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The final-state interaction in multichannel decay processes is systematically studied in the hadronic
picture with application to B decay in mind. Since the final-state interaction is intrinsically interwoven
with the decay interaction in this case, no simple phase theorem like ‘‘Watson’s theorem’’ holds for
experimentally observed final states. We first solve exactly the two-channel problem as a toy model in
order to clarify the issues. The constraints of the two-channel approximation turns out to be too stringent
for most B decay modes, but realistic multichannel problems are too complex for useful quantitative
analysis at present. To alleviate the stringent constraints of the two-body problem and to cope with
complexity beyond it, we introduce a method of approximation that is applicable to the case where one
prominent inelastic channel dominates over all others. We illustrate this approximation method with the
amplitude of the decay B! K� fed by the intermediate states of a charmed-meson pair. Even with our
approximation we need more accurate information of strong interactions than we have now. Nonetheless
we are able to obtain some insight in the issue and draw useful conclusions on general features on the
strong phases.
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I. INTRODUCTION

The well-known phase theorem [1] holds for the final-
state interaction (FSI) of decay processes when the final
state consists of a single eigenstate of scattering. While no
simple nontrivial extension is known in the case of multi-
channel final states, some calculations were made in the
past with unjustified extension of the single-channel phase
theorem [2]. A two-channel problem was studied with a
certain class of S matrix and the correct observation was
made that inelastic channels are the main source of strong
phases in many B decay modes [3]. However, it is not easy
to obtain quantitatively reliable results from the two-
channel model. Taking the large limit of open channels,
the statistical model [4,5] was proposed as an alternative
approach. Quantitatively, however, it is short of predictive
power since it does not ask for detailed knowledge of
strong interaction. When one approaches the problem in
the quark-gluon picture, one faces inability or large uncer-
tainty in computing contributions of the soft collinear
constituents numerically. It is fair to say that at present
we are far from successful computation of a FSI phase in
multichannel decay processes.

In this paper we first study the two-channel problem in
detail. The problem is solvable in a reasonably compact
form without approximation or assumption if relevant
information is available about strong interaction physics
and decay branching fractions. The general solution to the
two-channel toy model shows how the elastic scattering
phases and the channel coupling contribute to the total FSI
phase. It concludes in agreement with Donoghue et al. [3]
that if a large strong phase emerges in the B decay into two
light mesons, its major source is coupling to decay chan-

nels that have large branching fractions.1 Although it
points to the source of problems in strong phases, the
simple two-channel model is inapplicable to B decay. We
proceed to the case of more than two decay channels. Even
the three-channel problem is mathematically too compli-
cated for solving in a compact form. On the physics side
our knowledge of strong interaction at total energy 5 GeV
( ’ mB) is not good enough to carry through the analysis
with precision. To cope with formidable complexity of the
problem, we introduce an approximation method that
works in the case that, aside from the channel of our
interest, one inelastic channel dominates over all others.
This is different from an approximate two-channel prob-
lem. It can happen, for instance, to the two-body light-
hadron decays of B meson when they couple to the
charmed-meson pair states. We apply our approximation
method to the decay B! K� and make semiquantitative
analysis with knowledge of hadron physics currently avail-
able to us.

II. FRAMEWORK AND INPUT

Two basic ingredients in discussion of FSI are unitarity
and time reversal. In the standard model the decay inter-
action is the sum of effective local operators Oa�a �
1; 2; 3; . . .�, each of which has a CP-violating (and there-
fore T-violating) phase factored out as

 Hintei�w � H:c:; �THintT�1 � Hint�: (1)

The T-violating ‘‘weak phase’’ �w arises from the

1This was suggested to the author by Wolfenstein on many
occasions over years [6].
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Cabibbo-Kobayashi-Maskawa quark-mixing matrix
(CKM) elements. In computing decay amplitudes we
work separately on the T-invariant part Hint of the decay
interaction. In the case that T violation is more general, we
can break up the weak interactions Hw into T-even and
T-odd parts as H���int �

1
2 �Hw � THwT�1� so that

 TH���int T
�1 � �H���int : (2)

Then both H���int and iH���int are T-even since i! i� � �i
under time reversal.2 We should compute the decay ampli-
tudes forH���int and iH���int separately and take a suitable sum
of them at the end. Therefore it is sufficient to consider in
general only T-even weak interactions. No matter what
method one may use, computation of FSI phases must
always be made separately for different decay operators
because two decay operators generate two different FSI
phases for the same decay process even if the net quantum
numbers of operators are identical. We consider in this
paper only final-state interaction of strong interaction
though it is in principle easy to include electromagnetic
FSI. We shall refer to FSI phases also as strong phases in
this paper.

With T invariance, the strong S-matrix operator obeys

 TST�1 � Sy: (3)

We can always choose phases of states such that the
T-invariant S-matrix elements (Skj � hkjSjji � hkoutjjini)
are not only unitary but symmetric:

 Sjk � Skj (4)

since jjini ! hjoutj and hkoutj ! jkini under time reversal. It
is emphasized here that the requirement of Eq. (4) fixes the
phases of states except for the overall sign of �1.3

Specifically for the eigenchannels of the S-matrix jaini
and hboutj, it holds by definition that

 hbjSjai � hboutjaini � �bae
2i�a ; (5)

where �a is the eigenphase shift. In the case of decay
matrix elements, the initial state is a one-particle state
that is stable with respect to strong interaction. Since the
initial decaying state is an asymptotic state with respect to
strong interaction, there is no distinction between ‘‘in’’ and
‘‘out’’ states. For B decay

 jBi!
T
hBj; (6)

where we choose the Bmeson at rest. Equation (6) removes
an arbitrary unphysical phase from the state jBi too.

A simple relation results from time reversal of the decay
matrix element haoutjHintjBiwhen the final state haoutj is an
eigenstate of S. T invariance of Hint leads to

 haoutjHintjBi � hBjHintjaini: (7)

Inserting the completeness relation
P
bjb

outihboutj � I next
to Hint in the right-hand side, we obtain from Eq. (7) with
Eq. (5)

 haoutjHintjBi �
X
b

hBjHintjboutihboutjaini

� e2i�ahaoutjHintjBi
�: (8)

With the decay amplitude haoutjHintjBi into the eigenchan-
nel a denoted by Aa, this relation reads

 Aa � e2i�aA�a; (9)

namely, Aa � �ei�a jAaj. This is the well-known phase
theorem usually referred to as Watson’s theorem [1]. It is
a powerful theorem when the final state is an eigenstate of
S. It has been an important tool of analysis in hyperon
decay and K ! �� decay.

But this relation is of little use when rescattering has
inelasticity. We mean by inelasticity that observable final
states are linear combinations of eigenstates whose weights
are not simply determined by the Clebsch-Gordan coeffi-
cients of isospin symmetry or SU(3) coefficients. In such
cases the phase of the elastic scattering amplitude has little
to nothing to do with the FSI phase of the corresponding
decay amplitude, as we shall see it in a moment.

Usefulness of the phase theorem is thus limited to the
decay of low-mass particles where rescattering is purely
elastic up to isospin structure. If the K meson mass were
sufficiently above 1 GeV, for instance, �� of definite
isospin would no longer be an eigenstate of S matrix
even approximately. The state �� and !! would enter
an S-matrix eigenchannel with �� and composition of
such an eigenstate depends on low-energy dynamics of
the transition among ��, ��, and !!. In the case of B
decay an experimentally observed final state is a linear
combination of many different S-matrix eigenstates so that
the net FSI phase results from the eigenphases weighted
with the decay amplitudes of B! eigenstate. Take. for
instance, the �� final state in I � 0 of �B0 decay. The state
j��iI�0 (in s wave) is far from being an S-matrix eigen-
state at energy mB. If we want to use the phase theorem
Eq. (9), we must expand j��i in the strong S-matrix
eigenstates at mB. However, we have little knowledge of
these eigenstates since their composition depends sensi-
tively on strong interaction at long and intermediate dis-
tances. Experimentally the two-body channels do not
account for all final states in B decay. Three and four
particle final states of the same JPC may be significant.
Unless there is a good reason to believe that channel
coupling is negligible among these final states, the strong
S-matrix eigenstates at mB are made of many different

2If we make this breakup for the standard model interaction,
we would get H���int � cos�wHint and iH���int � � sin�wHint for
the first term Hw � Hintei�w of Eq. (1).

3If one multiplies the states with some phases as jji ! ei�jji
and jki ! ei�jki, Sjk and Skj would acquire phases of opposite
signs e�i����� so that the equality Sjk � Skj would break down.
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particle states ���; ��;K �K;��K �K; . . .�. Therefore, if we
expand the �� state at total energy mB, it is a linear
combination of many different eigenstates of strong S
matrix. We would have to know these expansion coeffi-
cients in order to determine the FSI phase of �� final state
with the phase theorem.

Let us formulate what we have described above. When
an observable final state jiouti is not S-matrix eigenstate, we
expand it in the eigenstates of S matrix jaouti as4

 jiouti �
X
a

Oiajaouti: (10)

We choose that the Smatrix is symmetric (Sij � Sji) in the
basis of the observable states [cf. Eq. (4)]. Then the ex-
pansion coefficientsOia are real; that is, the transformation
matrix O in Eq. (10) is an orthogonal matrix. (See the
appendix if proof is needed.) With this expansion and
Eq. (9),

 Ai �
X
a

OiaAa �
X
a

Oiae2i�aA�a: (11)

We are able to write the right-hand side of Eq. (11) in terms
of observable decay amplitudes Aj’s as

 Ai �
X
aj

Oiae2i�aOjaA�j �
X
j

SijA�j ; (12)

where Sij � Oiae
2i�aOja has been used. This is the funda-

mental relation in discussion of FSI. The physical picture is
simple and clear (Fig. 1). The input is unitarity and time
reversal of the S matrix aside from choice of unphysical
phases of states. Dynamical information of strong interac-
tion is fed through the eigenphases �a and the orthogonal
mixing matrix O. In addition, we must provide relative
magnitude of the amplitudes Ai as independent pieces of
input from weak interaction. Consequently the phase of Ai
depends not only on strong interaction but also on weak
interaction. It is clear here that the FSI phase of a decay
amplitude has virtually nothing to do with the phase of the
elastic scattering amplitude aJ�s� of J � 0 at 5 GeV.
Although it looks almost futile to go any further, the
purpose of this paper is to extract something useful for B
decay out of Eq. (12).

III. DYNAMICAL INPUT

We focus on the FSI phases of the two-body decay
modes of the B meson. The phases of three-body decay
amplitudes depend on the subenergies of three particles. It
is only the phases integrated over the subenergies with the
total energy fixed to mB that enter Eq. (12). We need the
S-matrix elements Sij from experiment. To be concrete, let
us consider the elastic ���� scattering amplitude as an
example. The argument below is identical for other two-
body channels of light mesons. In B decay the relevant
partial-wave channel is ���� in s wave (JP � 0�) with
isospin I � 0 and I � 2.

Although the high-energy �� scattering cannot be di-
rectly measured in experiment, we can make a reasonable
estimate about elastic �� scattering since the center-of-
momentum energy 5 GeV is in the high-energy asymptotic
region well above the �� resonances.5 The two-body
light-hadron scattering in the high-energy asymptotic re-
gion was studied theoretically and experimentally in the
1960s. The Regge theory describes this physics well. The
properties of the Regge trajectories can be deduced from
meson-nucleon and nucleon-nucleon scattering even
though we have no meson-meson scattering experiment.
We give a very brief review [8] of our knowledge in this
area of the past time since it is an important input in our
study of FSI.

First of all, the Pomeron exchange dominates in high-
energy elastic scattering (Fig. 2). The Pomeron may in-
clude a cut and can be more a complicated singularity than
a simple pole in J plane unlike the non-Pomeron trajecto-
ries such as � and f2. At the level of numerical accuracy of
our discussion, however, we treat the Pomeron as a simple
pole at J � ��t� with the intercept ��0� � 1 and a vanish-
ingly small slope. This entails factorization of the J-plane
residue into the product of two vertices. Since isospin is
zero for the Pomeron, it contributes equally to the I � 0
and I � 2 states of the crossed channels ��. With these
properties of the Pomeron we obtain necessary pieces of
information on �� scattering from �p and pp scattering
at high energies.

B
j i

S

FIG. 1. The final-state interaction relation in diagrams. See
Eq. (12).

 P, ρ , f 2

π π

π π

FIG. 2. The Regge exchange in elastic �� scattering.

4We represent the S-matrix eigenstates by jai; jbi; . . . and the
observed particle states by jii; jji; jki; . . . .

5The excited charmonia exist at mass not far below 5 GeV but
their coupling to light hadrons is suppressed by quantum chro-
modynamics. Coupling of �� to the open charm channels [7] is
one of interesting subjects of our study later in this paper.
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The invariant amplitude for the asymptotic elastic scat-
tering is parametrized with the Regge parameters of the
Pomeron in the form

 A���s; t� � ����P �t�
1� e�i��P�t�

sin��P�t�

�
s
s0

�
�P�t�

; (13)

where ���P �t� � ��
�
P�t��

2 and �P�t� ’ 1� �0P�0�t� 	 	 	
are the factorized residue and the trajectory of the
Pomeron, respectively, in terms of the invariant momentum
transfer t.6 We can fix ���P �0� by the optical theorem
�tot � ImA�s; 0�=s and the factorization relation ���tot ’
���ptot �

2=�pptot ’ 22 mb at
���
s
p
� mB [8,9]. The value 22 mb

is in line with the empirical quark counting rule, ���tot ’
2
3�

�p
tot ’ �

2
3�

2�pptot [10]. The width of the forward peak is
more or less universal to all elastic hadron scatterings
[11,12]. We approximate the Pomeron slope to zero
(�0P�0� ’ 0) and fit the forward elastic peak with the stan-
dard exponential form exp�t=t0�. The diffraction peak pa-
rameter is fixed by experiment to t0 ’ �0:22
 0:29� GeV2

by the elasticity �el=�tot at
���
s
p
� mB [9,13,14]. This value

of t0 reproduces the t dependence of d�el=dt that falls by
roughly 3 orders of magnitude from t � 0 to t ’ �1 GeV2

for pp and �p scattering [11,12]. It is justified by facto-
rization to choose the �� forward peak parameter equal to
that of pp and �p. The �� invariant amplitude at high
energies is thus set to

 A���s; t� ’ 22 mb� iset=t0 ; (14)

where we choose t0 � �0:253� 0:033� GeV2. The uncer-
tainty in t0 is primarily due to whether one estimates it with
�el=�tot of ��p or pp and p �p.

The partial-wave amplitudes al�s� can be projected out
of A���s; t�. The result for the s wave is

 a��0 �s� � �0:282� 0:037�i; �at s � m2
B�; (15)

which leads to the s-wave S matrix with 2jpcmj=
���
s
p
’ 1,

 S��0 �s� � 1� 2ia��0 �s�: (16)

Hereafter we shall often parametrize strength of elastic
scattering by � as

 S0�s� � 1� �: (17)

With Eq. (15), the Pomeron contribution to the S matrix of
�� scattering at mB is

 S��0 ’ 1� �0:56� 0:07�: (18)

The partial-wave amplitudes al�s� extracted from the flat
Pomeron amplitude are purely imaginary for all l. The
amplitude a0�s� approaches asymptotically the imaginary

axis below the center of the Argand diagram (shown sche-
matically for I � 0 in Fig. 3). If one described the high
inelasticity of high-energy �� scattering by an absorptive
black sphere potential, one would have S��0 �s� ! 0 (i.e.,
a0�s� ! 0:5i). In this limit �el !

1
2�tot for all l’s by

shadow scattering effect, which is in disagreement with
experiment. Although the numerical value in the right-
hand side of Eq. (18) has been extracted for the ��
channel, it is much the same for other two-meson channels.
With the help of the Kp cross section �Kptot [9] we obtain
 

S�K0 ’ 1� 0:51; ��K� and

SK �K
0 ’ 1� 0:45; �K �K�;

(19)

where uncertainties are comparable to �0:07 quoted for
�� in Eq. (18) or a little larger.

The values in Eqs. (18) and (19) are the Pomeron con-
tribution alone. The nonleading Regge exchanges generate
a small imaginary part for S0. The relevant trajectories are
the � and f2 in the case of ��. Their contributions can be
estimated with a few additional theoretical inputs7 from the
cross section difference ���p � ���p ’ 1:6 mb at

���
s
p
�

mB [14]. Within the uncertainty due to t dependence of the
residue ��t�, their contributions to ImS0 are at the level of
0:05i for ��. Some may wonder about the validity of
extracting the s-wave amplitude from the forward peak
region alone. The s-wave amplitude has a flat angular
dependence so that the contribution of a0�s� extends
equally to all directions [P0�cos�� � 1]. On the other
hand experiment shows that the forward peak falls off by
more than 3 orders of magnitude and there is no sign of the

FIG. 3. Energy dependence of a0�s� in the complex plane
(Argand diagram).

6The possible small log2s rise of �tot�s� does not set in at
���
s
p
’

5 GeV. We may safely ignore it in our numerical work. We have
included in ���P �t� the t dependence of some other kinematical
factors such as 2�P�t� � 1. The value of s0 is at our choice,
normally chosen to be 1 GeV2.

7The inputs are the isospin-current coupling of � and the
exchange degeneracy of � and f2.
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s-wave contribution at large angles. But this is no surprise.
The s-wave amplitude at large angles is canceled by the
partial-wave amplitudes of up to l � O�

���
s
p
� which are

rapidly oscillatory in angular dependence as Pl�cos�� 

sin��l� 1

2���
�
4�
=

������������
l sin�
p

(for l�� 1).
Now our task is to extract useful pieces of information

from Eq. (12) with the high-energy elastic S matrix of
Eq. (18) or Eq. (19).

IV. FINAL-STATE INTERACTION OF TWO
COUPLED CHANNELS

Let us first count how many dynamical quantities are
involved in the most general (n� n) FSI relation, Eq. (12).
The unitary and symmetric S matrix contains 1

2n�n� 1�
independent parameters; n eigenphase shifts and 1

2n�n�
1� rotation angles of O. To solve for Ai’s of observable
channels in Eq. (12), therefore, we must feed the 1

2n�n� 1�
dynamical parameters of strong interaction. This is not
sufficient to determine Ai uniquely. Although the FSI
relation Eq. (12) may look as if it introduced 2n constraints
through the real and imaginary parts, only a half of them,
namely n of them, are actually independent.8 We must
provide the relative magnitudes of Aa or Ai as an additional
input in order to determine the FSI phases uniquely. The
magnitude of a decay amplitude is determined primarily by
weak interaction, i.e., the property of decay operators.
Knowledge of strong interaction alone can never determine
multichannel FSI phases. We need to know the interplay of
strong and weak interactions.

Nobody is capable of tackling this problem for a general
value n. We will therefore be content with studying the FSI
relation first in the simple manageable case of n � 2 and
then searching a sensible approximation in more compli-
cated and realistic cases.

Although the two-channel problem is the next to the
simplest, there has been no serious attempt to study this
case in the past, probably with a good reason as we see
below. Although it may not look very relevant to the B

decay of the real world, we have a chance to obtain insight
into general characteristics of coupled channel effects. For
instance, how is the FSI phase of �� channel affected by
the �� channel? If one of the charm-anticharm channels
such as D��� �D��� strongly couples to the �� channel, how
does this channel affect the FSI of the �� channel?9 While
simplistic perturbative calculations have been undertaken
in the past, we would like to study these questions system-
atically with the two-channel toy model that incorporates
unitarity.

We can write the general T-invariant S matrix of 2� 2
with three parameter ( 1

2n�n� 1� � 3 for n � 2) in the
form of
 

S �
cos� � sin�

sin� cos�

 !
e2i�1 0

0 e2i�2

 !
cos� sin�

� sin� cos�

 !

�
e2i�1c2

� � e
2i�2s2

� �e2i�1 � e2i�2�c�s�

�e2i�1 � e2i�2�c�s� e2i�1s2
� � e

2i�2c2
�

 !
; (20)

where cos� and sin� are abbreviated as c� and s� in the
second line. Substituting this S matrix in the FSI relation
Eq. (12), we obtain the constraints on the real and imagi-
nary parts or the magnitudes and phases of the decay
amplitudes defined by10

 Aj � aj � ibj � jAjje
�j ; �j � 1; 2� (21)

where the phases �1;2 are the FSI phases (the strong
phases) of channel 1 and 2. We have in mind j � 1 for
�� and j � 2 for either �� or D��� �D��� of I � 0. The
constraining equation of Eq. (12) can be written out for
the real and imaginary parts as

 

a1

a2

b1

b2

0
BBB@

1
CCCA � ReS ImS

ImS �ReS

� � a1

a2

b1

b2

0
BBB@

1
CCCA; (22)

where ReS and ImS are the 2� 2 matrices. To be explicit,

 

a1

a2

b1

b2

0
BBB@

1
CCCA �

c2�1
c2
� � c2�2

s2
� �c2�1

� c2�2
�c�s� s2�1

c2
� � s2�2

s2
� �s2�1

� s2�2
�c�s�;

�c2�1
� c2�2

�c�s� c2�1
s2
� � c2�2

c2
� �s2�1

� s2�2
�c�s� s2�1

s2
� � s2�2

c2
�

s2�1
c2
� � s2�2

s2
� �s2�1

� s2�2
�c�s� ��c2�1

c2
� � c2�2

s2
�� ��c2�1

� c2�2
�c�s�;

�s2�1
� s2�2

�c�s� s2�1
s2
� � s2�2

c2
� ��c2�1

� c2�2
�c�s� ��c2�1

s2
� � c2�2

c2
��

0
BBB@

1
CCCA

a1

a2

b1

b2

0
BBB@

1
CCCA: (23)

As we have pointed out above, Eq. (23) contains only two independent constraints, not four. Indeed, one can show that two
eigenvalues of the 4� 4 matrix in the right-hand side are unity and generate no constraint. The two remaining eigenvalues
are �1 and generate constraints.

10Recall that the arbitrary unphysical phases of states have been fixed up to an overall � sign by the symmetry condition Sij � Sji on
the S matrix.

9For some dynamical reason, the branching fraction to �� is an order of magnitude larger than that to ��. The D� �D� channel has a
huge branching fraction because of the robust b! c transition.

8In the case of a single channel, the relation A1 � e2i�1A�1 gives a constraint only on the phase of A1, not its magnitude. In the case of
n channels, something similar happens: The phases of Aa for eigenchannels are determined when Sij are completely specified, but their
magnitudes jAaj are not.
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We now feed our dynamical input Eq. (17) in the slightly
different notation:

 S11 � 1� �; �jS11j< 1�; (24)

where � is real but not necessarily very small in magnitude.
For our discussion later we choose � to be ’ 0:5, as
suggested by the Pomeron dominance in elastic scattering.
It is easy to include the nonleading Regge contributions
and relax the condition �� � �. Fixing � amounts to setting
two parameters in S matrix of Eq. (20) so that we are left
with one parameter out of three. When we fix the S11

component as in Eq. (24), it is more convenient to parame-
trize the S matrix in the form

 S � 1� � i
�����������������
2�� �2
p

ei	

i
�����������������
2�� �2
p

ei	 �1� ��e2i	

 !
; (25)

where the angle 	 is the remaining single parameter of the
Smatrix. It is related to two eigenphase shifts �1;2 defined
in Eq. (20) by

 sin2	 �
sin22�1 � sin22�2

sin2��1 � �2�
: (26)

Note that once S11 is given, magnitude of the channel
coupling jS12j �

�����������������
2�� �2
p

in Eq. (25) is fixed by unitarity
and no longer a free parameter.

A. Case of jS22 � 1j > jS11 � 1j

Let us first study the case where the partial-wave ampli-
tude a��0 �s� of rescattering is stronger in the second chan-
nel than in the first channel, namely, i.e.,
jS22 � 1j> jS11 � 1j. This may serve as a toy model of
�� and D� �D�;11 the D� �D� scattering of I � 0 is presum-
ably strong because of the near-threshold enhancement
and/or broad excited charmonium resonances. For illustra-
tion we consider the extreme case that the rescattering in
the second channel is maximally strong relative to that in
the first channel. This is realized by choosing e2i	 �

�1�	 � �
2� in Eq. (25). The symmetric unitary S matrix

takes the form of

 S � 1� � �
�����������������
2�� �2
p

�
�����������������
2�� �2
p

�1� �

 !
; ��� � ��: (27)

In terms of partial-wave amplitudes, this gives a��0 �s� �
1
2 i� and i�1� 1

2 �� �
3
2 i� for the first and second channels,

respectively, with 1
2 � � 0:25. By substituting this S matrix

in the FSI relations, we obtain [see Eq. (21)]

 A1 � a1 � ib1; A2 � �

������������
�

2� �

r �
a1 � i

2� �
�

b1

�
:

(28)

The real and the imaginary parts of A1 are still independent
of each other. The phases �1;2 cannot be determined
uniquely even after the S matrix is fully specified. But
the phase �1 is related to �2 by

 tan�1 � �
�

2� �
tan�2 ’ �

1

3
� tan�2: (29)

Even when 	 of S22 � jS22je2i	 is equal to 1
2� (normally

called ‘‘resonant’’), �2 is not necessarily equal to 1
2�.

Although this may look puzzling at the first sight, it is
not. To determine �1;2 uniquely, we need to feed one more
piece of information. For instance, if the value of the ratio
jA2=A1j is supplied, we can determine �1 and �2 individu-
ally. By eliminating �2 from Eq. (29) we obtain the rela-
tion that determines �1 in terms of jA2=A1j and �:

 sin 2�1 �
�

4�1� ��

�
�2� ��

jA2j
2

jA1j
2 � �

�
: (30)

The ratio jA2=A1j contains information of weak interac-
tions. In multichannel decay, weak interaction plays a very
important role in determining the FSI phases.

There is one shortcoming of this two-channel toy model:
As one sees in Eq. (30), the ratio jA2=A1j must lie in the
range of

 

������������
�

2� �

r
�
jA2j

jA1j
�

������������
2� �
�

s
(31)

for this model to be applicable. At the lower boundary of
jA2=A1j, it happens that �1 � �2 � 0, while �1 �
��2 � �90� at the upper boundary of jA2=A1j. When
jA2=A1j is in between, both �1 and �2 take nonzero values
even though all elements of the Smatrix are real. This is an
important point to be emphasized. The phase of A1 can
arise from the process B! 2! 1 through the intermedi-
ate state 2. Some may wonder why the ratio jA2=A1j is
constrained in the two-channel toy model. With channel
coupling present, one channel feeds the other by FSI to the
direction to equalize magnitudes of jA1j and jA2j. The FSI
not only generates phases for A1 and A2 but also alters their
magnitudes. Highly asymmetric jA1j and jA2j are incom-
patible with the FSI connecting the two channels unless
�! 0, i.e., jS12j ! 0.

B. Case of S22 ’ S11

When channel 2 is ��, we expect that the elastic ��
scattering is asymptotic at

���
s
p
’ 5 GeV and very similar to

the elastic �� scattering:

 S22 � S11 � 1� �; ��� � ��: (32)

In this case unitarity and symmetry require that the off-
diagonal element S12 should be purely imaginary [	 � 0 in
Eq. (25)]:

11The D� �D� branching is larger than that of D �D. The D� �D and
D �D� channels cannot make JP � 0�.
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 S � 1� �
�����������������
2�� �2
p

i�����������������
2�� �2
p

i 1� �

 !
: (33)

This is the case that was studied by Donoghue et al. [3].
The FSI relation Eq. (12) leads us to
 

A1 � a1 � ib1; A2 �

������������
2� �
�

s �
b1 � i

�
2� �

a1

�
;

tan�1 tan�2 �
�

2� �
’

1

3
: (34)

Here again the FSI phases are uniquely determined only
after the ratio jA2j=jA1j is given. The phase �1 is expressed
in terms of jA2=A1j and � by the same relation as Eq. (30).
The ratio jA2=A1j lies in the same range as Eq. (31). In
contrast to the case of the maximum jS22 � 1j, the ampli-
tude A2 and A1 are 90� out of phase, one real and the other
purely imaginary, at the lower and upper boundaries of the
range for jA2=A1j.

C. General case of two channels

Once we have explored the two extreme cases above, it
is not difficult to find the general solution for an arbitrary
value of 	 in Eq. (25). By rewriting the FSI relation in
A02 � e�i	A2, we can reduce it to the case of S22 � S11

above. We obtain the solution for general 	 as
 

A1 � a1 � ib1; A2 �

������������
2� �
�

s
ei	

�
b1 � i

�
2� �

a1

�
;

tan�1 tan��2 � 	� �
�

2� �
: (35)

The first and second expressions of Eq. (35) reduce to those
of the previous cases; j1� S22j � max and S11 � S22 as
	! 1

2� and 	! 0, respectively. The third expression
relates the FSI phases �1 and �2 to each other with
parameter � and 	. The ratio jA2=A1j is related to �1 and
� exactly in the same way as in Eq. (30). Consequently
jA2=A1j is also restricted to the same range, Eq. (31).

We can actually find the exact solution even when we
include the very small imaginary part of 1� � in S11 due to
the low-ranking Regge trajectories in elastic scattering. In
this most general case it is convenient to write the S matrix
in the form

 S � �1� ��e2i	1 i
�����������������
2�� �2
p

ei�	1�	2�

i
�����������������
2�� �2
p

ei�	1�	2� �1� ��e2i	2

 !
;

��� � ��:

(36)

Unitarity and symmetry fix the phase of S12 as shown
above once those of S11 and S22 are given. For this reason
one earlier monograph [15] assigned the angles 	1 and 	2

to the ‘‘initial-state’’ and ‘‘final-state’’ interactions of scat-
tering, hinting that the phases of decay amplitudes A1 and
A2 acquire 	1 and 	2, respectively, by FSI. Unfortunately
this interpretation was wrong. As we see below, the phases

of A1;2 are 	1;2 plus additional contributions that depend on
mixing of the channels and weak interaction. It should also

be pointed out that the simple phase relation like argSij �

arg
�����������������������
��i�2SiiSjj

q
holds only for the Smatrix of 2� 2, not of

more than two channels.
To solve the FSI relation with Eq. (36) we factor out the

‘‘elastic phases’’ 	1 and 	2 of the diagonal S-matrix
elements Sii [not of the partial-wave amplitudes al�s�]
from the decay amplitudes by introducing A0i by A0i �
e�i	iAi (i � 1; 2). Then the FSI relation A0 � SA0� reduces
to the form identical to Eq. (33). Therefore the solution for
A1;2 can be immediately written as Eq. (34):

 A1 � ei	1�a1 � ib1�;

A2 �

������������
2� �
�

s
ei	2

�
b1 � i

�
2� �

a1

�
;

tan��1 � 	1� tan��2 � 	2� �
�

2� �
;

(37)

where a1 and b1 are real. The first and the second expres-
sions of Eq. (37) require jA2=A1j to remain in the same
range as in the previous two special cases [cf. Eq. (31)].
The relation of Eq. (30) is trivially modified as

 sin 2��1 � 	1� �
�

4�1� ��

�
�2� ��

jA2j
2

jA1j
2 � �

�
: (38)

This relation is the summary of the general two-channel
toy model: The total FSI phase �1 of A1 is the sum of the
rescattering phase 	1 of

�������
S11

p
, not of the elastic partial-

wave amplitude [al �
1
2i �Sl � 1�], plus the phase due to

rescattering through the second channel. It cannot be over-
emphasized that in the presence of inelasticity the phase of�������
S11

p
is very different from the phase of the partial-wave

amplitude. For Pomeron-dominated scattering, for in-
stance, arga0�s� �

1
2� since al�s� is purely imaginary for

all l, but arg
�������
S11

p
� 0 or �� since S11 is real and positive

for 0< Ima0 < 0:5. The phases of
�����
Sl
p

and al�s� would be
equal only in the elastic limit where S11 � e2i�1 and
al�s� � �1=2i��S11 � 1� � ei�1 sin�1. It makes no sense
whatsoever even as an approximation to equate the FSI
phase with the phase of the elastic partial-wave amplitude
al in B decay.

It is worth mentioning here that the solutions of the two-
channel problem, Eqs. (37) and (38), apply to the ��

decay into �K� and ����I�1=2. The �K� and �� yields
add up to over 99% of the observed nonleptonic final states.
In this case the lower ranking Regge trajectories contribute
more to the diagonal S-matrix elements than in the light
hadron channels of B decay.

While the two-channel toy model casts light on many
important issues, it has one undesirable feature that the
ratio jA2=A1j is restricted within the rather narrow range set
by Eq. (31). Numerically,
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 0:58 � jA2=A1j � 1:73: (39)

This constraint limits applicability of the two-channel toy
model to B decay modes. We must extend to more than two
channels to study B decay. However, as the coupled chan-
nels increase, the number of dynamical unknowns quickly
increases in the FSI relation. In order to keep our problem
manageable, we must introduce some approximation that
keeps mathematical complexity under control.

V. TRUNCATED MULTICHANNEL PROBLEM

Going back to our fundamental equation, Eq. (12), we
consider the situation where one inelastic channel makes a
dominant feed back to the elastic channel (channel 1) and
all other inelastic channels are either unimportant individu-
ally or largely cancel among themselves. We are specifi-
cally interested in the case,

 jS21j � jS11j; but jA2j � jA1j (40)

such that

 jS12A
�
2j � O�jS11A

�
1j�;

��������
X
j�3

S1jA
�
j

��������� jS12A
�
2j: (41)

In this case we can truncate the sum over the inelastic
channels at j � 2:

 A1 �
X
j�1;2

S1jA�j �
X
j�3

S1jA�j ’ S11A�1 � S12A�2: (42)

The FSI relation for the channel 2 reads

 A2 � S21A�1 � S22A�2 �
X
j�3

S2jA�j : (43)

Since unlike the off-diagonal S21 the diagonal S-matrix
element S22 � 1� 2ia22

0 �s� contains the term unity, we
expect that S22 is O�1� or a substantial fraction of it unless
the term 1 is cancelled accidentally by 2ia22

0 �s� with high
accuracy. In comparison, S12 represents a small leakage
into a dominant inelastic channel in the present case.
Therefore

 jS21A�1=S22A�2j � jS21=S22j � jA�1=A
�
2j; (44)

where both factors in the right-hand side are small. In other
words, the effect of the single elastic channel back on a
robust inelastic channel j is negligible when the coupling
Sj1 between them is feeble. Therefore, magnitude of the
first term S21A�1 in the right-hand side of Eq. (43) is much
smaller than that of jS22A�2j by the assumptions made in
Eqs. (40) and (41). Therefore, we may drop the first term in
Eq. (43). Then no information of the channel 1 is needed to
solve Eq. (43) for A2. Therefore we solve only Eq. (42) and
obtain a relation between A1 and A2. Solving Eq. (43) for
A2 may be hard. In the numerical exercise later we do not
attempt to compute for A2 theoretically in terms of other

inelastic channels, but resort to experiment for information
of A2.

The S matrix now need not satisfy unitarity in the
subsector of channel 1 and 2. It can be written in general as

 S � �1� ��e2i	1 i
ei�	1�	2�	
�

i
ei�	1�	2�	
� �e2i	2

 !
;

�0< 
<
�����������������
2�� �2

p
; 0< �<

���������������
1� 
2

p
�;

(45)

where two real parameters 
 and � have been introduced to
describe inelasticity of scattering. When the channel 2 is
also a two-body light-hadron channel, the value of � is
’ 1� � and 	2 ’ 	1. In B decay the branching fractions to
two-body light mesons are much smaller than those to
charmed-meson pairs by the property of weak interaction.
The decay B! K� through D�D�s is a typical example
since j
j is much smaller than 1� � but jA2j is much larger
than jA1j. It has been speculated that the presence of the
D�D�s channel may generate a large FSI phase for K� [7].
We will examine this possibility later.

The FSI relation can be solved for A1;2 even in the
presence of the additional parameter 
 by the rephasing
technique that we have used earlier. When we express A1

and A2 in terms of a2 and b2 instead of a1 and b1, the
solution of Eq. (12) with Eq. (45) is
 

A1 � 
ei	1

�
1

�
��a2 sin�	2 � 	
� � b2 cos�	2 � 	
�


�
i

2� �
�a2 cos�	2 � 	
� � b2 sin�	2 � 	
�


�
;

A2 � a2 � ib2: (46)

As we have pointed out, the parameter � is not needed to
express the relation between A1 and A2 in the truncated
approximation. Although 	
 enters A1, we can express the
phase �1 without 	
 by using experimental knowledge of
jA2=A1j. Rewriting Eq. (46) with the magnitudes and
phases, we obtain a simple generalization of the previous
relation,

 sin 2��1 � 	1� �
1

4�1� ��

�

2 jA2j

2

jA1j
2 � �

2

�
: (47)

The right-hand side of Eq. (47) gives the contribution of the
channel coupling that is to be added to the elastic contri-
bution 	1. The ratio jA2=A1j is now bounded as

 

�


�
jA2j

jA1j
�

2� �



: (48)

If 
 is small, that is, if the leakage into the channel 2 is
small, large values can be accommodated for jA2=A1j.
Therefore the truncated model is applicable to more gen-
eral situations than the two-channel toy model that we have
discussed. The ratio jA2=A1j contains information of weak
interaction. It is amusing to see in Eq. (47) that the strong
phase �1 coincides with the small ‘‘elastic phase’’ 	1 of
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�������
S11

p
when A2 takes the smallest value, jA2=A1j � �=
, in

the allowed range of Eq. (48). The channel coupling effect
j�1 � 	1j is the strongest when jA2=A1j takes the upper
limit �2� ��=
 in Eq. (48).

If we proceed further and include two prominent inelas-
tic channels, the FSI relation for A1 is

 A1 ’ S11A�1 � S12A�2 � S13A�3: (49)

If we continue along this line and incorporate more inelas-
tic channels, the FSI equation for channel 1 turns into

 a1 � ib1 � S11�a1 � ib1�
� �

X
j�2

S1jA�j : (50)

The first term in the right-hand side can be viewed as
counteraction of elastic rescattering. It affects not only
the phase of A1 but also causes long-distance enhancement
or suppression on magnitude of A1 depending on the force
in the elastic channel. With S11 � 1� �, Eq. (50) reveals
an interesting general feature of the multichannel FSI.
Separating the real and imaginary parts of Eq. (50), we
have in the case of real S11

 a1 �
1

�
Re
X
j�2

S1jA
�
j ; b1 �

1

2� �
Im
X
j�2

S1jA
�
j : (51)

Equation (51) shows that elastic rescattering S11 enhances
the inelastic rescattering effect by 1=� ( ’ 2) for the real
part a1 of A1 and suppresses it for the imaginary part b1 by
1=�2� �� ( ’ 2

3 ). This characteristic depends only on S11,
which we believe we know fairly accurately.

Despite its simplicity Eq. (51) contains useful informa-
tion. For instance, if the transition to and from channel 1
can be described by the Born terms of t- and u-channel
exchanges, the off-diagonal partial-wave amplitudes are
real so that the off-diagonal S matrix S1j �j � 2� �

2ia�1j�0 are purely imaginary. Therefore the real decay
amplitudes Aj (j � 2) of the inelastic channels contribute
to the imaginary part b1 of channel 1 in this case. Even if
there is no resonance in the process, the phase �1 can be
very large in this way. If furthermore the ‘‘inelastic’’ decay
amplitudes Aj (j � 2) happen to be all real, the phase �1

would be �90�. This is not surprising: In the language of
dispersion theory the on-shell inelastic intermediate states
generate an absorptive part for A1 that turns out to be
purely imaginary in this situation. Our Eq. (51) involves
one dynamical input: The elastic scattering amplitudes of
light mesons are almost purely imaginary (Pomeron-
dominated).

VI. NUMERICAL EXERCISE

Some numerical exercise is called for to show relevance
of our endeavor to the B decay of the real world. Contrary
to the initial optimism that had prevailed before B physics
experiment started, analysis of experiment seems to sug-
gest that the FSI phases of some two-body decay ampli-

tudes appear to be much larger than what we expected in
the original short-distance picture [16]. The word K�
puzzle has been coined for the unexpectedly large tree
contribution and/or FSI phases in K� modes. As the
perturbative technique has become more sophisticated,
people have come to agree that emission and absorption
of soft and collinear quarks and gluons play an important
role in many decay modes [17,18]. Such soft constituents
contribute to the FSI phases involving long-distance phys-
ics. While one can parametrize such contributions in the
soft collinear theory, one cannot evaluate them numerically
in perturbative argument. Our S-matrix approach also has
its own drawback: While elastic scattering of two light
hadrons at energy mB has been well understood, we know
less about their inelastic scattering. Nonetheless we would
like to show here that our method may be useful in some of
B decay modes.

It is believed that the decay B! K� occurs primarily
with the penguin interaction 
�� �bs�� �qq� � H:c:
. In the
penguin process the coupling to channels such as K��
needs to be studied as a source of the strong phase of the
K� amplitude. However, it has been argued thatK� can be
produced indirectly with the tree interaction 
�� �bc�� �cs� �
H:c:
 as well through the charmed-meson-pair states such
as DDs and D�D�s [7]. The K� amplitude of this process
acquires a strong phase different from the direct penguin
amplitude. What can our approach say about this problem?

The branching fractions have been measured for the
following two-body channels that couple to K� in B0

decay [19]:
 

B�K���� � �1:88� 0:07� � 10�5;

B�K0�0� � �1:15� 0:10� � 10�5;

B�K��< 2:0� 10�6;

(52)

 B�K�0� � �6:5� 0:4� � 10�5; (53)

 

B�K�0
� � �0:95� 0:08� � 10�5;

B�K�����< 1:20� 10�5;

B�K�0!�< 4:2� 10�6;

B�D�D�s � � �6:5� 1:3� � 10�3;

B�D��D��s � � �1:77� 0:14� � 10�2:

(54)

All of them can make JP � 0�, the spin-parity of K�. The
states K� and K�� can be either in I � 1

2 or I � 3
2 while all

other modes are only in I � 1
2 .

From the Regge phenomenology on elastic K� scatter-
ing, we have already estimated � for the Pomeron contri-
bution in Sec. III. The � and f2 trajectories with exchange
degeneracy allow us to estimate the small imaginary part of
S11. By adding the � and f2 Regge contributions, we obtain
numerically
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 S11 ’

�
0:39� e0:06i �I � 1

2�;
0:46� e�0:10i �I � 3

2�:
(55)

The �=f2 contributions to the scattering amplitudes T are
dominantly imaginary for I � 1

2 and real for I � 3
2 , as we

expect from s- to t-channel duality. Therefore they gener-
ate a larger imaginary part for S � 1� 2iT in the I � 3

2
channel. This is very different from our intuitive picture in
the single-channel case. Though we do not attach errors to
our estimate, errors as large as factor two are possible for
the phases in Eq. (55).

Estimate of S12 is less reliable than S11 owing to very
indirect experimental information and to larger theoretical
uncertainties. We eliminate the K�
 channel from our
consideration since the Regge residue or the coupling of

 to �� is highly suppressed (in violation of the Okubo-
Zweig-Iizuka rule). In contrast K�� can couple to K�
without such suppression. While a loose upper bound has
been set on K�� experimentally [see Eq. (54)], we believe
that the K�� channel is more important than the K�

channel. We may use the Regge phenomenology to esti-
mate S12 for the K�� state of longitudinal polarizations in
the final state. For the scattering K�! K��, the leading
Regge poles are ! and a2 which are exchange degener-
ate.12 The couplings of ��! and ��a2 are known on the
mass shells of ! and a2, respectively, from low-energy
spectroscopy. The corresponding KK� couplings of ! and
a2 are obtained by an SU(3) rotation. But we need to
extrapolate them to the off shell � and a2 to relate them
to the Regge residues. This extrapolation is a major source
of uncertainty. If we ignore the extrapolation, they are at
the same level in magnitude as the nonleading Regge
contributions in S11:

 SK
��

12 �

�
�0:07� 0:02i �I � 1

2�;
�0:05i �I � 3

2�:
(56)

Using the ratio jA2=A1j computed with the measured
branching fraction and the upper bound listed in Eq. (54),
we reach the crude estimate,

 jSK
��

12 A�2j< 0:1� jS11A
�
1j: (57)

Despite large uncertainty of these numbers we may con-
clude with Eq. (56) that the inelastic term S12A�2 of the K��
channel in the K� mode is not significant relative to the
elastic term S11A

�
1. It is certainly not a major source of the

strong phase for the K� amplitude in the standard penguin
decay (not through c �c). The same line of estimate suggests
that the K�! state is neither important to the FSI phase of
K�. Some may wonder about one-pion exchange inK�$
K��. The Reggeized pion exchange amplitude for K�!
K�� is down by another power of s0:5 relative to those of!

and a2 exchanges. The small denominator of the pion
propagator does not enhance the amplitude near forward
direction because the Lorentz structure requires the ampli-
tude near the pion pole to be proportional to

 

����� 	 p�����K
�� 	 pK�

m2
� � 2�p� 	 p��

: (58)

The both factors in the numerator vanish up to
O�4m2

�=m2
B; 4m

2
K�=m

2
B� for longitudinally polarized K�

and � in the forward direction (p� k p�). They eliminate
a forward peak from the pion pole. The Regge theory
predicts that the rest of the scattering amplitude falls
sharply [(
 e�

0
��0�t lns] off the forward direction. There-

fore the pion exchange can be dismissed. Then we feel
safe to conclude with Eq. (57) that the coupling of K� to
the K�� channel is not important in determining the FSI
phases for the K� modes.

The K� andK�0 channels can couple to the K� channel
of I � 1

2 through the a2 Regge exchange. Although this
contribution has the same mB dependence as the � and f2

Regge exchanges, the a2 Regge residues with ����0� are
most likely smaller than the residue with ��: We can
estimate from the a2 decay branching that, after the
d-wave phase space factor is separated, the on-shell a2

couplings to �� and ��0 are about factor 20 smaller than
those to ��. Therefore neither K� nor K�0 compete with
K�� in the final state. Therefore we may leave out K� and
K�0 from our consideration.

The contributions from nonresonant three-body final
states are harder to estimate since computation of S12 is
next to impossible. There are many nonresonant multi-
particle channels with relatively minor branching fractions.
If rescattering of K� to multibody channels is quasidif-
fractive with no quantum number exchange, the Pomeron
can contribute. In such scattering the final states consist of
two lumps of relatively small invariant masses that carry
the same flavors as K and �. They are likely to end up in
two-body states of highly excited meson states, for in-
stance, K2�1430�a1. While this is a possibility, none of
such modes have been positively identified so far in
measurement.

Genuine nonresonant three-body channels are probably
not a major source of the FSI phases, unless their contri-
butions add up by constructive interference to a large value.
In fact, it is conceivable that they sum up in random phases
into a relatively small number [4,5]. That is one motivation
when we have introduced the truncated approximation.
Our tentative conclusion on the K� amplitudes (I � 1

2 ;
3
2 )

of the light-quark penguin decay operators is that the FSI
phase produced by coupling to the inelastic channels is
insignificant. Analysis of the K� amplitudes in search of
the weak phases was started more than ten years ago. With
little knowledge of the strong phases, however, the analysis
could be carried out only by assuming that the long-
distance strong phases be negligible [20].

12The K� trajectory generates a backward peak, but it is less
important than the forward peak. We neglect the backward peak
contribution to S12.
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The charmed-meson-pair channels are very different.
Since they are the CKM dominant tree-decay final states,
their branching fractions are a few orders of magnitude
larger than that of the penguin-dominated decay. They can
annihilate into K�. In the quark picture this process can be
viewed as the on-shell contribution of the c �c penguin to
K�. Some call this process ‘‘charming penguin’’[7].
Among the charmed-meson pairs, the most prominent
decay channel of JP � 0� is D�D�s . Its amplitude can be
estimated with Eq. (54) as

 jAD��D��s =AK��I�1=2�j ’ 25: (59)

One important question here is how much of the observed
total AK��I�1=2� is the ‘‘charming penguin’’ contribution.
Since we expect that long-distance physics enters the on-
shell process of charmed-meson pairs at energy mB, it is
not easy to evaluate its magnitude. Some argue that it can
be very large [21,22]. However, a counter argument was
made to advocate the short-distance argument [23].
Theorists have not come to consensus on magnitude of
this contribution. Therefore we insert one fudge factor r
here for this contribution to A1 as

 jAD��D��s =AK��I�1=2 via c �c�j ’ 25�
1

r
; �r < 1� (60)

where r, the fraction of the c �c contribution, may be as large
as a half or even more [21]. It must be settled by theory
rather than by experiment. With this fudge factor, Eq. (47)
turns into

 sin 2��1 � 	1� �
1

4�1� ��

�

02
jA2j

2

jA1j
2 � �

2

�
; (61)

where 
0 � 
=r � jS12=rS11j. Even if the spillover of
D�D�s into K� is as tiny as one tenth of one percent (
2 �
jS12=S11j

2 ’ 10�3), the D�D�s channel may control the FSI
phase of the K� amplitude that comes through c �c. To
proceed further, we must look into the transition K�$
D�D�s (Fig. 4).

Application of the Regge theory is questionable to the
charm-pair channels since the charmed-meson masses are
around 2 GeV and the total energy is a little above 5 GeV.
Departing from the Regge theory, let us make the Born
approximation in t-channel exchange. The exchanged me-
sons are the charmed mesons D;D�; . . . . For D exchange,
we know the D� �D� coupling from the decay D� ! D�
and can compute theD�DsK coupling by an SU(3) rotation

of the D� �D� coupling. The differential cross section rises
toward the forward direction when the D meson is ex-
changed. For D� exchange, we can deduce the D� �D��
coupling from the D� �D� coupling with the heavy quark
spin symmetry and rotate it into the D�D�sK coupling by
SU(3). In contrast to the D exchange, the Lorentz structure
of the vertex 
"��
���p1
p2� of D� exchange cancels a
forward peak that would be otherwise generated by the D�

propagator. For this reason the D� exchange is less impor-
tant. When we compute the D contribution in the Feynman
diagram with the on-shell couplings, we obtain jS12j �
0:5. But this is obviously a nonsense. The reason is that
we have ignored the form-factor damping effect of the
exchanged off-shellD. For an order-of-magnitude estimate
we may multiply a factor of m2

�=m
2
D as a form-factor effect

where m� ’ 0:3 GeV is the binding scale of the charmed
mesons. Then our estimate goes down by more than an
order of magnitude from jS12j � 0:5 to jS12j � 0:014. This
latter value is probably closer to reality. It is roughly in line
with the rule of thumb; In the quark picture a pair creation
probability of c �c is suppressed by about �mq=mc�

2 relative
to light-quark pair creation of q �q, where the quark masses
are the constituent masses. This rule works roughly for s�s
and c �c production in high-energy collision. If we use this
rule, we obtain jS12j ’ 0:01 from Eq. (56) with ms=mc ’
1=3. Therefore we choose as our best guess

 SD
�D�s

12 � 0:01i: (62)

As we have noted earlier, S12 is purely imaginary for real
a0�s�. The number of Eq. (62) is obviously an order-of-
magnitude estimate at best. With � ’ 0:5 and tentatively
r � 0:5, a crude central value of our estimate for 
0 is

 
0 � 0:01=�0:5� �1� 0:5�
 � 0:04: (63)

We now substitute all these numbers in Eq. (61) of the
truncated approximation. We take the number of Eq. (63)
as a ballpark figure and sweep the value of 
02 by a factor
two across this value to see what FSI phase can be gen-
erated forK� of I � 1

2 by the channel coupling to theD�D�s
channel. The result is plotted in Fig. 5. The value of

0jA2=A1j is constrained between 0.5 and 1.5 by Eq. (61)
and sweeps in the region between two vertical broken lines.

Within the uncertainty of 
0, the FSI phase �1 of the K�
amplitude through c �c can be any value between 21� and
69�. Equation (61) does not determine the sign of �1 since
it does not contain full information of A2. Because of the
large uncertainty of 
0, we cannot constrain �1 meaning-
fully at present. Even �1 ’ 90� is not reliably excluded.
Keeping the uncertainty of our estimate in mind, we should
state here only that the channel coupling to D�D�s is
capable of producing a very large strong phase for the
charming penguin K� amplitude, in particular, in the
case that the ‘‘charming penguin amplitude’’ is a sizable
fraction of the total amplitude. Quantitatively reliable
computation of the FSI phase will be possible after we

K s

D

D

*

*

π

FIG. 4. The dominant inelastic scattering K�! D�D�s .
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have obtained a better theoretical estimate of S12 forK�$
D�D�s as well as magnitude of the decay amplitude through
c �c. Until then we must not set this strong phase to zero but
leave it as an unknown parameter to be determined by fit to
experimental data. If such experimental fit clearly requires
a large FSI angle for the K� mode of I � 1

2 but not of I �
3
2 , we shall be able to assert that the on-shell c �c intermedi-
ate state plays an important role in the decay B! K�.

The statement above can be made for many other two-
body light-hadron modes. The �� mode couples to ��
whose branching fraction is nearly an order of magnitude
larger than that of ��. But perturbative calculation of the
��$ �� transition [24] by the Born diagrams without
off-shell damping can easily overestimate it. With an esti-
mate of S12 along the same line as for K�$ K��, the
right-hand side of Eq. (47) comes out to be negative in the
case of ��! ��. It implies that the branching fraction of
�� is not large enough to affect the FSI phase for the ��
amplitudes of the tree decay 
� �bu�� �qq� � h:c: (q �
light quarks). The �� of I � 0 can be fed also by the
charmed hadron channelD� �D� whose branching fraction is
2 orders of magnitude larger than that of ��. For the ��
amplitude through �cc, coupling to D� �D� is the most im-
portant source of the strong phase. To obtain the strong
phases and to compare with experiment, we again need to
know about relative importance of the two classes of
decay: b! u �ud and b! c �cd for B! ��.

In contrast, the tree-dominated CKM-favored decay
modes such as �B! D� have no wide-open inelastic chan-
nels. Transition to theD�� channel is as insignificant as the
transition to K�! K�� in the K� mode. Since the D��
decay branching fraction is comparable to that of D� and
S12 is much smaller than S11 [cf. Eqs. (56) and (57)] of its
elastic scattering, we expect that jS12A�2j � jS11A�1j and
therefore the channel coupling contribution is unimportant.
It means that the FSI phases are small in these modes and
that simple short-distance calculation of the phases can
produce an answer not far from reality.

VII. COMMENT AND DISCUSSION

One of our purposes is to solve the most general two-
channel model exactly and to clarify the mechanism of
generating strong phases in this toy model. We have seen
above that existence of competing channels completely
changes the strong phase from that of the ‘‘elastic rescat-
tering phase’’ in all cases of two-channel S matrix.
Unitarity plays an important role here. The other purpose
is to introduce a feasible approximation scheme which may
be applicable to cases of special interest in B decay. We
have applied this method to the decay B! K� and have
made semiquantitative analysis. But its outcome is not
numerically satisfying because of limitation in available
knowledge about off-diagonal scattering. We have ex-
tended our analysis to the general multichannel case and
come to one simple interesting observation: Though it may
sound odd, inelastic scattering tends to enhance the strong
phase of the elastic channel most when inelastic ampli-
tudes are real (i.e., S1j � iT1j � imaginary) rather than
imaginary, if the strong phases of the inelastic decay
amplitudes are small [cf. Eq. (51)].

It is a big challenge to go beyond the two-channel
approximation. As the number of channels n increases,
the number of parameters in the FSI relation increases as
1
2n�n� 1� for strong interaction. In addition we need a
piece of information from weak interaction. In the trun-
cated approximation we have kept only a single dominant
one among the inelastic channels. Our assumption is that
all other inelastic channels are less important or else sum
up in random phases to become numerically insignificant.
If the higher inelastic channels do not sum randomly, there
must be some underlying dynamical reason for it. In such a
case some approach orthogonal to ours may have advan-
tage. For instance, it could be an approach based on quarks
and gluons instead of hadrons.

The major source of the strong (FSI) phase in the multi-
channel case is the transition to inelastic channels.
Consequently accurate computation of the FSI phases
depends on knowledge of the transition S matrix at energy
mB between a channel of our interest and dominant inelas-
tic channels. That is, we need to know dynamics of long
and intermediate distances at this energy. The present
author is of the opinion that quantitatively we have a little
better handle on hadron physics numerically than on the
soft and collinear quarks and gluons in this territory. But
opinions probably divide among physicists of different
generations.
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FIG. 5. The FSI (strong) phase of the K� decay channel of I �
1
2 as the K�! D�D�s transition amplitude is varied in magni-
tude.
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APPENDIX: REAL ORTHOGONALITY OF
TRANSFORMATION

Expansion of the observable state jjouti in the S-matrix
eigenstates jaouti is defined by

 jjouti �
X
a

Ojaja
outi: (A1)

At this stage the matrix O is assumed to be only unitary,
not necessarily orthogonal. We then make time reversal on
the scattering amplitude from eigenstate jai to observable
state jji in our phase convention of states under time
reversal:

 hjoutjaini � hjjSjai�
T
hajSjji � haoutjjini: (A2)

Operating Sy on Eq. (A1), we obtain

 jjini �
X
a

Ojaja
ini: (A3)

Substitution of Eqs. (A1) and (A3) in Eq. (A2) gives us

 O�jae
2i�a � Ojae2i�a ; (A4)

which proves that O is orthogonal:

 O�ja � Oja: (A5)
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