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Inclusive cross sections for J= production in proton-proton collisions were calculated in the
kt-factorization approach for the Relativistic Heavy Ion Collider (RHIC) energy. Several mechanisms
were considered, including direct color-singlet mechanism, radiative decays of �c mesons, decays of  0,
open-charm-associated production of J= as well as weak decays of B mesons. Different unintegrated
gluon distributions from the literature were used. We find that radiative �c decays and direct color-singlet
contributions constitute the dominant mechanism of J= production. These processes cannot be
consistently treated within a collinear-factorization approach. The results are compared with recent
RHIC data. The new precise data at small transverse momenta impose stringent constraints on unin-
tegrated gluon distribution functions (UGDFs). Some UGDFs are inconsistent with the new data. The
Kwieciński UGDFs give the best description of the data. In order to verify the mechanism suggested here
we propose J= –jet correlation measurement and an independent measurement of �c meson production
in ���� and/or K�K� decay channels. Finally, we address the issue of J= spin alignment.
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I. INTRODUCTION

For the last decade, the inclusive production of J= 
mesons was a serious theoretical puzzle challenging our
understanding of QCD, parton model, and the bound-state
formation dynamics. The roots of the puzzling J= history
trace back to the middle 1990s, when the data on J= and
� hadroproduction cross sections [1–3] revealed a more
than one order-of-magnitude discrepancy with theoretical
expectations. This fact has induced extensive theoretical
activity and led to the introduction of new production
mechanisms, known as the color-octet model [4,5] and
gluon vector dominance model [6]. Since then, the color-
octet model has been believed to give the most likely
explanation of the quarkonium production phenomena,
although there were also some indications that it was not
working well. The situation became even more intriguing
after the measurements of J= spin alignment [7,8] were
carried out showing inconsistency with the newly accepted
theory.

At the same time, it has been shown that the incorpo-
ration of the usual color-singlet production scheme with
the kt-factorization approach can provide a reasonable and
consistent picture of the phenomenon under study in its
entirety. Within the latter approach, a good description of
data on the production of J= , �c, and � mesons both at
the Tevatron [9,10] and HERA [11] has been achieved, and
even a solution to the J= spin-alignment problem has
been guessed [9,12]. The issue of the quarkonium produc-
tion mechanism continues to be under intense debate.

Recently, the PHENIX Collaboration at the Brookhaven
National Labotratory (BNL) Relativistic Heavy Ion
Collider (RHIC) has measured inclusive J= production
in elementary proton-proton collisions [13]. While for the
RHIC community the elementary pp cross section is only
the baseline for the nuclear case, we wish to demonstrate
that the elementary data by itself constitute very valuable
information about QCD dynamics in the region of inter-
mediate x ’ 10�2–10�1. In our paper we present a detailed
analysis of RHIC data based on the kt-factorization ap-
proach and a large variety of unintegrated gluon distribu-
tion functions (UGDFs). We show that the new precise data
at small J= transverse momenta impose stringent con-
straints on UGDFs and, consequently, stimulate better
understanding of the underlying gluon dynamics.

The outline of the paper is the following. In Sec. II we
describe the production mechanisms employed in our
analysis and discuss the different parametrizations of
UGDFs. In Sec. III we compare our theoretical predictions
with experimental results and derive new predictions on
the quantities which as yet have not been measured but
could serve as an important cross-check of our understand-
ing of the reaction mechanism. Our findings and recom-
mendations for the forthcoming experiments are
summarized in Sec. IV.

II. FORMALISM

A. Different mechanisms of J= production

In this paper, we take into account a number of different
mechanisms leading to the appearance of J= mesons in
the final state (of course, they are not thought to be all of
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equal importance). The considered mechanisms are the
following.

Direct color-singlet J= production via gluon-gluon
fusion

 g� g! J= � g; (1)

direct production of  0 meson

 g� g!  0 � g (2)

and its subsequent decay  0 ! J= � X; production of
P-wave charmonium states �cJ �J � 0; 1; 2�

 g� g! �cJ (3)

followed by their radiative decays �cJ ! J= � �; pro-
duction of b quarks and antiquarks

 g� g! b� �b (4)

followed by their fragmentation into B mesons and sub-
sequent weak decays B! J= � X; and production of
J= mesons in association with unbound charmed quarks

 g� g! J= � c� �c: (5)

Examples of the relevant Feynman diagrams for all the
mentioned processes are shown in Fig. 1. Every subprocess
is accompanied by the emission of gluon jets, as is shown
in Fig. 2.

In general, there could also exist color-octet contribu-
tions. The latter cannot be calculated from the first prin-
ciples and are usually estimated from fits to existing data. It
has been shown already that, within the kt-factorization
approach, these contributions are consistent with zero both
at the Tevatron [9] and HERA [11]. In view of the uncer-
tainties coming from other contributions we find it not
useful to include color-octet contributions in the present
analysis.

A few words are in order to describe the formation of c �c
bound states. First of all, it should be noted that the
amplitudes of the subprocesses (1)–(3) and (5) contain
projection operators J�S; L�, which guarantee the proper
quantum numbers of the c �c state under consideration.
These operators read for the different spin and orbital
angular momentum states [14,15]:

 J�1S0� � J�S � 0; L � 0� � �5�p6 c �mc�=m
1=2
 ; (6)

 J�3S1� � J�S � 1; L � 0� � �6 �Sz��p6 c �mc�=m
1=2
 ; (7)

 J�3PJ� � J�S � 1; L � 1�

� �p6 �c �mc��6 �Sz��p6 c �mc�=m
3=2
 ; (8)

wherem is the mass of the specifically considered c �c state
andmc � m =2 the mass of the charmed quark (always set
equal to 1=2 of the meson mass, as is required by the
nonrelativistic bound-state model).

States with various projections of the spin momentum
onto the z axis are represented by the polarization vector
��Sz�.

The probability for the two quarks to form a meson
depends on the bound-state wave function ��q�. In the
nonrelativistic approximation which we are using here, the
relative momentum q of the quarks in the bound state is
treated as a small quantity. So, it is useful to represent the
quark momenta as pc � p =2� q, p �c � p =2� q. Then,
we multiply the matrix elements by ��q� and perform

FIG. 1. Processes included in our approach: (a) direct color-
singlet production, (b) production of �c mesons, (c) open bottom
quark production, (d) open-charm-associated production, (e) -
color-octet production.

FIG. 2. Application of UGDFs to inclusive production of J= 
(left) and �c (right). The upper and the lower parts of these
diagrams are included in the kt evolution of gluon densities. The
emitted gluons can realize in the final state hadronic jets.
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integration with respect to q. The integration is performed
after expanding the integrand around q � 0:

 M �q� �Mjq�0 � �@M=@q��jq�0q� � . . . : (9)

Since the expressions for Mjq�0, �@M=@q��jq�0, etc. are
no longer dependent on q, they may be factored outside the
integral sign. A term-by-term integration of this series then
yields [15]

 

Z d3q

�2��3
��q� �

1�������
4�
p R�x � 0�; (10)

 

Z d3q

�2��3
q���q� � �i���Lz�

���
3
p

�������
4�
p R0�x � 0�; (11)

etc., where R�x� is the radial wave function in the coor-
dinate representation [the Fourier transform of ��q�]. The
first term contributes only to S-waves, but vanishes for
P-waves because RP�0� � 0. On the contrary, the second
term contributes only to P-waves, but vanishes for S-waves
because R0

S�0� � 0. States with various projections of the
orbital angular momentum onto the z axis are represented
by the polarization vector ��Lz�. The numerical values of
the wave functions are either known from the leptonic
decay widths (for J= and  0 mesons) or can be taken
from potential models (for �cJ mesons). Including radia-
tive corrections changes the values of the wave functions
by a factor of 2 (the NLO result compared to the LO result),
and so, one can also expect a large effect from higher order
corrections. This leads to a sizeable theoretical uncertainty,
which, on the other hand, can only affect the absolute
normalization but not the shape of the pt spectrum.

When calculating the spin average of the matrix ele-
ments squared, we adopt the kt-factorization prescription
[16] for the off-shell gluon spin density matrix:

 ����� � k�t k�t =jktj2; (12)

where kt is the component of the gluon momentum per-
pendicular to the beam axis, and the bar stands for the
averaging over the gluon spin. In the collinear limit, when
kt ! 0, this expression converges to the ordinary ��g ���g �
� 1

2g
��. In all other respects, the evaluation of the dia-

grams is straightforward and follows the standard QCD
Feynman rules. This has been done using the algebraic
manipulation systems FORM [17] and REDUCE [18].

For the direct production mechanism (1) the fully dif-
ferential cross section reads

 

d��pp! X��
��3

s jR�0�j
2

ŝ2

1

4

X
spins

1

64

X
colors

jM�gg! g�j2

�F g�x1;k
2
1t;�

2�

�F g�x2;k2
2t;�

2�dk2
1tdk

2
2tdp

2
 Tdy3dy 

�
d	1

2�
d	2

2�

d	 

2�
; (13)

where 	1 and 	2 are the azimuthal angles of the initial
gluons, and y and	 the rapidity and the azimuthal angle
of J= particle. The explicit expressions for the parton
level matrix elements jM�gg!  g�j2 are presented in
Ref. [9].

The phase space physical boundary is determined by the
inequality [19]

 G�ŝ; t̂; k2
3; k

2
1; k

2
2; m

2
 � 	 0; (14)

with k1, k2, and k3 being the initial and final gluon mo-
menta, ŝ � �k1 � k2�

2, t̂ � �k1 � p �
2, and G is the stan-

dard kinematic function [19]. The initial gluon momentum
fractions x1 and x2 appearing in the unintegrated gluon
distribution functions F g�xi; k2

i;t; �
2� are calculated from

the energy-momentum conservation laws in the light cone
projections:

 

�k1 � k2�E�pjj � x1

���
s
p
� m T exp�y � � jk3tj exp�y3�;

�k1 � k2�E�pjj � x2

���
s
p

� m T exp��y � � jk3tj exp��y3�; (15)

where m T � �m
2
 � jp T j

2�1=2.
The production scheme of  0 meson (2) is identical to

that of J= , and only the numerical value of the wave
function jR�0�j2 is different. In both cases, the values of
the wave functions were extracted from the known leptonic
decay widths [20] using the formula jR�0�j2 �

�eem
2
 =�4�

2e2
c�
1� 16�s=�3��� and were set equal to

jRJ= �0�j
2 � 0:8 GeV3 for J= meson, and jR 0 �0�j

2 �

0:4 GeV3 for  0 meson. To calculate the feed-down to J= 
states, the  0 production cross section has to be multiplied
by the branching fraction Br� 0 ! J= X� � 56% [20].

For the production of �cJ mesons via the subprocess (3)
we have
 

d��pp!�cJX�

�
12�2�2

s jR
0�0�j2

x1x2s
1=2�ŝ; k2
1; k

2
2�

1

4

X
spins

�
1

64

X
colors

jM0�gg!�cJ�q�0j
2�F g�x1; k2

1t;�
2�

�F g�x2; k2
2t;�

2�dk2
1tdk

2
2tdy�

d	1

2�
d	2

2�
: (16)
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The squares of the matrix elements, as being too lengthy,
are not presented there but the full fortran code is available
on request. The numerical value of the wave function is
taken from the potential model [21]: jR0

��0�j
2 �

0:075 GeV5. The decay branchings to J= meson are
known to be [20] Br��cJ ! J= �� � 0:013, 0.35, and
0.20 for J � 0, 1, and 2, respectively. Here, the off-shell
gluon flux factor is defined as F � 2
1=2�ŝ; k2

1; k
2
2�, accord-

ing to the general definition given by Eq. (2.3) in Ref. [19].
For all other subprocesses one can use the approximations

1=2�ŝ; k2

1; k
2
2� ’ ŝ ’ x1x2s, but they are not suitable for the

present case because the invariant mass of the final state is
small and the difference between ŝ � m2

� and x1x2s �
m2
�;t � m2

� � p2
t can make a pronounced effect on the pT

spectrum. The numerical accuracy of the above definition
was tested in a toy calculation regarding the leptonic
production of �cJ mesons via photon-photon fusion: e�
e! e0 � e0 � �c. We have compared the exact O��4�
result with a number of calculations based on equivalent
photon approximation and using different definitions of the
effective photon flux (such as F � 2ŝ, F � 2x1x2s, etc.).
We find that the ‘‘
1=2’’ definition is in the best agreement
with exact calculation.

For the production of beauty quarks in (4) we have

 

d��pp! b �bX� �
4��2

s

ŝ2

1

4

X
spins

1

64

X
colors

jM�gg! b �b�j2

�F g�x1; k2
1t; �

2�F g�x2; k2
2t; �

2�

� dk2
1tdk

2
2tdp

2
bTdybdy �b

d	1

2�
d	2

2�
d	b

2�
:

(17)

The explicit expressions for the parton level matrix ele-
ments jM�gg! b �b�j2 can be found elsewhere [22]. In
calculations the b-quark mass was set to mb � 4:5 GeV.
Further on, the produced b-quarks undergo fragmentation
into B-mesons according to the Peterson fragmentation
function [23] with � � 0:006. The outgoing B-mesons
undergo then a decay according to the three body decay
mode B! J= � K � �, to which the net effective
branching fraction [20] was attributed: Br�b! J= X� �
1:16% (respectively, Br�b!  0X� � 0:48%). This decay
mode was taken as a typical representative for all B-meson
decays. As the decay matrix elements are unknown, the
decays were generated according to the phase space.
However, the fine details of fragmentation and decay are
rather unimportant for our purposes, because b-quarks play
only a marginal role at RHIC energies, except large trans-
verse momenta of J= or  0. We shall discuss the region of
the large transverse momenta somewhat later.

Finally, for the charm-associated production (5) we
write

 

d��pp! c �cX��
�4
s

4ŝ2 jR�0�j
2 1

4

X
spins

1

64

X
colors

jM�gg! c �c�j2

�F g�x1;k
2
1t;�

2�F g�x2;k
2
2t;�

2�

�dk2
1tdk

2
2tdp

2
 Tdp

2
cTdy dycdy �c

�
d	1

2�
d	2

2�

d	 

2�
d	c

2�
: (18)

The explicit expressions for the parton level matrix ele-
ments jM�gg!  c �c�j2 as well as detailed description of
the kinematics are presented in Ref. [24].

To close the description of the production mechanisms,
we wish to state that we do not consider explicitly color-
octet contributions in the present analysis. In fact, we know
no data which would clearly manifest the presence of
color-octet contributions. On the contrary, the numerical
fits of the color-octet matrix elements based on the
Tevatron and HERA data are incompatible with each other.
Moreover, a conflict between the model predictions and the
data on the J= spin alignment indicate that the production
of vector quarkonia is certainly not dominated by the color-
octet mechanism. Some small contribution is not excluded
but cannot be calculated from first principles.

B. Unintegrated gluon distributions

In general, there are no simple relations between unin-
tegrated and integrated parton distributions. Some UGDFs
in the literature are obtained based on familiar collinear
distributions, some are obtained by solving evolution equa-
tions, some are just modeled, or some are even parame-
trized. A brief review of unintegrated gluon distributions
that will be used also here can be found in Ref. [25].

At very low x the unintegrated gluon distributions are
believed to fulfil the BFKL (Balitskij-Fadin-Kuraev-
Lipatov) equation [26]. Here in the practical applications
we shall use a simple parametrization [27] for the numeri-
cal solution [28] and use the acronym BFKL. Another
distribution closely related to the BFKL approach was
constructed by Blümlein [29].

At large energies (small x) one expects in addition
saturation effects due to gluon recombinations. A simple
parametrization of unintegrated gluon distribution in the
proton can be obtained based on the Golec-Biernat–
Wüsthoff parametrization of the dipole-nucleon cross sec-
tion with parameters fitted to the HERA data. The dipole-
nucleon cross section can be transformed to corresponding
unintegrated gluon distribution. The resulting gluon distri-
bution can be found in [30]. In the following we call it
GBW UGDF for brevity. Another parametrization, also
based on the idea of gluon saturation, was proposed in
[31]. In contrast to the GBW approach [30], where the
dipole-nucleon cross section is parametrized, in the
Kharzeev-Levin approach it is the unintegrated gluon dis-
tribution which is parametrized. More details can be found
in Ref. [25].
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Another useful parametrization, which describes the
HERA data, and therefore is valid for 10�4 < x< 10�2,
was constructed by Ivanov and Nikolaev [32]. We refer the
reader for details to the original paper.

In some of the approaches one imposes the following
relation between the standard collinear distributions and
UGDFs:

 g�x;�2� �
Z �2

0
fg�x;k2

t ; �
2�
dk2

t

k2
t
: (19)

Because of its simplicity, the Gaussian smearing of
initial transverse momenta is a good and popular reference
for other approaches. It allows one to study phenomeno-
logically the role of transverse momenta in several high-
energy processes. We define a simple unintegrated gluon
distribution:

 F Gauss
g �x; k2

t ; �2
F� � xgcoll

i �x;�
2
F� � fGauss�k2

t �; (20)

where gcoll�x;�2
F� is a standard collinear (integrated) gluon

distribution and fGauss�k
2
t � is a Gaussian two-dimensional

function:

 fGauss�k
2
t � �

1

2��2
0

exp��k2
t =2�2

0�=�: (21)

The UGDF defined by Eq. (20) and (21) is normalized such

that

 

Z
F Gauss

g �x; k2
t ; �2

F�dk
2
t � xgcoll

i �x;�
2
F�: (22)

At small values of x the unintegrated gluon distribution
can be obtained from integrated distribution as [16]

 F �x; k2
t � �

d�xg�x;�2��

d�2 j�2�k2
t
: (23)

This method cannot be directly used at small transverse
momenta (small factorization scales) and must be supple-
mented by a further prescription. One possible prescription
is freezing of the gluon distribution at k2

t < �2
fr, another is

a shift of the scale: �2 ! �2 ��2
s . Of course �2

fr and �2
s

are bigger than the lowest possible scale for standard col-
linear distributions. This method cannot be also applied at
larger x as here the scalling violation reverses and negative
values are obtained.

At intermediate and large x more careful methods must
be used. Kwieciński has shown that the evolution equations
for unintegrated parton distributions take a particularly
simple form in the variable conjugated to the parton trans-
verse momentum. In the impact-parameter space, the
Kwieciński equation takes the following simple form [33]:

 

@~fNS�x; b; �
2�

@�2 �
�s��

2�

2��2

Z 1

0
dzPqq�z�

�
��z� x�J0��1� z��b�~fNS

�
x
z
; b; �2

�
� ~fNS�x; b; �2�

�
;

@~fS�x; b; �2�

@�2 �
�s��2�

2��2

Z 1

0
dz
�
��z� x�J0��1� z��b�

�
Pqq�z�~fS

�
x
z
; b;�2

�
� Pqg�z�~fG

�
x
z
; b;�2

��

� 
zPqq�z� � zPgq�z��~fS�x; b; �
2�

�
;

@~fG�x; b; �2�

@�2 �
�s��2�

2��2

Z 1

0
dz
�
��z� x�J0��1� z��b�

�
Pgq�z�~fS

�
x
z
; b;�2

�
� Pgg�z�~fG

�
x
z
; b;�2

��

� 
zPgg�z� � zPqg�z��~fG�x; b;�
2�

�
: (24)

We have introduced here the shorthand notation

 

~f NS � ~fu � ~f �u; ~fd � ~f �d;

~fS � ~fu � ~f �u � ~fd � ~f �d �
~fs � ~f �s:

(25)

The unintegrated parton distributions in the impact factor
representation are related to the familiar collinear distribu-
tions as follows:

 

~f k�x; b � 0; �2� �
x
2
pk�x;�

2�: (26)

On the other hand, the transverse momentum dependent
UPDFs are related to the integrated parton distributions as

 xpk�x;�2� �
Z 1

0
dk2

t fk�x; k2
t ; �2�: (27)

The two possible representations are interrelated via
Fourier-Bessel transform

 fk�x; k2
t ; �2� �

Z 1
0
dbbJ0�ktb�~fk�x; b; �2�;

~fk�x; b;�
2� �

Z 1
0
dktktJ0�ktb�fk�x; k

2
t ; �

2�:
(28)

The index k above numerates either gluons (k � 0), quarks
(k > 0), or antiquarks (k < 0).

The perturbative solutions ~fpert
k �x; b; �

2
F� do not include

nonperturbative effects such as, for instance, intrinsic
transverse momenta of partons in colliding hadrons. One
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of the reasons is e.g. internal motion of constituents of the
proton. In order to include such effects we modify the
perturbative solution ~fpert

g �x; b;�2
F� and write the modified

parton distributions ~fg�x; b;�
2
F� in the simple factorized

form

 

~f g�x; b;�
2
F� �

~fpert
g �x; b;�2

F� � F
np
g �b�: (29)

In the present study we shall use the following functional
form for the nonperturbative form factor

 Fnpk �b� � Fnp�b� � exp
�
�
b2

4b2
0

�
: (30)

In Eq. (30) b0 is the only free parameter.
While physically fk�x; k2

t ; �2� should be positive, there
is no obvious reason for such a limitation for ~fk�x; b;�

2�.
In the following we use leading-order parton distribu-

tions from Ref. [34] as the initial condition for QCD
evolution. The set of integro-differential equations in
b-space was solved by the method based on the discretiza-
tion made with the help of the Chebyshev polynomials (see
[33]). Then the unintegrated parton distributions were put
on a grid in x, b, and �2 and the grid was used in practical
applications for Chebyshev interpolation.

For the calculation of the direct J= production here the
parton distributions in momentum space are more useful.
This calculation requires a time-consuming multidimen-
sional integration. An explicit calculation of the
Kwieciński UPDFs via Fourier transform for that needed
in the main calculation values of �x1; k2

1;t� and �x2; k2
2;t� (see

next section) is not possible. Therefore auxiliary grids of
the momentum-representation UPDFs are prepared before
the actual calculation of the cross sections. These grids are
then used via a two-dimensional interpolation in the spaces
�x1; k2

1;t� and �x2; k2
2;t� associated with each of the two

incoming partons.
The Kwieciński unintegrated parton distributions were

used recently in applications to c �c photoproduction [35],
c �c correlations in nucleon-nucleon collisions [25], produc-
tion of gauge bosons [36], production of a standard model
Higgs boson [37], inclusive production of pions [38], and
production of direct photons [39]. Good agreement with
experimental data was obtained in the case when the data
existed.

In the approach of Ref. [29], based on leading-order
perturbative solution of the BFKL equation, the uninte-
grated gluon density F g�x; k

2
t ; �

2� is calculated as a con-
volution of the ordinary (collinear) gluon density g�x;�2�
with universal weight factors:

 F g�x; k2
t ; �2� �

Z 1

x
G��; k2

t ; �2�
x
�
g
�
x
�
;�2

�
d�; (31)

 

G��;k2
t ;�2��

��s
�k2

t
J0�2

�������������������������������������������
��s ln�1=��ln��2=k2

t �
q

�; k2
t <�2;

(32)

 

G��;k2
t ;�2��

��s
�k2

t
I0�2

�������������������������������������������
��s ln�1=�� ln�k2

t =�2�
q

�; k2
t >�2;

(33)

where J0 and I0 stand for Bessel functions (of real and
imaginary arguments, respectively), and ��s � �s=3�. The
leading-order GRV set [40] was used in our calculations as
the input collinear density. Here the value of �s and the
scale �2 are parameters of the model. The resulting unin-
tegrated gluon distributions depend on them rather
strongly. Sometimes for brevity we shall denote the distri-
bution from Ref. [29] by JB.

III. RESULTS

Now we shall compare contributions of different pro-
cesses discussed in the previous section. Here a
Monte Carlo method based on the VEGAS routine [41]
is used to allow an easy comparison of processes with a
different number of particles in the final state. In Fig. 3 we
show the contribution of the different mechanisms dis-
cussed above to the rapidity distributions of the J= meson
for the RHIC energy. This calculation is based on so-called
derivative UGDFs, i.e. the ones obtained by differentiating
the standard collinear distributions (see the previous
section).

In Fig. 4 we show corresponding contributions to the
transverse momentum distribution of the J= meson. In
this exploratory calculation the cross section is integrated
over the full range of rapidity. We obtain a rather surprising
result that the sequential production of J= mesons via
radiative decays of �c mesons is comparable to or even
dominates over the direct color-singlet contribution almost
in the whole phase space. The reason can be seen in the fact
that the production of �cJ states refers to much lower

FIG. 3. Contributions of different mechanisms for the produc-
tion of J= in d�=dy distributions. In this calculation we have
used simple ‘‘derivative UGDF.’’
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values of the final state invariant mass, m2
��p �pg�

2,
giving emphasis to the small x region, where the gluon
distributions are growing up. This property becomes even
more pronounced as the ‘‘direct’’ matrix element (1) van-
ishes when the emitted final gluon is soft. Our conclusion
on the relative size of the direct and indirect contributions
is compatible with the preliminary estimates obtained by
the CDF Collaboration [3].

We wish to note now some difficulties of the standard
collinear approach for the �c mesons. The leading-order
contribution coming from the subprocess (3) shows un-
physical �-like pT spectrum. The usual excuse that the
particles produced at zero pT disappear in the beam pipe
and remain invisible does not work, because the decay
products do have nonzero pT and can be detected. At the
same time, introducing the next-to-leading contributions
(i.e., the processes with extra gluons in the final state)
causes a problem of infrared divergences, which need
artificial tricks to regularize them.

It is well known that a large fraction of the  0 mesons
decays into channels with J= (BR � 0:56 [20]). This
contribution was not considered in the literature and re-
quires a separate discussion. The inclusive cross section for
 0 can be calculated in exactly the same way (color-singlet
model) as the cross section for direct J= meson produc-
tion. The decays of  0 ! J= � X change the kinematics
only slightly. Finally the  0 contribution constitutes about
25% of the direct (color-singlet) production.

Also the B-meson decay mechanism gives a sizeable
contribution at large transverse momenta.

Summarizing, at the RHIC energy the dominant produc-
tion mechanisms are radiative decays of �c�2�� and the
direct color-singlet mechanism. In the following we shall
concentrate exclusively on these two dominant
mechanisms.

Let us start with the color-singlet mechanism. In Fig. 5
we present distributions in rapidity of J= produced by the

direct color-singlet mechanism for different UGDFs. The
distribution obtained with Ivanov-Nikolaev glue exceeds
the experimental PHENIX data [13], while the other theo-
retical distributions are smaller than experimental data.
This is rather natural as contributions of other mechanisms
are not included. The corresponding distributions in trans-
verse momentum are shown in Fig. 6 for two different
intervals in rapidity. Very similar distributions are obtained
for mid- and intermediate rapidity intervals. The result
with Ivanov-Nikolaev UGDF exceeds the experimental
data in the region of small transverse momenta. This is

FIG. 4. Contributions of different mechanisms for the produc-
tion of J= in d�=dpt distributions. In this calculation we have
used simple ‘‘derivative UGDF.’’ The cross section is integrated
over the full range of rapidity.

FIG. 5 (color online). Direct color-singlet contribution to ra-
pidity distribution of J= for different models of UGDFs. The
black lower solid (red) curve corresponds to the Kwieciński
UGDF, the dashed line to the Kharzeev-Levin UGDF, the dotted
line to the BFKL UGDF, the dashed-dotted line to the Ivanov-
Nikolaev UGDF, and the gray upper solid curve to the Blümlein
UGDF. The  0 contribution is not included here. The new
PHENIX data are shown as full circles.

FIG. 6 (color online). Direct color-singlet contribution to
transverse momentum distribution of J= for different models
of UGDFs for different intervals in rapidity:
(a) �0:35< y< 0:35 (left panel), (b) 1:2< jyj< 2:2 (right
panel). The meaning of the curves is the same as in Fig. 5.
The  0 contribution is not included here. The new PHENIX data
are shown as full circles.
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probably due to an extra nonperturbative contribution at
small gluon transverse momenta [32].

Now we shall show results obtained with different
UGDFs for radiative decays of �c�2��. The rapidity dis-
tribution of corresponding J= is shown in Fig. 7. Different
UGDFs give a similar result. The distributions obtained
with Ivanov-Nikolaev UGDF is slightly higher than those
obtained with other distributions. In Fig. 8 we show dis-
tributions in transverse momentum of radiatively produced
J= . The differences in the results for different UGDFs are
up to a factor 2 or even larger. Again Ivanov-Nikolaev
UGDF gives the highest cross section for small transverse
momenta. The Blümlein UGDF shown intentionally for the
large value of �s � 0:6 (solid gray, green online) gives
completely the wrong shape. The shape in this case de-
pends strongly on the value of �s. It would be much better
for smaller values of �s.

Finally we would like to show how the sum of the two
dominant contributions [direct color-singlet and radiative
�c�2�� decay] compares with the experimental data from
RHIC. The distribution in rapidity is shown in Fig. 9 and
distributions in transverse momentum in Fig. 10. The
theoretical cross sections obtained with the Kwieciński,
BFKL, and Kharzeev-Levin UGDFs stay slightly below
the experimental data. This seems to be consistent with the
fact that the smaller contributions discussed in Figs. 3 and
4 are not included here. They are expected to produce
contributions of the order of 20%–30% (see Figs. 3 and 4).

At the RHIC energy W � 200 GeV the longitudinal
momentum fractions of the order x� 10�2–10�1 come
into play. This is the place where application of many
UGDFs may be questionable. Let us concentrate now on
Kwieciński parton distributions, which are constructed for

FIG. 7 (color online). �c-decay contribution to rapidity distri-
bution of J= for different models of UGDFs. The meaning of
the curves is the same as in Fig. 5. The new PHENIX data are
shown as full circles.

FIG. 8 (color online). �c-decay contribution to transverse mo-
mentum distribution of J= for different models of UGDFs for
different intervals in rapidity: (a) �0:35< y< 0:35 (left panel),
(b) 1:2< jyj< 2:2 (right panel). The meaning of the curves is
the same as in Fig. 5. The new PHENIX data are shown as full
circles.

FIG. 9 (color online). Direct color-singlet and �c�2�� contri-
butions to rapidity distribution of J= for different models of
UGDFs. The meaning of the curves is the same as in Fig. 5. The
new PHENIX data are shown as full circles.

FIG. 10 (color online). Direct and �c-decay contributions to
transverse momentum distribution of J= for different models of
UGDFs for different intervals in rapidity: (a) �0:35< y< 0:35
(left panel), (b) 1:2< jyj< 2:2 (right panel). The meaning of the
curves is the same as in Fig. 5. The new PHENIX data are shown
as full circles.
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the region of x under discussion. In the left panel of Fig. 11
we show the invariant cross section for the direct compo-
nent as a function of J= transverse momentum pt for mid
rapidity range �0:35< y< 0:35. We show results for
different factorization scales: �2 � 10 GeV2 (solid line)
and �2 � 100 GeV2 (dashed line). In the right panel of
Fig. 11 we show a similar result for J= coming from the
decays of the �c�2

��. Here the result depends more
strongly on the choice of the scale. The solid line here
corresponds to the running factorization scale:�2 � m2

t �

m2
�c�2��

� p2
t .

In Fig. 12 we compare the sum of both processes calcu-
lated with the running factorization scale with the PHENIX
experimental data. The calculation underestimates the data
at small transverse momenta. This is most probably due to
the omission of other components, especially the  0-decay
component.

Let us concentrate now on the region of large transverse
momenta of J= . In Fig. 13 we show the contribution of
J= from decays of the B and �B mesons. The cross section
for the b �b is obtained with the Kwieciński UGDF (fixed
factorization and renormalization scales, �2 � 4m2

b)
within the kt-factorization approach. The details of the
calculation can be found in Ref. [25]. In the present illus-
trative calculation we neglect hadronization, i.e. we as-
sume that the distribution of B ( �B) mesons is the same as
the distribution of b ( �b) quarks. This seems justified for
heavy quark to heavy meson transitions. There are several
decay channels with final state J= . The inclusive branch-
ing ratio is known experimentally BR � 1:09% [20].
However, the momentum distribution of J= in the B
meson center-of-mass system was not yet measured [42].
Here, in order to demonstrate the dependence on the details
of the decay, we consider three academic models of the

decays: (a) uniform distribution in p� (momentum of J= 
in the meson rest frame) in the interval �0; pmax�—dashed
line, (b) uniform distribution inside the sphere with radius
pmax—dotted line, (c) distribution on the sphere with
radius pmax —dashed-dotted line. Here pmax is the momen-
tum obtained assuming a two-body decay: B! J= X. We
assume the effective mass of the state X to be mX �
0:5 GeV. As can be seen from the figure, the B decays
become an important ingredient at larger transverse mo-
menta. There is a relatively mild dependence on the details
of the decay. However, these details may become important
with better statistics, when J= with pt > 10 GeV will be
measured. The present estimate of the B-decay contribu-
tion may be an underestimation because of the two follow-
ing reasons: (a) it is based on the leading-order approach,

FIG. 11. Factorization scale dependence of the transverse mo-
mentum distribution for Kwieciński UGDF. The mid rapidity
range�0:35< y< 0:35 was taken as an example. The left panel
is for direct production and the right panel for the �c�2�� decay
mechanism. The solid and dashed curves are for �2 � 10 GeV2

and for �2 � 100 GeV2, respectively. In this calculation b0 �
1 GeV�1.

FIG. 12. Invariant cross section for the Kwieciński UGDF with
running scale. The left panel is for central rapidity range (�
0:35< y< 0:35) and the right panel for intermediate rapidity
range (1:2< y< 2:2). The direct contribution is denoted by the
dashed line, the �c�2��-decay contribution by the dotted line and
the sum of both by the solid line.

FIG. 13. Invariant cross section for J= from decays of the B
mesons as a function of pt for midrapidity and intermediate
rapidity intervals. Kwiecinski UGDFs are used with factorization
scale �2 � 4m2

b. Different decay models are described in the
text.
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(b) choice of the renormalization scale (see above) [43].
Therefore. at presently measured maximal transverse mo-
menta of J= pt � 8 GeV the B-decay contribution at the
level of 20%–30% is not excluded.

Let us concentrate now on correlations between pro-
duced J= and associated gluon(s). In Fig. 14 we present
a two-dimensional distribution in transverse momentum of
J= (p1t) and transverse momentum of the associated (the

FIG. 14. Factorization scale dependence of the pJ= ;t � pg;t distribution for the Kwieciński UGDF. The left panel is for �2 �
10 GeV2 and the right panel is for �2 � 100 GeV2.

FIG. 15. Two-dimensional distribution of the J= and gluon transverse momenta. The left-top panel is for Kwieciński UGDF
(running scale) and matrix element gluon, the right-top panel is for the BFKL UGDF and matrix element gluon, the left-bottom panel is
for the Kwieciński UGDF (running scale) and ‘‘last from the ladder’’ gluon and the right-bottom panel is for the BFKL UGDF and last
from the ladder gluon.
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gluon related with the matrix element) gluon (p2t) for two
different scales of the Kwieciński UGDF. The bigger the
scale is, the bigger is the spread of the cross section in the
�p1t; p2t� space. This can be understood by the fact that the
bigger scales mean more gluonic emissions which statisti-
cally means the bigger spread. This figure is rather of
academic value as in practice there are also gluons emitted
in the process of the ladder-type emissions. Strictly speak-
ing, the latter have to be described using a full gluon
evolution generator. On the other hand, the relevant effects
can also be estimated in an approximate way, as follows.
On the average, the gluon transverse momentum increases
from the proton line towards the hard interaction block
(although there is no strict ordering in the transverse mo-
mentum in the BFKL equation). So, it is most likely, that
the last gluon in the parton ladder has the largest kt value.
As a rough approximation, one can neglect the transverse
momenta of all the other emitted gluons {note that the
evolution is in the log�kt� space rather than kt space] and
use the conservation law in the last splitting vertex to set
the k0t of the emitted gluon opposite to the kt of the gluon
entering the partonic matrix element: ~k0t ’ � ~kt. The latter
is known from the unintegrated gluon distribution. This
trick gives an estimate for the transverse momentum of the
final state gluon jet.

In Fig. 15 we show distributions of the cross section on
the plane pt�J= � � pt (matrix element gluon or last gluon
in the ladder) for the Kwieciński UGDF with running scale
(left part) and BFKL UGDF (right part). Comparing these
distributions we conclude that the gluons from the ladder
(LFL—last from the ladder) contribute to lower transverse
momenta than those associated with the matrix element
g� g! J= � g (ME) for the Kwieciński UGDF, where
at pt�gluon�> 5 GeV the matrix element gluons dominate
over the ladder gluons. For the BFKL gluons the situation
is much more complicated as here the distribution for ME
gluons and LFL gluons are similar.

In Fig. 16 we show an average value of transverse
momentum of the matrix element gluon (dashed line) and
of the last gluon from the ladder (solid line) as a function of
J= transverse momentum. These average values have
completely different dependence on pt�J= �. While the
average value of the LFL gluon transverse momentum is
only weakly dependent on pt�J= �, the average value of
the ME gluon transverse momentum grows monotonically
with pt�J= �. At low J= transverse momenta
hpt�LFL�i � hpt�ME�i. At higher J= transverse momenta
hpt�LFL�i< hpt�ME�i. For the Kwieciński distribution
this happens at smaller transverse momentum than for
the BFKL UGDF.

Our calculations presented up to now show that the
production of J= through radiative decays of �c mesons
is one of two dominant mechanisms. It would be worth-
while verifying this theoretical prediction experimentally.
This would require measuring the �c mesons indepen-

dently. In Fig. 17 we show the distributions in rapidity
for �c�0��, �c�1��, and �c�2

��. These results were ob-
tained with the Kwieciński UGDF, which seems to be the
most reliable for the RHIC energy range.

For completeness in Fig. 18 we show the corresponding
distributions in transverse momentum. In this calculation
�1< y< 1. We wish to point out that the cross sections
show no singularity at small transverse momentum. This
contrasts with the collinear-factorization predictions,
which are either unphysical (�-like) or divergent (if based
on a 2! 2 subprocess g� g! �c � g). There is also a
significant difference in shape between the transverse mo-
mentum distribution for �c�1

�� meson and those for
�c�0

�� and �c�2�� mesons. This property emerges from
the Landau-Yang theorem which prohibits the coupling of
vector states to massless photons (just because of quantum
numbers incompatible with Bose statistics). The produc-
tion of �c�1�� states at small pT is strongly suppressed

FIG. 16 (color online). Average transverse momenta of the ME
(dashed line) and LFL (solid line) gluons as a function of the
J= transverse momentum for the Kwieciński UGDF with
running scale (left panel) and the BFKL UGDF (right panel)
at the RHIC energy W � 200 GeV.

FIG. 17. Rapidity distribution of �c�0�� (dashed line ), �c�1��
(dotted line) and �c�2

�� (solid line) for the RHIC energy
obtained with the Kwieciński UGDF [b0 � 1 GeV�1, �2 �
p2
t ��c�].
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because the initial gluons are almost on shell. The suppres-
sion goes away at higher pT , as the off-shellness of the
initial gluons becomes larger. These features are discussed
in detail in Ref. [44].

In contrast to the transverse momentum distribution of
J= from the color-singlet mechanism, the distributions of
�c mesons (and consequently the distribution of J= from
radiative decays) strongly depend on the model of UGDF.
In particular, in the limiting case of vanishing initial gluon
transverse momenta: d�=d2pt / �2� ~pt�. For illustrating
the effect quantitatively in Fig. 19 we present transverse
momentum distributions of �c�2�� for the Gaussian UGDF
with different values of the smearing parameter �0 � 0:5,
1, 2 GeV. The example clearly demonstrates that a mea-
surement of transverse momentum distribution of �c me-
sons would open a new and unique possibility to test model
unintegrated gluon distributions.

In principle the �c mesons [mainly �c�1�� and �c�2��]
can be identified via photon-J= decay channel. At RHIC
the �c production mechanism could be also identified

using the ���� and K�K� final channels. The corre-
sponding branching ratios are [20] BR��c�0

�� !
����� � 7:2� 0:6� 10�3, BR��c�0�� ! K�K�� �
5:4� 0:6� 10�3, BR��c�2�� ! ����� � 2:14�
0:25� 10�3, BR��c�2�� ! K�K�� � 7:7� 1:4� 10�4.

Now we are coming to the issue of J= spin alignment,
which was, and still is, under intense debates in the litera-
ture. We want to stress once again that measuring the
polarizaton of quarkonium states produced at high energies
may serve as a crucial test discriminating the different
concepts of parton dynamics.

The polarization state of a vector meson is characterized
by the spin-alignment parameter � which is defined as a
function of any kinematic variable as

 ��P � � �d�=dP � 3d�L=dP �=�d�=dP � d�L=dP �;

(34)

where � is the reaction cross section, P is a selected
kinematical variable, and �L is the part of the cross section
corresponding to mesons with longitudinal polarization
(zero helicity state). The limiting values � � 1 and � �
�1 refer to the totally transverse and totally longitudinal
polarizations. Here we consider only the behavior of � as a
function of the J= transverse momentum: P � jpT j. The
experimental definition of � is based on measuring the
angular distributions of the decay leptons

 d��J= ! �����=d cos� 1� �cos2; (35)

where  is the polar angle of the final state muon measured
in the decaying meson rest frame.

The results of our calculations for the kinematic con-
ditions of RHIC are displayed in Fig. 20. In order to show
the theoretical uncertainty band connected with the choice
of UGDF, we use two different parametrizations, which are
known to show the largest difference with each other,
namely, the ones proposed in Refs. [16] (called ‘‘deriva-
tive’’ for brevity) and the one from Ref. [29].

The upper panel in Fig. 20 shows the behavior of the
spin-alignment parameter � for J= mesons produced in
the direct subprocess (1). The increase in the fraction of
longitudinally polarized mesons comes from the increasing
virtuality (and longitudinal polarization) of the initial glu-
ons. These predictions shown here are also valid for  0

mesons.
As far as the contribution from P-waves is concerned,

nothing is known on the polarization properties of their
decays. If we assume that the quark spin is conserved in
radiative transitions, and the emission of a photon only
changes the quark orbital momentum (as it is known to be
true in the electric dipole transitions in atomic physics,
�S � 0, �L � �1), then the predictions on� appear to be
similar to those made for the direct channel (see lower
panel in Fig. 20, dotted curves). If, on the contrary, we
assume that the transition �c ! J= � � leads to a com-
plete depolarization, then we arrive at a more moderate

FIG. 19. Transverse momentum distribution of �c�2�� for the
RHIC energy obtained with the Gaussian UGDF and different
values of �0 � 0:5, 1.0, 2.0 GeV.

FIG. 18. Transverse momentum distribution of �c�0�� (dashed
line), �c�1�� (dotted line) and �c�2�� (solid line) for the RHIC
energy obtained with the Kwieciński UGDF [b0 � 1 GeV�1,
�2 � p2

t ��c�].
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behavior of the parameter � (dashed-dotted curves in
Fig. 20). The overall polarization remains slightly longitu-
dinal (� ’ �0:1) in the whole range of pT due to the
‘‘direct’’ contribution. A comparison between the data on
J= and  0 polarization at the Tevatron [8] seems to give
support to the depolarization hypothesis. The difference
between the J= and  0 polarization data can be naturally
explained by the presence of the depolarizing contribution
in the case of J= and the absence of this contribution in
the case of  0.

IV. DISCUSSION AND CONCLUSIONS

We have considered different mechanisms contributing
to the inclusive production of J= mesons in pp collisions

at RHIC kinematics. The outcome of our study is the
following.

We have inspected the hierarchy of contributions and
found that the dominant contribution to the cross section
comes from radiative decay of �c mesons, mainly from a
�c�2��� state. The second most important mechanism is
the direct color-singlet production. The sequential process
through the intermediate  0 turned out to be nonnegligible
and constitutes about a quarter of the direct color-singlet
contribution. To our knowledge, these processes were not
included in previous calculations in the literature on the
subject.

As a by-product, we have demonstrated the advantage of
the kt-factorization approach in calculating the �c spectra:
the latter can hardly be calculated in a consistent way in the
collinear scheme. In order to verify the production mecha-
nism suggested in our analysis, we have proposed an
independent measurement of inclusive �c cross sections
in the ���� and K�K� decay channels.

We have applied our approach to describe the data on
inclusive J= production recently collected by the
PHENIX Collaboration at the BNL. Both rapidity and
transverse momentum distributions have been discussed.
The new precise data at small J= transverse momenta
appeared to show very strong analyzing power, imposing
stringent constraints on unintegrated gluon distributions.
The best description of the data is obtained with the UGDF
proposed by Kwieciński.

Another piece of important information on the under-
lying gluon dynamics can be extracted from studying kine-
matic correlations between J= mesons and co-produced
gluon jets. In this paper we have presented our predictions
for the two dominant contributing mechanisms.

Finally, we have presented our predictions on the J= 
spin alignment. The latter can serve as an important test
discriminating two different concepts of the parton model.

In the present paper we have discussed mechanisms of
J= production in elementary collisions. We believe that
our findings here may be also useful for nuclear collisions,
where J= suppression was originally suggested as a
useful indication of the presence of the quark-gluon
plasma.
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FIG. 20. Predictions for the spin-alignment parameter � for
J= and W � 200 GeV. Thick lines correspond to the Blümlein
parametrization [29] and the thin lines correspond to the deriva-
tive UGDF parametrization and the GRV collinear distribution.
The top panel is for direct contribution only. The bottom panel
includes the feed-down from �c decays taken into account. The
dotted lines are for the quark spin conservation hypothesis, and
the dashed-dotted lines are for the full depolarization hypothesis.
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