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(Received 12 October 2007; published 20 March 2008)

We propose to set the Skyrme parameters F� and e such that they reproduce the physical masses of the
nucleon and the deuteron. We allow deformation using an axially symmetric solution and simulated
annealing to minimize the total energy for the B � 1 nucleon and B � 2 deuteron. First we find that axial
deformations are responsible for a significant reduction (factor of � 4) of the rotational energy but also
that it is not possible to get a common set of parameters F� and e which would fit both nucleon and
deuteron masses simultaneously at least for m� � 138 MeV, 345 MeV and 500 MeV. This suggests that
either m� > 500 MeV or additional terms must be added to the Skyrme Lagrangian.
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I. INTRODUCTION

The Skyrme model [1] is a nonlinear theory of pions that
admits topological solitons solutions called Skyrmions.
These solutions fall into sectors characterized by an
integer-valued topological invariant B. In its quantized
version, a Skyrmion of topological charge B may be iden-
tified with a nucleus with baryon number B.

Since the model is nonrenormalizable, a canonical quan-
tization is not possible and one has to resort to semiclas-
sical quantization of the zero modes of the Skyrmion. This
method adds kinematical terms (rotational, vibrational, . . .)
to the total energy of the Skyrmion. The B � 1 Skyrmion
was first quantized by Adkins, Nappi, and Witten [2,3]. It
provided then a useful mean to set the parameters of the
Skyrme model F� and e by fitting to the proton and delta
masses. The experimental value of the pion mass m�
completes the set of input parameters when a pion mass
term is added to the Skyrme Lagrangian. The same cali-
bration was assumed by Braaten and Carson [4] in their
quantization of the B � 2 Skyrmions and their predictions
of a rather tightly bound and small sized deuteron. Further
analysis by Leese, Manton, and Schroers [5] considering
the separation of two single Skyrmions in the most attrac-
tive channel led to more accurate predictions for the
deuteron.

Yet all these calculations have three caveats: First, they
used a rigid-body quantization, i.e. the kinematic term is
calculated from the solution which minimizes the static
energy neglecting any deformation that could originate
form the kinematical terms. This was pointed out by sev-
eral authors [6,7] who proposed to improve the solutions
by allowing the B � 1 Skyrmion to deform within the
spherically symmetric ansatz. Second, even with such
deformations it was noted that the set of parameters men-
tioned above does not allow for a stable spinning solution
for the delta since the rotational frequency � would not
satisfy the constraint for stability against pion emission,
�2 � 3

2m
2
�. These two problems were addressed recently

in [8,9]. Assuming an axial symmetry, the calculations
were performed using a simulated annealing algorithm
allowing for the minimization of the total energy (static
and kinetic). It was also shown that the stable spinning
nucleon and delta masses could be obtained only if the pion
mass is fixed at more than twice its experimental value.
One may argue that in this case m� could be interpreted as
a renormalized pion mass which could explain its depar-
ture form the experimental value. A third difficulty re-
mains: Fixing the parameters of the Skyrme model still
involve the delta which is interpreted as a stable spinning
Skyrmion although physically it is an unstable resonance.
Recently, Manton and Wood [10] took a different approach
and chose data from B � 6 Lithium-6 to set the Skyrme
parameters. The purpose was to provide for a better de-
scription of higher B solutions. Unfortunately, their calcu-
lations were based on a two-fold approximation, the
rational map ansatz and rigid-body quantization for values
of B up to 8.

In this work, we propose to set the Skyrme parameters
such that they reproduce the physical masses of the nu-
cleon and the deuteron. We allow deformation within an
axially symmetric solution approximation and use simu-
lated annealing to minimize the total energy for the B � 1
nucleon and B � 2 deuteron. We argue that this procedure
provide a solution which is very close to if not the exact
solution. Following the procedure in [8], we find the sets of
parameters F� and e that are required to fit the nucleon
and deuteron masses, respectively, for m� � 138 MeV,
345 MeV, and 500 MeV. The numerical calculations are
compared to those obtained with the rational maps ansatz
and rigid-body quantization. We find the latter approxima-
tion to be misleading since it suggests that it is possible to
simultaneously fit the nucleon and deuteron masses which
is not the case when we perform our numerical calculation
even for larger m� � 500 MeV. However for the solution
to remains realistic with regard with the size of the nucleon
or deuteron, lower values of F� and e are to be excluded.

In Sec. II, we introduce briefly the Skyrme model and
find the static energy for the axially symmetric solution
proposed in [8]. The quantization of rotational and isorota-*lmarleau@phy.ulaval.ca
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tional excitation using this solution leads to an expression
for the kinetic energy terms at the end of Sec. III. These
expressions suggest that the axial symmetry could be
preserved to a large extent. Finally we discuss and compare
our numerical results from simulated annealing with an
axial solution on a two-dimensional grid with that coming
from rational maps with rigid-body approximation in the
last section.

II. THE SKYRME MODEL

The SU�2� Skyrme Lagrangian density is
 

LS � �
F2
�

16
Tr�L�L�� �

1

32e2 Tr�L�; L�	2

�
m2
�F2

�

8
�TrU� 2� (1)

where L� is the left-handed chiral current L� � Uy@�U
and the parameters F� and e are, respectively, the pion
decay constant and the dimensionless Skyrme constant. U
is a SU�2� field associated to the pion field � by

 U � �� i� 
 � (2)

where � are the Pauli matrices, � � ��1; �2; �3� is the
triplet of pion fields and the scalar meson field � satisfy
�2 � � 
 � � 1. The third term wherem� is the pion mass
was first added by Adkins and Nappi [2] to account for the
chiral symmetry breaking observed in nature.

The field configurations that satisfy the boundary con-
dition

 U�r; t� ! 1 for jrj ! 1 (3)

fall into topological sectors labeled by a topological in-
variant

 B �
1

2�2

Z
d3x detfLai g � �

"ijk

48�2

Z
d3xTr�Li�Lj; Lk	�

(4)

taking integral values. Skyrme interpreted this topological
invariant as the baryon number. The minimal static energy
Skyrmion for B � 1 and B � 2 turns out to have spherical
and axial symmetry, respectively. Since we are only inter-
ested by these values of B, the solution will be cast in terms
of cylindrical coordinates ��; �; z� in the form
 

� �  3 �1 �  1 cosn�

�2 �  1 sinn� �3 �  2
(5)

introduced in [11] where  ��; z� � � 1;  2;  3� is a three-
component unit vector that is independent of the azimuthal
angle �. The boundary conditions (3) implies that  !
�0; 0; 1� as �2 � z2 ! 1. Moreover, we must impose that
 1 � 0 and @� 2 � @� 3 � 0 at � � 0. The B � 1
hedgehog solution appears as a special case of (5) having
spherical symmetry and corresponds to

 � 1;  2;  3� � �sinF sin�; sinF cos�; cosF�

where F � F�r� is the profile or chiral angle.
With the axial ansatz (5) and a appropriate scaling1 the

expressions for the static energy and the baryon number
become
 

En � �
Z
d3xLS

� 2�
�
F�

2
���
2
p
e

�Z
dzd��

�
�@� 
 @� � @z 
 @z �

�

�
1� n2  

2
1

2�2

�
�

1

2
j@z � @� j2 � n2  

2
1

�2

� 2�2�1�  3�

�
(6)

 B �
n
�

Z
dzd� 1j@� � @z j (7)

with � � 2
��
2
p
m�

eF�
.

However, to describe baryons, Skyrmions must acquire a
well-defined spin and isospin state. This is possible only
upon proper quantization of the Skyrmions as it will be
done in the next section. As we shall see in the next section
adding (iso-)rotational energy will in general brake the
axial symmetry manifest in B � 1 and B � 2 static
solutions.

III. QUANTIZATION

Since the Skyrme Lagrangian (1) is invariant under
rotation and isorotation,2 the usual method of Skyrmion
quantization consist of allowing the zero modes to depend
on time and then quantize the resulting dynamical system
according to standard semiclassical methods. From this
perspective, the dynamical ansatz is assumed to be

 

~U�r; t� � A1�t�U�R�A2�t�r�A
y
1 �t� (8)

where A1, A2 are SU�2� matrices and Rij�A2� �
1
2 Tr��iA2�jA

y
2 � is the associated SO�3� rotation matrix.

Introducing this ansatz into the Skyrme Lagrangian (1)
one gets the kinematical contribution to the total energy
which can be cast in the form

 T � 1
2aiUijaj � aiWijbj �

1
2biVijbj (9)

where aj � �iTr��jA
y
1

_A1�, bj � iTr��j _A2A
y
2 � and the

Uij, Vij and Wij are inertia tensors

1We have used 2
���
2
p
=eF� and F�=2

���
2
p

as units of length and
energy, respectively.

2Since we are interested only in the computation of the static
properties, we will ignore translational modes and quantize the
Skyrmions in their rest frame.
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Uij � �

�
2
���
2
p

e3F�

�Z
d3x

�
Tr�TiTj� �

1

8
Tr��Lk; Ti	�Lk; Tj	�

�
;

(10)

 

Vij � �
�

2
���
2
p

e3F�

�
	ikl	jmn

Z
d3xxkxm

�

�
Tr�LlLn� �

1

8
Tr��Lp; Ll	�Lp; Ln	�

�
; (11)

 

Wij �

�
2
���
2
p

e3F�

�
	jkl

Z
d3xxk

�

�
Tr�TiLl� �

1

8
Tr��Lm; Ti	�Lm; Ln	�

�
(12)

where Ti � iUy��i2 ; U	. For the axial ansatz (5), these
tensors are all diagonal and satisfy U11 � U22, V11 �

V22, W11 � W22 and U33 �
W33

n �
V33

n2 . The components
of these inertia tensors are
 

U11 � 2�
�

2
���
2
p

e3F�

�Z
dzd��

�
 2

1 � 2 2
2

�
1

2

��
@� 
 @� � @z 
 @z � n2  

2
1

�2

�
 2

2

� �@� 3�
2 � �@z 3�

2 � n2  
4
1

�2

��
; (13)

 

U33 � 2�
�

2
���
2
p

e3F�

�Z
dzd�� 2

1�@� 
 @� 

� @z 
 @z � 2�; (14)

 

V11 � 2�
�

2
���
2
p

e3F�

�Z
dzd��

�
j�@z � z@� j2

�
1� n2  

2
1

2�2

�

� z2n2 
2
1

�2�
1

2
��2� z2�j@� �@z j

2

�
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W11 � 2�
�

2
���
2
p

e3F�

�Z
dzd��

�
� 1��@z 2 � z@� 2�

�  2��@z 1 � z@� 1�	

�

�
1�

1

2

�
�@z 3�

2 � �@� 3�
2 �

 2
1

�2

��

�
 3

2
�z@z 3 � �@� 3��@� 2@z 1 � @� 1@z 2	

�
z 1 2

2�
�2� @� 
 @� � @z 
 @z �

�
: (16)

Let us note that W11 � 0 only for n � 1. In order to obtain
the energy corresponding to the nucleons and the deuteron,
we must compute the Hamiltonian for the rotational and
isorotational degrees of freedom in term of the inertia

tensors (13) to (16) as well as its eigenvalues for the states
corresponding to these particles.

The body-fixed isospin and angular momentum canoni-
cally conjugate to a and b are respectively

 Ki �
@T
@ai
� Uijaj �Wijbj; (17)

 Li �
@T
@bi
� �WT

ijaj � Vijbj: (18)

These momenta are related to the usual space-fixed isospin
(I) and spin (J) by the orthogonal transformations

 Ii � �R�A1�ijKj; (19)

 Ji � �R�A2�
T
ijLj: (20)

We can now write the Hamiltonian for the rotational and
isorotational degrees of freedom as

 H � K 
 a�L 
 b� T

where T is the kinematical energy (9).
The quantization procedure consists of promoting four-

momenta as quantum operators that satisfy each one of the
SU�2� commutation relations. According to (19) and (20),
we see that the Casimir invariants satisfy I2 � K2 and
J2 � L2. Then the operators form a O�4�I;K �O�4�L;J Lie
algebra. The physical states on which these operators act
are the states formed in the base j�i � jii3k3ijjj3l3iwhere
�i < i3, �j < j3 and l3 < j that satisfy the constraints
formulated by Finkelstein and Rubinstein [12]. One of
these constraints, namely,

 e2�in
Lj�i � e2�in
Kj�i � ��1�Bj�i; (21)

implies that the spin and isospin must be an integer for even
B or a half-integer for odd baryon numbers. Another con-
straint

 �nK3 � L3�j�i � 0 (22)

comes from the axial symmetry imposed on the solution
here.

This formalism allows one to obtain the total energy in
terms of the inertia tensors of (13)–(16) for the nucleon [9]

 EN � E1 �
1

4

��1� W11

U11
�2

V11 �
W2

11

U11

�
1

U11
�

1

2U33

�
(23)

and for the deuteron [4]

 ED � E2 �
1

V11
: (24)

For the B � 1 solution the minimization of the static
energy E1 leads to a spherically symmetric solution. The
nucleon mass in (23) however receives (iso-)rotational
energy contributions from (iso-)rotations around the three
principal axis among which two are equivalent (direction 1
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and 2). The deformation should then lead to a axially
symmetric solution along the z-axis (direction 3) as argued
in Refs. [8,9].

The situation is somewhat different for B � 2 which is
known to have a toroidal solution upon minimization of the
static energyE2. In our scheme it corresponds to the axially
symmetric solution with respect to the z-axis. Assuming
such a solution the deuteron mass in (24) gets kinetic
energy contributions which may be recast in the form

 Erot �
1

2V11
�

1

2V22
�

1

V11
; (25)

which means that the contributions come from rotations
perpendicular to the axis of symmetry. Unfortunately there
is no guarantee that in a nonrigid rotator approach the axial
symmetry will be preserved when the rotational terms are
added. However the deformations are not expected to be
very large since the magnitude rotational energy only
accounts for less than 4% of the total mass of the deuteron
in the rigid-body approximation [4]. Allowing deforma-
tions should increase the moments of inertia and bring the
relative contribution of rotational energy to an even lower
value. Clearly large changes in the configuration are pro-
hibited by an eventual increase in the static energy E2 so,
from that argument alone we can infer that deformations
from axial symmetry are bound to be contained into a 4%
effect. Our results will show that nonaxial deformations
represents less than 1% of the deuteron mass if they
contribute at all. This justifies the use of the axial solution
in (5).

In order to obtain the configurations  ��; z� �
� 1;  2;  3� that minimize the energies defined in (23)
and (24), we use a two-dimensional version of a simulated
annealing algorithm used in [13]. The minimization is
carried out on a grid in a plane ��; z� made up of 250�
500 points with a spacing of 0.042.3 The algorithm starts
with an initial configuration  0��; z� on the grid and
evolves towards the exact solution. Here  0��; z� is gen-
erated using the suitable rational map ansatz [14] to ensure
that the initial solution have the appropriate baryon num-
ber, B � 1 or 2, with a profile function of the form

 F�r� � 4 arctan�e�
r� (26)

as inspired from Ref. [15]. Here 
 is a parameter chosen so
that the entire baryon number density (such that B � 1 or
2, respectively, for the nucleon or the deuteron) fits into the
grid.

IV. RESULTS AND DISCUSSION

There are several ways to fix the parameters of the
Skyrme model e, F�, and m� and the authors of Ref. [8]
showed that one must take some precautions in order that

the spinning solutions for the nucleon and the delta remain
stable against pion emission. And indeed it was found that,
in order to achieve a fit for the energies of spinning
Skyrmions to the masses of the nucleon and delta, one
must impose a value for the pion mass that is larger than its
experimental value. Differences between the fitted and
experimental values of F� and m� are not proscribed since
after all, the values that enters the Lagrangian (1) are the
unrenormalized parameters which could differ from the
physical ones.

Even so it remains that this procedure still assumes that a
physically unstable particle, the delta resonance, is de-
scribed as a stable spinning Skyrmion and to be perfectly
consistent one should instead rely on stable particles. For
these reasons we chose to carry out calculations using data
from two stable particles, the nucleon and the deuteron. We
proceed as follows: Assuming a value for the pion mass
and e, and an initial value for the Skyrme parameter F� we
compute the lowest energy solution for the spinning
Skyrmion corresponding to the nucleon using simulated
annealing which leads to a mass prediction. We iterate the
procedure adjusting values of F� until the predicted mass
fits that of the nucleon. The same procedure is repeated for
the B � 2 deuteron as well as for several values of e. A set
of points requires about two weeks of computer calcula-
tions on a regular PC. Performing an equivalent calculation
on a 3D grid with similar spacing for a nonaxial solution,
for example, would be prohibitive. This explain in parts
why we use the axially symmetric ansatz.

Initially, the first set of calculations was performed with
the pion mass equal to its experimental value m� �
138 MeV. Since Ref. [8] suggests that a pion mass value
of m� � 345 MeV or more is necessary to avoid instabil-
ity due to pion emission we repeated the calculations and
evaluated the Skyrme parameters using m� � 345 MeV.
The results are displayed in Fig. 1. Although it may seem
interesting here to consider values of e lower than those
illustrated on Fig. 1, the physical relevance of these values
is questionable. Below a certain value, the rotational en-
ergy of the Skyrmion is larger than the contribution coming
from the pion mass term. As was highlighted in Refs. [6,7],
this leads to an unstable Skyrmion with respect to emission
of pions.

Our results for B � 1 reproduce the same behavior as in
Refs. [8,9], i.e. the deformation of the Skyrmion becomes
relatively important only for larger values of m� and e.
However, the results for B � 2 are far more interesting
with respect to deformation. Indeed, as we can see directly
from Fig. 1, there is a noticeable difference between our
numerical results (squares) which allow for deformations
as long as they preserve axial symmetry and that of the
rigid-body approximation (dashed lines). Note that our
implementation of the rigid-body approximation shown
here relies on the rational map ansatz which is known to
be accurate to a few percent and so it could not alone be

3These parameters were adopted in order to be similar with
those used in [8,9].
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responsible for such a large difference in energy. This
difference indeed corresponds to a surprisingly much
smaller energy for the deformed spinning Skyrmion than
what is obtained from a the rigid-body approximation
wether it is based on the rational map ansatz or not.

To illustrate this difference, we carried out our minimi-
zation procedure using the set of parameters F� �
108 MeV and e � 4:84 for the deformed deuteron. The
results, set SA, are listed in of Table I. For comparison we
also present three rigid-body calculations: set SA-RB per-
formed with our simulated annealing algorithm, set
Ref. [4]-RB from Braaten et al. and finally set RM-RB
obtained through the rational maps approximation. Note
that our result SA-RB agrees fairly well with that of
Ref. [4]. Clearly the mass of the deuteron ED must be
larger than Emin

2 � 1655 MeV, the minimum static energy
for this choice of parameters. Computing the rotational
energy for this solution leads to the rigid-body approxima-
tion result (SA-RB) for the deuteron mass of ED �

1716 MeV. As expected the results for the deformed deu-
teron (SA) ED � 1679 MeV lies between these two val-
ues. Moreover our axial solution brings the relative
contribution of the rotational term to about 1% of the
minimum static energy Emin

2 . So allowing for axial defor-
mation reduces by about a factor of 4 the rotational term
going from 60.6 MeV to 13.3 MeV. As for nonaxial defor-
mations that might be present in a completely general
solution, they must at the very most represent a 1%
correction to the deuteron mass since it is bounded by
Emin

2 �� 1655 MeV�<Eexact
D � ED�� 1679 MeV�. On

the other hand they may still represent a significant portion
of the remaining 13.3 MeV rotational energy. We conclude
nonetheless that the axial symmetry ansatz represents a
very good approximation of the deuteron configuration. In
addition, since these bounds are both based on axially
symmetric solutions and their energy only differ by 1%,
one can even contemplate the possibility that the exact
solution may have axial symmetry and therefore would
correspond to our solution, contrary to what physical in-
tuition might suggest. This has yet to be proven and need-
less to say that such a demonstration would require a 3D
calculation with a level of precision less than 1%.

Note that, both for m� � 138 MeV and 345 MeV, the
solid and dashed lines intersect for a relatively low value of
e: However despite what this rigid-body calculations sug-
gests, there is no set F� and e that leads simultaneously to
the masses of the nucleon and the deuteron. However, the
data of Fig. 1 would indicate that the gap between the
values of F� decreases for a larger pion mass. For that
reason, we repeated the calculations with a relatively large
m� � 500 MeV. Some of the computations required that
we adjust the spacing of our grid to 0.0057 for smaller e
since the configurations turned out to be much smaller in
size. The results for m� � 500 MeV are presented in
Fig. 2. The main conclusion one can draw is that even for
this pion mass, no common set of Skyrme parameters can
be found.

TABLE I. Total energy, rotational energy, and charge radius of
the deuteron using parameters F� � 108 MeV and e � 4:84.
The results are presented for our simulated annealing calcula-
tions with axial deformation (SA) along with three rigid-body
calculations: with simulated annealing (SA-RB), from Braaten
et al. (Ref. [4]-RB) and with the rational maps approximation
(RM-RB), respectively. The last column (Exp.) shows the ex-
perimental values where the charge radius comes from [16].

SA SA-RB Ref. [4]-RB RM-RB Exp.

ED (MeV) 1679 1716 1720 1750 1876
Erot (MeV) 13.3 60.6 61.2 55.2 —
hr2i1=2

D (fm) 0.94 0.93 0.92 0.94 2.095

 10
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 2.5  3  3.5  4  4.5  5  5.5

e

Fπ

mπ = 500 MeV

FIG. 2. Same as Fig. 1 for m� � 500 MeV.
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Fπ

mπ = 138 MeV

mπ = 345 MeV

FIG. 1. F� as a function of e for whichM� Erot is equal to the
nucleon mass (circles) and that of the deuteron (squares). The
solid and dashed lines correspond to the results obtained from
the rigid-body approach for the nucleon and deuteron, respec-
tively. The set of data and lines at the upper left are for m� �
138 MeV whereas that at the bottom right are for m� �
345 MeV.
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It is also interesting to note that the gap between the
values of F� decrease as e decreases. This would suggest
that at very low values of e a fit is possible. However
computing the charge radius, i.e. the square root of

 r2
n �

8

e2F2
��

Z
dzd���2 � z2� 1j@� � @z j (27)

leads to an significant increase for the radius for small
values of e and F� as illustrated in Figs. 3–5. So lower
values of e are incompatible with the physical size of the

deuteron and nucleon and may be discarded. The results
also indicate that the best fit for the radius of the nucleon
and deuteron would favor intermediate values of e around
e ’ 3:5 while it looks fairly insensitive to large changes in
m�.

To summarize, our calculations showed that the axial
symmetry ansatz is a very good approximation of the exact
solution for the deuteron. This hints at the possibility that it
may even represent the exact solution. This remains to be
proven with a general 3D calculation. We also found that
allowing for axial deformation reduces the rotational en-
ergy by a significant factor. On the other hand we found
that it is not possible to get a common set of parameters F�
and e which would fit both nucleon and deuteron masses
simultaneously at least for m� � 138 MeV, 345 MeV, and
500 MeV. This conclusion should hold even for the exact
B � 2 solution since if the solution was allowed to adjust
free of any symmetry constraints it would achieve a con-
figuration with lower total energy which would require
larger values of F� for the same set of e. This suggests
that either m� > 500 MeV or additional terms must be
added to the Skyrme Lagrangian. We also observed an
increase in the deformations due to the spinning of the B �
2 Skyrmion (deuteron) especially for larger values of e and
F� so the rigid-body approximation may not be appropri-
ate in that case.
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