s �0�j2

9m6
cs

5

� �2� 4s� s2 � 4t� 2st� 2t2�; (2)

with
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 s �
�p1 � p2�

2

4m2
c

; t �
�p1 � p3�

2

4m2
c

; (3)

where ec �
2
3 is the electric charge of the charm quark.

RJ= s �0� and R�cs �0� are the radial wave functions at the
origin of J= and �c. Notice that s in Eq. (3) is used from
now on. After the integration of phase space, the total cross
section is

 ��0� �
128��2�2

se
2
cjR

J= 
s �0�j2jR

�c
s �0�j2�s� 4�3=2

27m8
cs11=2

: (4)

III. THE NLO CROSS SECTION

Since there is no O��s� real process in NLO, we only
need to calculate virtual corrections. Dimensional regulari-
zation has been adopted for isolating the ultraviolet (UV)
and infrared (IR) singularities. UV divergences from self-
energy and triangle diagrams are canceled upon the renor-
malization of the QCD gauge coupling constant, the
charm-quark mass and field, and the gluon field. A similar
renormalization scheme is chosen as in Ref. [18], except
that both light quarks and charm quarks are included in the
quark loop to obtain the renormalization constants. The
renormalization constants of the charm-quark mass Zm and
field Z2, and the gluon field Z3 are defined in the on-mass-
shell (OS) scheme, while that of the QCD gauge coupling
Zg is defined in the modified-minimal-subtraction (MS)
scheme:
 

�ZOS
m � �3CF

�s
4�

�
1

�UV
� �E � ln

4��2

m2
c
�

4

3
�O���

�
;

�ZOS
2 � �CF

�s
4�

�
1

�UV
�

2

�IR
� 3�E � 3 ln

4��2

m2
c

� 4�O���
�
;

�ZOS
3 �

�s
4�

�
�	00 � 2CA�

�
1

�UV
�

1

�IR

�

�
4

3
TF

�
1

�UV
� �E � ln

4��2

m2
c

�
�O���

�
;

�ZMS
g � �

	0

2

�s
4�

�
1

�UV
� �E � ln�4�� �O���

�
; (5)

where �E is Euler’s constant, 	0 �
11
3 CA �

4
3TFnf is the

one-loop coefficient of the QCD beta function, and nf is
the number of active quark flavors. There are three mass-
less light quarks, u, d, s, and one heavy quark, c, so nf �
4. In SU�3�c, color factors are given by TF �

1
2 , CF �

4
3 ,

CA � 3. And 	00 � 	0 � �4=3�TF � �11=3�CA �
�4=3�TFnlf, where nlf � nf � 1 � 3 is the number of light
quarks flavors. Actually, in the NLO total amplitude level,
the terms proportion to �ZOS

3 cancel each other; thus the
result is independent of the renormalization scheme of the
gluon field.

After having fixed our renormalization scheme and
omitting diagrams that do not contribute, including coun-
terterm diagrams, there are 80 NLO diagrams remaining,
which are shown in Fig. 2. They are divided into 13 groups.
Diagrams of group �f� and �j� that have a virtual gluon line
connected with the quark pair in a meson lead to Coulomb
singularity��2=v, which can be isolated by introducing a
small relative velocity v � j ~pc � ~p �cj. The corresponding
contribution is also of O��s� and can be taken into the c �c
wave function renormalization [19] as

 � � jRs�0�j
2�̂�0�

�
1�

�s
�
CF

�2

v
�
�s
�
C�O��2

s�

�

) jRren
s �0�j

2�̂�0�
�

1�
�s
�
C�O��2

s�

�
: (6)

A factor of 2 should be used since there are two bound
states. After adding contributions from all the diagrams
together, all the IR-divergent terms are canceled and the
total scattering amplitude is obtained as

 MNLO �MLO � MLO

�
1�

�s���
2�

�
8

3

�2

v
� 	0 ln

2mc

�

�
K1�s�

6
� i�

K2�s�
6

��
; (7)

with K1�s� and K2�s� given by Eqs. (A1) and (A2).
Meanwhile, �s should be obtained from a two-loop

formula as

c
c

g

c

c
c

ηc
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p2
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FIG. 1. Feynman diagrams for LO.
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�s���
4�

�
1

	0 ln��2=�2
QCD�

�
	1 lnln��2=�2

QCD�

	3
0ln2��2=�2

QCD�
; (8)

where 	1 � 34C2
A=3� 4�CF � 5CA=3�TFnf is the two-

loop coefficient of the QCD beta function. From Eq. (7)
the total cross section at NLO is

 �NLO � ��0�
�
1�

�s���
�

�
�	0 ln

2mc

�
�
K1�s�

6

��
: (9)

IV. NUMERICAL RESULT

Up to NLO, the value of the wave function at the origin
of J= is related to the leptonic decay widths as

 �ee �
�
1�

16

3

�s
�

�
4�2e2

c

M2
J= 

jRJ= s �0�j2; (10)

and according to Ref. [1], we can set R�cs �0� � RJ= s �0� �

Rs�0�. If we choose jRs�0�j2 � 0:978 GeV3 and ��4�
MS
�

0:338 GeV, then we get the numerical result shown in
Table I, which is consistent with the result in Ref. [9].

V. CONCLUSION

We calculated the NLO QCD correction of J= plus
�c production in e�e� annihilation at center-of-mass
energy 10.6 GeV. The method of dimensional regulariza-

TABLE I. Cross sections with different charm-quark mass mc
and renormalization scale �.

�����
s0
p
� 10:6 GeV is the center-of-

mass energy.

mc (GeV) � �s��� �LO (fb) �NLO (fb) �NLO=�LO

1.5 mc 0.369 16.09 27.51 1.710
1.5 2mc 0.259 7.94 15.68 1.975
1.5

�����
s0
p

=2 0.211 5.27 11.14 2.114
1.4 mc 0.386 19.28 34.92 1.811
1.4 2mc 0.267 9.19 18.84 2.050
1.4

�����
s0
p

=2 0.211 5.76 12.61 2.189

FIG. 2. All Feynman diagrams for NLO are divided into 13 groups. (a) includes the photon-quark vertex counterterm and the
corresponding loop diagrams; (b) and (c) are the gluon-quark vertex counterterm and the corresponding loop diagrams; (d) and
(e) denote the counterterm and the corresponding loop diagrams for the quark and gluon self-energy; (f) and (j) are diagrams that
contain Coulomb singularity. Other diagrams can be obtained by reversing the arrows of quark lines and/or changing the locations of
J= and �c. But notice that we cannot change the locations of J= and �c in groups (h) and (i).
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tion is taken to deal with the UV and IR singularities,
and the Coulomb singularity is isolated by a small

relative velocity v between the charm-quark pair in
the meson and absorbed into the c �c bound state wave
function. After taking all one-loop diagrams into
account, an analytic finite result is obtained. By choosing
proper physical parameters, we get a K factor (ratio
of NLO to LO) of about 2, which is consistent
with Ref. [9]. It decreases the great discrepancy between
theory and experiment. From Fig. 3, it could be found
that the dependence on the renormalization scale �
has not been improved in the NLO calculation. The plot
of the total cross section vs the center-of-mass energy of
e�e� in Fig. 4 behaves as expected. But the plot of
the K factor vs the center-of-mass energy of e�e� in
Fig. 5 shows that it is more difficult to obtain the conver-
gent result from the perturbative QCD without resumma-
tion of ln s

m2
c

terms as the center-of-mass energy of e�e�

becomes larger.
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APPENDIX A: THE DEFINITION OF K1 AND K2

In this section, the definitions K1�s� and K2�s� used in
Eq. (7) are presented.

FIG. 4. Cross sections as a function of the center-of-mass
energy with jRs�0�j2 � 0:978 GeV3 and � � 0:338 GeV. The
renormalization scale � is set at half of the center-of-mass
energy and mc � 1:5 GeV.

FIG. 5. The K factor as a function of the center-of-mass energy
with jRs�0�j2 � 0:978 GeV3 and � � 0:338 GeV. The renor-
malization scale � is set at half of the center-of-mass energy and
mc � 1:5 GeV.

FIG. 3. Cross sections as a function of the renormalization
scale � with jRs�0�j2 � 0:978 GeV3, � � 0:338 GeV, and
center-of-mass energy 10.6 GeV. The charm-quark mass is
chosen as 1.4 GeV (upper curves) and 1.5 GeV (lower curves).
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K1�s� �
�24� 79s� 68s2

3s�2s� 1�
� f1

s2 � 3s� 16

2�s� 4�
� f2

3s
2�s� 2�

� f3
�34s3 � 193s2 � 342s� 160

4�s� 4��s� 2�

� f4
�41s2 � 194s� 64

32�s� 4�
� f5

8s2 � 21s� 8

2�s� 4�
� f6

65s2 � 302s� 64

32�s� 4�
� f7

�3s2 � 4s
2�s� 4�

� a1

�
4z1�8� 7s�

s2�s� 4�
�
�64s4 � 406s3 � 11s2 � 335s� 120

�s� 4��2s� 1�2

�
� a6

�
2z1�8� 7s�

s2�s� 4�
�
z2��130� 19s� 8s2�

s�s� 4�

�
�32s4 � 110s3 � 639s2 � 696s� 172

�s� 4��2s� 1�2

�
� a7

4z1�7s� 8�

s2�s� 4�
� a9

2z2��8s2 � 19s� 130�

s�s� 4�
; (A1)

 

K2�s� � 2z1
�7s� 8

�s� 4�s2 � z2
�8s2 � 19s� 130

�s� 4�s
�

32s4 � 110s3 � 639s2 � 696s� 172

�s� 4��2s� 1�2
� z1

�65s2 � 302s� 64�

4s�s� 4�2
a13

� z1
�21s3 � 64s2 � 1396s� 2688�

8�s� 2�s�s� 4�2
a1 � z1

�73s3 � 96s2 � 444s� 896�

8�s� 2�s�s� 4�2
a3

� z1
�193s3 � 1292s2 � 2548s� 1280�

8�s� 2�s�s� 4�2
a5 � z1

�79s2 � 82s� 64�

8s�s� 4�2
a6 � 4z1

�8s2 � 21s� 8�

s�s� 4�2
a7

� z1
�34s3 � 193s2 � 342s� 160�

2�s� 2�s�s� 4�2
�a10 � a8� � z1

�183s3 � 1624s2 � 3316s� 1408�

8�s� 2�s�s� 4�2
a12; (A2)

where all the variables used in K1�s� and K2�s� are defined as

 z1 �
����������������
s2 � 4s

p
; z2 �

�������������
s2 � s

p
; (A3)

 

f1 �
4z1

s2 � 4s
��2a2

1 � a1a2 � a1a3 � a1a4 � 2a1a6 � 4a1a7 � a2a3 � a
2
3 � a3a4 � a3a5 � 2a3a6 � a5a6

� a2
6 � 2a6a7 � l1 � l2 � l3 � l4 � l5 � l6 � l7 � 2l8�;

f2 �
2z1

s2 � 4s
�6a2

1 � 2a1a3 � a1a5 � 4a1a7 � 2a3a6 � a5a6 � 2a2
6 � 4a6a7 � l10 � l11 � l12 � l13 � 2l14 � l9�;

f3 �
2z1

s2 � 4s
�2a1a12 � a1a5 � a10a6 � 2a10a9 � 2a11a12 � 2a2

12 � 2a12a5 � 2a12a6 � 2a12a7 � a5a6 � a6a8

� 2a8a9 � 2l15 � l16 � l17 � l18 � l19 � l20 � l21 � l22�;

f4 �
4z1

s2 � 4s
��2a1a12 � a1a5 � a1a6 � a12a6 � a3a6 � 2l15 � l23 � l24 � l25 � l26 � l27�;

f5 �
4z1

s2 � 4s
��2a1a6 � a

2
6 � 2a6a7 � 2l15 � l26 � l27 � 2l28�;

f6 �
4z1

s2 � 4s
��2a1a13 � a1a5 � 2a1a6 � 2a1a7 � 2a13a6 � a5a6 � a

2
6 � l16 � l21 � l22 � l26 � l27 � 2l28�;

f7 �
2z1

s2 � 4s
��2a1a14 � 2a1a15 � a1a5 � a

2
12 � a12a14 � a12a15 � a12a5 � 2a12a6 � a5a6 � 2l15 � l16 � l21

� l22 � 4l28�; (A4)

 a1 � a ln�2�; a2 � a ln�s2� sz1� 2z1�; a3 � a ln�s� z1� 2�; a4 � a ln�s2� sz1� 2s� z1�;

a5 � a ln�2s� 1�; a6 � a ln�s�; a7 � a ln�s� z1�; a8 � a ln�3s2� sz1� sz2� 6s� 3z1z2� 2z1� 4z2�;

a9 � a ln�s� z2�; a10 � a ln�3s2� sz1� sz2� 6s� 3z1z2� 2z1� 4z2�; a11 � a ln�2s2� 2sz1� 5s� z1�;

a12 � a ln�s� z1� 1�; a13 � a ln�3s� z1�; a14 � a ln�s2� sz1� 3s� z1�; a15 � a ln�s2� sz1� s� z1�;

(A5)

and
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 l1 � Lir2

�
s2 � sz1 � 4s� 2z1

8s2 � 4s

�
; l2 � Lir2

�
�s2 � sz1 � 4s� 2z1

4s� 2

�
; l3 � Lir2

�
�s2 � sz1 � 4s� 2z1

4s

�
;

l4 � Lir2

�
�s� z1 � 4

8

�
; l5 � Lir2

�
�s� z1 � 4

8

�
; l6 � Lir2

�
s� z1 � 4

2s

�
;

l7 � Lir2

�
s� z1 � 4

2s

�
; l8 � Lir2

�
z1

2s

�
; l9 � Lir2

�
s3 � s2z1 � 4s2 � 2sz1 � 2z1

8s� 4

�
;

l10 � Lir2

�
�s4 � s3z1 � 4s3 � 2s2z1 � 2sz1

4s� 2

�
; l11 � Lir2

�
�s3 � s2z1 � 4s2 � 2sz1 � 2z1

4

�
;

l12 � Lir2

�
�s2 � sz1 � 4s� 2z1

2

�
; l13 � Lir2

�
�s2 � sz1 � 4s� 2z1

2

�
; l14 � Lir2

�
z1

2

�
;

l15 � Lir2

�
�z1

s

�
; l16 � Lir2

�
s2 � sz1 � 4s� z1

2s2 � s

�
; l21 � Lir2

�
�s2 � sz1 � 4s� z1

s

�
;

l22 � Lir2

�
�2s2 � 2sz1 � 8s� 2z1

2s� 1

�
; l23 � Lir2

�
s2 � sz1 � 4s� z1

2s2 � s

�
; l24 � Lir2

�
�s2 � sz1 � 4s� z1

s

�
;

l25 � Lir2

�
�2s2 � 2sz1 � 8s� 2z1

2s� 1

�
; l26 � Lir2

�
�s� z1 � 4

2

�
; l27 � Lir2

�
�s� z1 � 4

2

�
;

l28 � Lir2

�
z1

s

�
; l17 � Lir2

�
�s3 � s2z1 � s

2z2 � 5s2 � sz1z2 � 2sz1 � 4sz2 � 4s� 2z1z2

s2

�
;

l18 � Lir2

�
�s3 � s2z1 � s

2z2 � 5s2 � sz1z2 � 2sz1 � 4sz2 � 4s� 2z1z2

s2

�
;

l19 � Lir2

�
�s3 � s2z1 � s

2z2 � 5s2 � sz1z2 � 2sz1 � 4sz2 � 4s� 2z1z2

s2

�
;

l20 � Lir2

�
�s3 � s2z1 � s

2z2 � 5s2 � sz1z2 � 2sz1 � 4sz2 � 4s� 2z1z2

s2

�
:

(A6)

In the above expressions, a ln�x� � lnjxj and Lir2�x� �
Re�Li2�x��.

APPENDIX B: THE RESULTS FOR ALL THE
SCALAR INTEGRALS

In this section, we present the results of scalar integrals.
Functions A to E denote one- to five-point scalar integrals,
and variables of the functions are written as
T�p0; m0; . . . ; pn; mn� where pi and mi denote parameters
of the nth propagator Ni � �q� pi�2 �m2

i � i�. q is the
loop momentum, and a factor of

 C� �
i

16�2 e
���E

�
4��2

4m2
c

�
(B1)

is taken away from all the scalar integrals.
We have developed a full series of methods in calculat-

ing tensor and scalar integrals with dimensional regulari-
zation and realized it in FDC [17]. A paper about these
methods is in preparation. All the scalar integrals are
calculated analytically by using FDC, and the results are
shown in the following.

One-point scalar integrals:

 A�0; mc� � 4F14m2
c �

1

"UV
m2
c: (B2)

Two-point scalar integrals:

 

B
�
0; 0;

2p3 � p4

2
; mc

�
� F13 �

1

"UV
;

B
�

0; 0;
�p3 � p4

2
; 0
�
� F12 �

1

"UV
;

B
�
0; mc;

p3 � p4

2
; mc

�
� F11 �

1

"UV
;

B�0; mc; p3 � p4; mc� � F10 �
1

"UV
;

B
�
0; 0;

p4

2
; mc

�
� F9 �

1

"UV
:

(B3)

Three-point scalar integrals:
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 C
�
0; 0;

p3

2
; mc;

�p3

2
; mc

�
�

1

4m2
c

�
F8 �

2�2

v
�

2

"IR

�
; C

�
0; 0;

p4

2
; mc;

2p3 � p4

2
; mc

�
�

1

4m2
c
F7;

C
�
0; 0;
�p4

2
; mc;

p3 � p4

2
; 0
�
�

1

4m2
c
F6; C

�
0; 0;

p3

2
; mc;

p3 � p4

2
; 0
�
�

1

4m2
c
F5;

C
�
0; 0;

2p3 � p4

2
; mc;

p3 � p4

2
; 0
�
�

1

4m2
c
F4; C

�
0; 0;

p3 � 2p4

2
; mc;

�p3

2
; mc

�
�

1

4m2
c
F3;

C
�
0; 0;

p3

2
; mc;�p4; 0

�
�

1

4m2
c
F2; C

�
0; 0;

p4

2
; mc;

p3 � 2p4

2
; mc

�
�

1

4m2
c
F1:

(B4)

Four-point scalar integrals:

 D
�
0; 0;

2p3 � p4

2
; mc;

�p4

2
; mc;

p4

2
; mc

�
�

1

16m4
cs

�
F15s�

4�2

v
�

4

"IR

�
;

D
�

0; 0;
p3

2
; mc;

�p3

2
; mc;

�p3 � p4

2
; 0
�
�

1

16m4
cs

�
F16s�

8�2

v
�

8

"IR

�
;

D
�

0; 0;
�p4

2
; mc;

2p3 � p4

2
; mc;

p3 � p4

2
; 0
�
�

1

16m4
c
F17:

(B5)

Five-point scalar integrals:

 E
�
0; 0;
�p3

2
; mc;

�p3 � 2p4

2
; mc;

p3

2
; mc;

�p3 � p4

2
; 0
�
�

1

64m6
cs

2

�
F18s2 �

32�2

v
�

32

"IR

�
: (B6)

And here are the results for Fi, where fi and ai are defined as before.

 F1 �
1

s�s� 4�
4�iz1�a6 � a5 � 2a3 � 4a1� � f1; F2 �

1

s�s� 4�
2�iz1��a5 � 2a3 � 2a1� � f2;

F3 �
1

s�s� 4�
2�iz1��2a12 � a10 � a8 � a5� � f3; F4 �

1

s�s� 4�
4�iz1�a12 � a3 � a1� � f4;

F5 �
1

s�s� 4�
4�iz1��2a7 � a6 � 2a1� � f5; F6 �

1

s�s� 4�
4�iz1�2a13 � a6 � a5 � 2a1� � f6;

F7 �
1

s�s� 4�
2�iz1�2a12 � a5� � f7; F8 � 2��2a1 � 2�;

F9 � 2�a1 � 1�; F10 �
1

s
�z2�2a9 � a6 � i�� � 2�a1s� s��;

F11 �
1

s
�z1��2a7 � a6 � 2a1 � i�� � 2�a1s� s��; F12 � �a6 � 2a1 � i�� 2;

F13 �
1

2s� 1
�2a1�s� 1� � 2��a6s� i�s� 2s� 1��; F14 �

1

4
�2a1 � 1�;

F15 �
1

s2 �8�i��s� z2� � 8z2�2a9 � a6� � 8s�a6 � 1��; F16 �
1

s
��32a1 � 16�;

F17 �
1

s2 �16�i��s� z2� � 16z2�2a9 � a6� � 16�a6s� 2a1s��;

F18 �
1

s3 �32�i�s� 2��s� z2� � 32z2�s� 2���2a9 � a6� � 32a6s�s� 2� � 64a1s2 � 64s�:

(B7)
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APPENDIX C: THE SCHEME TO TREAT �5 IN D
DIMENSION

As we all know, there is no explicit definition for �5 inD
dimensions. Usually the following relations are used when
one encounters �5 in D dimensions:

 f�5; ��g � 0; (C1)

 Tr ��5p̂1p̂2p̂3p̂4� � 4i��
�	p
�
1 p



2p

�
3p

	
4 : (C2)

Notice that ��
�	 goes to zero when any of its indices is
out of the 4 dimensions.

While calculating the trace of the product of several
matrices that contain �5 and indices in D dimensions,
different ways may lead to different results. For example,
when calculating the trace of matrix M �
�5��p̂1p̂2p̂3p̂4��, we have two different routes as shown
in Fig. 6:

(1) In route A1, the summing up of the index� does not
go across �5.

 Tr �M�jA1
� Trf�5��D� 2�p̂1p̂2p̂3p̂4

� 2p̂2p̂1p̂3p̂4 � 2p̂3p̂1p̂2p̂4

� 2p̂4p̂1p̂2p̂3�g

� 4i�D� 8���
�	p
�
1 p



2p

�
3p

	
4 : (C3)

(2) In route A2, it does go across �5.

 Tr �M�jA2
� �Tr��5����p̂1p̂2p̂3p̂4�

� �DTr��5p̂1p̂2p̂3p̂4�

� �4iD��
�	p
�
1 p



2p

�
3p

	
4 : (C4)

It is easy to find that Tr�M�jA1
� Tr�M�jA2

in 4 dimensions,
but in D dimensions they are different from each other. So
we should always take the same route when dealing with
traces containing �5 in order to keep our final finite result
consistent. In FDC, route A1 is taken.
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