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We discuss the quark condensate of the vacuum inside the baryon. We analyze the 1� 1-dimensional
chiral bag in analogy with the realistic 1� 3-dimensional one. The Nambu–Jona-Lasinio (NJL) type
interaction is used to investigate the quark condensate in the chiral bag. Considering the strong meson-
quark coupling, we solve the mean field solution to the scalar and pseudoscalar channels. Extracting the
finite values of the chiral Casimir energy and the quark condensate by proper regularization, the resulting
self-consistent equation allows a generation of a finite dynamical quark mass inside the bag.
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I. INTRODUCTION

The QCD vacuum is a nonperturbative system and
makes it difficult to study the physics of the strong inter-
action. Since the early stage of the study of QCD, the MIT
bag model has been one of popular models of hadrons [1].
There, the inside of the bag is assumed to be a perturbative
space, and the quark dynamics is treated perturbatively
with much success [2]. Furthermore, by requiring chiral
symmetry, the bag model was shown to have a pion cloud
[3,4]. The chirally symmetric coupling between pions and
quarks at the bag surface gives a conservation of the axial
vector current. However, the strong pion-quark coupling
causes an instability of the bag itself [5–7]. In order to
avoid this problem, a Skyrmion was introduced outside of
the bag, whose model setup is called as the chiral bag
model. Other extensions, such as the cloudy bag model
[8], the chiral bag model with vector mesons [9], are also
useful models.

In the QCD vacuum, chiral symmetry is spontaneously
broken and the constituent quark mass is induced dynami-
cally [10]. The nonperturbative structure of the vacuum in
the bag is a long-standing problem [11–17]. Contrary to the
original expectation, it is interesting to see that the vacuum
structure inside the bag may become nontrivial, where
quark and gluon condensates may take finite values due
to the boundary conditions. In the chiral bag, the pion
cloud is also a source for nonperturbative nature inside
the bag, since the pions and quarks interact with each other
strongly [15]. For instance, the quark scalar condensate has
a finite value h �  i ’ ��0:1 GeV�3 in the MIT bag model
[11] and also in the chiral bag model [15]. It is comparable
to the observed value ��0:25 GeV�3 as given in the
Nambu–Jona-Lasinio (NJL) model [10] and the other ap-
proaches. Therefore, it would be a natural question
whether the nonperturbative vacuum is induced by the
boundary conditions or some dynamical interactions such
as the NJL one.

In this paper, to understand the nonperturbative dynam-
ics in the bag, the NJL interaction is introduced as a quark-
quark interaction inside the chiral bag [13,14]. This ap-

proach is justified when the color confinement is caused by
long-range gluon dynamics at distance �1 fm, while the
chiral symmetry breaking occurs at shorter distance scale
�0:2� 0:3 fm, as suggested by instanton dynamics [16–
20]. Indeed such a separation of the length scales has been
considered in the context of the NJL model in the hadron
dynamics [20]. In recent approaches based on anti–
de Sitter/conformal field theory correspondence, it is sug-
gested that there is a window of the gauge coupling where
chiral symmetry breaking occurs in a deconfinement phase
[21]. Therefore, we make a model setup which is effective
at the medium range from �0:3 fm to �1 fm; there we
describe physics by the quarks that are interacting through
the NJL interaction and confined inside the bag. The
interaction due to one-gluon exchanges may still remain
as a residual interaction. In the present paper, however, we
discuss only the nonperturbative effect by assuming that
the residual interaction may be regarded as a small
perturbation.

Further analysis for the hybrid model of the NJL model
and the chiral bag model, which may be called the NJL
chiral bag model, was given in [22–26]. It is well known
that the strong pion-quark coupling in the chiral bag causes
the chiral vacuum polarization inside the bag [3–7,27–33].
Familiar examples are the conservation of baryon number
and the chiral Casimir energy [15,34,35]. It was shown that
the NJL chiral bag with finite quark mass also holds the
properties of the vacuum polarization [26,36].

In the previous studies of the NJL bag model [22–26],
only the scalar condensate was considered. However, this
channel causes a divergence of the chiral Casimir energy in
the limit of zero bag radius. In the present work, we will
show that a self-consistent solution can be found with finite
quark condensates for the baryon number B � 1 system by
considering not only the scalar channel but also the pseu-
doscalar channel. The latter channel is required by the
hedgehog ansatz in the pion sector. In this way, we can
study the quark condensates inside hadrons (quark bag) by
both quark boundary conditions (chiral Casimir effects)
and the self-consistency condition from the NJL interac-
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tion. We evaluate the quark condensates as mode sums in
the chiral bag model without introducing a cutoff as in the
ordinary NJL model. We consider this as a counter repre-
sentation of the long-range dynamics with a cutoff, which
is valid inside the chiral bag.

In this paper, in order to avoid numerical complications
of the 1� 3-dimensional model, instead, we consider a
1� 1-dimensional system with the Gross-Neveu model
[37] in analogy with the realistic case. In this way, we
expect to learn essential nontrivial dynamics of the NJL
interaction inside the bag. In our model, quarks are con-
fined in a finite segment of the line in a U�1� � U�1�
chirally symmetric way. This simplification has an advan-
tage that an analytical calculation can be performed. Such
a model setup does not modify the qualitative feature of
the chiral vacuum polarization in the realistic 1�
3-dimensional bag. Indeed, in the conventional chiral bag
model with massless quarks, the 1� 1-dimensional chiral
bag was shown to provide a clear understanding of the
quark vacuum polarization properties [38,39].

This paper is organized as follows. In Sec. II, the NJL
chiral bag model is introduced in the 1� 1-dimensional
system. Using the hedgehog ansatz and the mean field
approximation for the NJL interaction, a self-consistent
equation is derived. Chiral vacuum polarizations such as
the baryon number conservation and the chiral Casimir
energy are investigated carefully. The self-consistent equa-
tion is solved and the total energy of the NJL chiral bag is
investigated. In Sec. III, our results are discussed. The final
section is devoted to the conclusion.

II. THE CHIRAL BAG WITH THE NJL
INTERACTION IN ONE DIMENSION

A. Lagrangian

The purpose of this section is to formulate the 1�
1-dimensional chiral bag with the NJL [10] (or the
Gross-Neveu [37]) interaction. Here, we discuss effects
of finite quark mass, which are induced by the mean field
of the NJL interaction, to the vacuum polarization in the
chiral bag. We consider the Lagrangian
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2
6@
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where the quark field  has single flavor with U�1� � U�1�
symmetry inside the one-dimensional bag jxj<R. In 1�
1 dimension, the quark field is expressed by a two-
component Dirac spinor with the gamma matrices given as

 �0 �
0 1
1 0

� �
; �1 �

0 �1
1 0

� �
;

�5 �
1 0
0 �1

� � (2)

in the chiral representation. The quarks inside the bag
interact with each other through the NJL interaction in
the second term in the first bracket with a coupling constant
G. The second term with the � function represents an
interaction between quarks and pions at the bag surface
at jxj � R. The last term is the meson Lagrangian outside
the bag jxj>R. We use the sine-Gordon field with U�1� �
U�1� symmetry [38]

 U � ei�; (3)

which mimics the topological property of the pion field in
the 1� 3-dimensional system in the Skyrme model [40–
42]. The delta function with U�5 � ei�5� gives a chirally
symmetric interaction between quark and pion at the bag
boundary. The last term with � is a cosine potential to give
a dynamically stable soliton solution, in which � plays a
role of the ‘‘pion mass.’’ The pion decay constant is a
dimensionless quantity in the 1� 1-dimensional system
and can be eliminated by rescaling the chiral field and the
pion mass. The energy of the sine-Gordon field is 8� when
we take the zero bag radius limit.

Considering the strong coupling between quarks and
mesons at the bag surface, we introduce the ‘‘hedgehog’’
mean fields. In the meson field for jxj 	 R, we consider

 ��x� � ��x�F�x�; (4)

with a chiral angle F which is a positive function of the
position x. The sign function ��x� � x=jxj represents the
hedgehog structure in the 1� 1-dimensional system [38].
The equation of motion of the meson,

 @2
t �� @

2
x�� �

2 sin��� �� � 0; (5)

has a static solution in the limit of the zero bag radius,

 F�x� � ��x��2�� 4 arctane�jxj�: (6)

Note that F�x� approaches zero in the limit jxj ! 1 as
shown in Fig. 1. This behavior mimics the Skyrmion
solution in the 1� 3 dimension. Our solution coincides
with the conventional solution in the sine-Gordon equation
except for a phase factor. For instance, if we replace
F�x� ! F�x� � 2� for x < 0, we find a continuous solu-
tion at x � 0 satisfying F��1� � 2� and F��1� � 0.

For the quark sector inside the bag, we introduce quark
condensates not only in the scalar channel but also in the
pseudoscalar channel. In the mean field approximation, we
take the following ansatz:

 � 2Gh �  i � m cosF; (7)

 � 2Gh � i�5 i � m��x� sinF; (8)
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for a self-consistent equation with a dynamical quark mass
m. The mean field approximation is taken in a basis set of
the quark wave functions in the bag. Here we assume that
the quark mass m and chiral angle F are chosen to be
independent of the position x inside the bag. We mention
that F is continuous to F�x� at jxj � R. As a result, we
obtain the Lagrangian
 

L � � 
�
i
2
6@
$

�mei�5F��x�
�
 ��R� jxj�

�
1

2
� ei�5F��x� ��jxj � R�

�

�
1

2
�@xF�2 � �2�1� cos�F� ���

�
��jxj � R�: (9)

The quark mass term with a constant chiral angle F keeps a
symmetry of the Lagrangian under the transformation F !
�� F as we see below. We call the term ei�5F��x� as the
chiral phase. The chiral phase was equal to one in our
previous analysis, since only the scalar channel was chosen
in the mean field approximation [26]. There, the chiral
Casimir energy diverges in the small bag radius limit. In
the following discussion, we will show that the chiral phase
plays an important role, not only in the vacuum polariza-
tion, but also in the quark condensates.

The surface term in Eq. (9) induces a bag boundary
condition at x � R

 i�1 � �eiF�5 : (10)

Then, the eigenvalue equation is obtained as

 E�1� 	 sinF� sinkR� 	 cosF�k coskR�m sinkR� � 0;

(11)

for the states with jEj 	 m with quark energy E2 � k2 �
m2 and momentum k. For jEj<m, replacing k! ik with

E2 � �k2 �m2, we obtain
 

E�1�	 sinF� sinhkR�	cosF�kcoshkR�m sinhkR� � 0:

(12)

The parity 	 � 
1 is defined by the parity transformation

  �x� ! �0 ��x� � 	 �x�: (13)

In Fig. 2, we plot the quark eigenenergy E as functions
of the chiral angle F for massless quark mR � 0 and
massive quark mR � 1. It is seen that the quark energies
are odd functions of F� �=2. Namely, the quark spectrum
is antisymmetric under the transformation of F ! �� F.
It is also interesting that the energy levels are periodic with
the periodicity � along with F. In particular, the lowest
level crosses E � 0 at F � �=2 regardless the mass value
m. This is due to the chiral phase in the mass term in
Eq. (9); without the chiral phase this property is not main-
tained as shown in [25,26]. In Fig. 2, in the small energy
region near E � 0, we see that the spectrum for massive
quark is modified as compared with that for the massless
quark. However, the asymptotic behaviors in the high
energy region are qualitatively similar to the massless case.

B. Chiral vacuum polarizations

In the NJL chiral bag model, various quark matrix
elements have contributions from the vacuum due to the
modification of the Dirac spectrum by the strong pion field.
In this subsection, we discuss the vacuum polarization
including the effect of the finite quark mass. In principle,
the quark mass m is related with the chiral angle F and the
bag radius R through the self-consistent equations, (7) and
(8). However, in order to understand the finite quark mass
effect on the vacuum polarization, we take the quark mass

0 0.5 1
F/π

−3

0

3

E
R

(a) mR=0

0 0.5 1
F/π
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E
R

(b) mR=1

FIG. 2. Quark eigenenergies as functions of the chiral angle F
for (a) mR � 0 and (b) mR � 1. The solid and dashed lines
indicate the parity 	 � � and �, respectively.
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0

1
φ(

x)
/π

FIG. 1. The solution of the sine-Gordon equation in the zero
bag radius limit. See Eq. (6).
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as a constant value irrespective to the chiral angle and the
bag radius in this subsection.

Let us first investigate the baryon number. In the pre-
vious studies, the total baryon number was shown to be
always conserved, where the contribution of the bag vac-
uum played an essential role [26,34–36]. Here, once again
in the present model, the exact conservation of the baryon
number can be shown.

The expectation value of the baryon number carried by
quarks is defined by the symmetric sum over positive and
negative energy states. The baryon number is defined by

 Bq�m;F� � �
1

2
lim

!�0

� X
En>0

e�
EnR �
X
Em<0

e�
jEmjR
�
;

(14)

where the summation converges thanks to the convergence
factor e�
jEnjR. Instead of the exponential type, it is much
easier to use the Strutinsky method in numerical calcula-
tions. This method has an advantage that a sufficient con-
vergence is obtained by summing these series up to n & 20
[43,44], while in the other methods we need more states,
typically n & 100 [45,46]. The numerical results agree
with the form

 Bq�m;F� �
�
�F=� for 0 � F < �=2
1� F=� for �=2 � F � �;

(15)

which is valid for any quark mass m. This solution is
obtained easily by analytical calculation especially for
the massless quark. Therefore, containing the valence
quarks with the baryon number Bval � 1 for 0 �
F < �=2 and 0 for �=2 � F � �, we obtain the baryon
number in the quark sector as
 

Bval � Bq �

� 1� F=� �Bval � 1� for 0 � F <�=2

1� F=� �Bval � 0� for �=2 � F � �;

(16)

which give fractional baryon numbers depending on the
chiral angle.

The total baryon number in the quark and pion sectors is
conserved irrespective to the chiral angle. We define the
pion topological current

 J� �
i

2�
"��Uy@�U � �

1

2�
"��@��: (17)

Then, the fractional baryon number in the pion sector is

 B� �
Z
jxj>R

J0dx � �2
1

2�

Z 1
R

dF
dx

dx � F=�: (18)

Then, the total baryon number is given as the sum of them
in the quark and pion sectors; B � Bval � Bq � B� � 1.

Next we consider the chiral Casimir energy of the bag
vacuum. The chiral Casimir energy is defined as the dif-
ference of the energies at F and F � 0,

 Ec�m;F� � ~Ec�m;F� � ~Ec�m; 0�; (19)

where

 

~E c�m;F� � �Nc
1

2
lim

!�0

� X
En>0

Ene�
EnR

�
X
Em<0

Eme�
jEmjR
�
; (20)

with Nc � 3. Especially for massless quarks, an analytical
result is obtained as

 Ec�0; F� �
�
NcF2=4� for 0 � F <�=2
Nc�F� ��

2=4� for �=2 � F � �:

(21)

In general, the numerical results for the chiral Casimir
energies are shown as functions of the chiral angle for
several quark masses in Fig. 3. It is a remarkable point
that the chiral Casimir energy vanishes at the chiral angle
F � �, not only for massless quarks, but also for massive
quarks. This is because the chiral phase in the quark mass
term in Eq. (9) conserves the chiral symmetry in the quark
sector. Indeed, the chiral phase guarantees the periodic
structure of the quark spectrum and the energy spectrums
coincide at F � 0 and F � � except for parity as shown in
Fig. 2. This result ensures a continuity from the bag model
to the Skyrmion, as we discuss later. We mention that,
without the chiral phase, the chiral Casimir energy takes
an infinite value at F � � and the continuity is not main-
tained for massive quarks, as discussed in [25,26].

C. Self-consistent solutions

Now, we consider the self-consistent Eqs. (7) and (8).
We regard the quark mass and the chiral angle as averaged

0 0.5 1
F/π

0

0.5

1

E
cR

mR=0
mR=1
mR=2

FIG. 3. The chiral Casimir energy Ec as a function of the chiral
angle F. The solid, long-dashed and short-dashed lines indicate
the quark masses mR � 0, 1 and 2, respectively.
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values inside the bag, since they are assumed to be inde-
pendent of the position. Correspondingly, we also consider
that the quark scalar and pseudoscalar densities for each
eigenstate n are defined as values averaged over the bag
volume,

 � � n n�V 

1

V

Z R

�R

� n ndx; (22)

 � � ni�5��x� n�V 

1

V

Z R

�R

� ni�5��x� ndx; (23)

with bag volume V � 2R. Here, ��x� is multiplied in
Eq. (8) for convenience in the following discussions.

Next, we calculate the vacuum polarization of the scalar
and pseudoscalar condensates. For this purpose we con-
sider the following sum over all the states with positive and
negative energies,

 h �  isea � �Nc
1

2
lim

!�0

� X
En>0

� � n n�Ve�
EnR

�
X
En<0

� � n n�Ve�
jEnjR
�
; (24)
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�
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�
jEnjR

�
: (25)

The scalar condensate is an odd function of F� �=2, and
the pseudoscalar condensate is an even function. In other
words, the former has an odd symmetry for change F !
�� F and the latter has an even symmetry. Once the quark
condensates are obtained for 0 � F < �=2, they are ap-
plied straightforwardly to �=2 � F � �. Therefore it is
sufficient to consider only the range of 0 � F < �=2 in the
following.

The mode sums (24) and (25) contain logarithmic di-
vergences coming from the ultraviolet energy region unlike
the baryon number and the chiral Casimir energy. For
massless quarks, we obtain analytically the asymptotic
behavior in the limit 
! �0,
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for 0 � F < �=2. Here, H�x� is a harmonic number de-
fined as

 H�x� � �
�� 2 log2

�
�

2

�
��x�; (28)

with the Euler constant � and the digamma function ��x�.
It shows that the scalar and pseudoscalar condensates have
the logarithmic divergences proportional to �cosF log
�=�
and �sinF log
�=�, respectively. These terms induce ultra-
violet divergence in the quark condensates at a high mo-
mentum region. The logarithmic divergences for massive
quarks has been also confirmed numerically, provided that
the coefficient of the divergent term depends on the quark
mass. Considering the asymptotic form of the divergent
terms, we remove the divergences and obtain finite values
in the following prescription. Keeping the discrete sym-
metry between F and �� F, we define

 h �  ifinsea � h �  isea �
@2h �  isea

@F2

��������F��
cosF; (29)

 h � i�5��x� ifinsea � h � i�5��x� isea �
@2h �  isea

@F2

��������F��
sinF:

(30)

We notice that in (29) and (30), the direct subtraction of the
divergent part, such as h �  isea � h �  isea;F�0, is not appro-
priate, since it breaks the symmetry between F and �� F.
The reference point is chosen at F � � for both the scalar
and pseudoscalar densities. It is also possible to choose
F � 0 as a reference point, provided that the signs in the
second terms in (29) and (30) are changed to plus.
Especially for massless quarks, we obtain the analytical
results
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(31)
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for 0 � F < �=2. Here ��x� is the zeta function. Using the
symmetry properties of the scalar and pseudoscalar con-
densates, the results can be extended to all values of F.

The quark condensate including the valence quarks is
given as a sum of valence and sea quark contributions,

 h � ei�5F��x� ifin � �
�
�
2
� F

�
Nc� � vale

i�5F��x� val�V

� h � ei�5F��x� ifinsea: (33)

The sea quark contribution is obtained after performing the
subtraction (29) and (30),

 h � ei�5F��x� ifinsea � h �  ifinsea cosF� h � i�5��x� ifinsea sinF:

(34)

The valence quark contribution is

 � � valei�5F��x� val�V � � � val val�V cosF

� � � vali�5��x� val�V sinF; (35)

where  val is the wave function of the lowest 0� state with
positive energy. In (33), the valence quark is contained
only for 0 � F < �=2, as indicated by the step function.

In Figs. 4(a) and 4(b), the scalar condensate,

 �
�
�
2
� F

�
Nc� � val val�V � h �  ifinsea; (36)

and the pseudoscalar condensate,

 �
�
�
2
� F

�
Nc� � vali�5��x� val�V � h � i�5��x� i

fin
sea; (37)

in Eq. (33) are shown as functions of the chiral angle F for
several quark masses m, respectively. For 0 � F < �=2
the valence quarks are contained, while for �=2 � F � �
they are not contained. The sum of the valence and sea
quarks are indicated by solid lines, and the sea quarks are
by dashed lines. The scalar condensates are positive, while
the pseudoscalar condensates are negative.

However, these quark condensates do not supply a con-
tinuous transformation to the MIT bag in the large bag
radius limit, since the above defined scalar condensate
gives a finite value at F � 0 andm � 0. In order to impose
of the MIT bag condition, we choose the reference point of
the quark condensate at F � 0,

 h � ei�5F��x� iphys � h � ei�5F��x� ifin � h �  ifinjF�0;m�0

(38)

This condition guarantees that for massless quark the quark
condensate (38) becomes zero in the limit F ! 0, and
hence quarks become massless in the large MIT bag. It
also results in the condition that the scalar component of
the quark condensate vanishes in this limit, where the bag
boundary conditions play no role for the generation of the
quark condensate.

Now let us consider the self-consistent equation for
dynamical quark mass

 � 2GRh � ei�5F��x� iphys � mR; (39)

F/π

−2

−1

0

1

2
(a) scalar condensate

mR=0 (val+sea)
mR=1 (val+sea)
mR=2 (val+sea)
mR=0 (sea)
mR=1 (sea)
mR=2 (sea)

0 0.5 1 0 0.5 1
F/π

−2

−1

0
(b) pseudoscalar condensate

mR=0 (val+sea)
mR=1 (val+sea)
mR=2 (val+sea)
mR=0 (sea)
mR=1 (sea)
mR=2 (sea)

FIG. 4. The quark condensates in units of 1=V as functions of the chiral angle F for several quark masses mR � 0, 1 and 2. (a) The
scalar condensate and (b) the pseudoscalar condensate. The solid lines indicate the sum of the valence and vacuum contributions, and
the dashed lines indicate only the sea contribution.
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which is obtained from the mean field approximation (7)
and (8) and the redefinition of the quark condensate in-
dicated in Eq. (38). Here the bag radius R is multiplied in
both sides to make them dimensionless. By setting G �
0:2, we compare the left- and right-hand sides of the self-
consistent Eq. (39) for several chiral angles F and quark
masses m. The quark condensate, 2GRh � ei�5F��x� iphys, in
the left-hand side is shown as a function of the quark mass
for each chiral angle F � 0, F � �=2, and F � � by the
thick solid, long-dashed and short-dashed lines, respec-
tively, in Fig. 5(a). The right-hand side is indicated by
the dotted-dashed line in the same figure. As we see, the
chiral angle F � 0 gives zero quark mass, while the other
F � �=2 and F � � give finite quark masses mR � 0:35
and mR � 0:72, respectively.

More explicitly, we show the quark massm as a function
of the chiral angle F in Fig. 5(b). The solid line indicates
the self-consistent solution in the bag with the valence
quarks contained, while the dashed line indicates the solu-
tion in an empty bag with no valence quark. The quark
mass increases as the chiral angle increases. It is noted that
the quark mass is equal to zero at F � 0 due to the MIT bag
condition (38).

It is interesting to consider an empty bag, although such
a state cannot exist in reality. There, the quark mass has a
maximum value at F � 0 and�, and the minimum value at
F � �=2. This result is interpreted as a change of the
quark mass when the pion field moves along the chiral
circle of 
2 � �2 � const. It indicates that the quark mass
increases as the chiral angle approaches the 
 axis (F � 0
and �), while it decreases as the chiral angle approaches
the � axis (F � �=2). On the other hand, once the valence
quarks are included for 0 � F <�=2, the quark conden-
sate is suppressed and the quark mass becomes smaller. It
is consistent with our intuitive understanding about the
vacuum.

D. Energy

Now, we discuss the total energy of the NJL chiral bag,
the sum of the quark and pion energies,

 E � Eq � E� � �
�
�
2
� F

�
Eval � Ec � E�; (40)

with the quark energy Eq as a sum of the valence quark
energy Eval for 0 � F < �=2, indicated by the step func-
tion, and the chiral Casimir energy Ec, and the pion energy
given as

 E� � 2
Z 1
R

�
1

2
�@xF�2 � �2�1� cosF�

�
dx: (41)

For a given bag radius, we solve the equation of motion for
pion and perform the total energy variation with respect to
the chiral angle. This procedure is nothing but the continu-
ity condition for the axial current at the bag surface. We
have two free parameters: the pion mass � and the NJL
coupling constant G. We fix � � 0:125 GeV to obtain the
soliton mass 1 GeV in the Skyrmion limit. We useG � 0:2
and 0 in the following.

The chiral angle is plotted as a function of the bag radius
for G � 0:2 (thick line) and 0 (thin line) in Fig. 6. The
chiral angle approaches � in the limit of the small bag
radius. Consequently, the Skyrmion and the MIT bag is
connected smoothly by changing the bag radius.

In Fig. 7, we show the total energy E (solid line), pion
energy E� (dashed line), quark energy Eq (dotted-dashed
line) as functions of the bag radius R. Here G � 0:2 and 0
are represented by thick lines and thin lines, respectively.
As seen in the conventional chiral bag model (G � 0), the
pion energy is dominant rather than the quark energy for
small bag radius, and vice versa for large bag radius. The
former gives the Skyrmion, and the latter gives the MIT
bag. The dominance of each contribution is clearly seen as
the NJL coupling constant is switched on; the pion domi-

0 0.5 1
mR

−1

−0.5

0

0.5
(a)

F=0
F=π/2
F=π

−mR

0 0.5 1
F/π

0

0.5

1

m
R

(b)

val+sea
sea

FIG. 5. (a) The quark condensate, 2GRh � ei�5F��x� iphys, in the left-hand sides in Eq. (39) as functions of mR for G � 0:2. See the
text for details. (b) The quark mass m as functions of the chiral angle F for G � 0:2. The solid line contains valence and sea quarks.
The dashed line indicates the solution in an empty bag in which the valence quarks are not contained.
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nates for R & 0:4 fm and the quark dominates for R &

0:4 fm. Note that the total energy becomes rather indepen-
dent of the bag radius R when the volume term BV with a
suitable value of the bag constant B. Therefore, the
Skyrmion and the MIT bag are smoothly connected by
varying the bag radius, consistent with the Cheshire Cat
picture, which is well known in the conventional chiral bag
model.

In Fig. 8, we show the dynamical quark mass as a
function of the bag radius for G � 0:2. The quark mass
approaches zero in the large bag radius, which is consistent
with the condition of the MIT bag. On the other hand, the
quark mass is dynamically generated for finite bag radii.
Therefore, we find that the NJL interaction induces the

dynamical quark mass in the chiral bag. Although the
quark mass becomes too large for small bag radii, R &

0:2 fm, it should not be taken too seriously. For small bag
radii, the four point quark interaction G may decrease,
hence the quark mass approaches a finite value in the small
bag radius limit. Consequently our model serves a descrip-
tion that confined quarks in a finite size bag behave as
constituent quarks. The fact that the finite dynamical quark
mass is induced inside a finite size bag may persist for the
realistic situation of 1� 3 dimensions, implying sponta-
neous breaking of chiral symmetry.

III. DISCUSSION

One of the features in our model is that the quark
condensate is induced by the NJL interaction in the chiral
bag as a mode sum. Therefore, it would be interesting to
discuss our results in comparison with the previous studies
of the nonperturbative feature in the conventional chiral
bag model. In the chiral bag model in the 1� 3 dimension
with massless quarks, the quark scalar density is shown to
take �0:075 cosFR�3 at the center of the bag with the
chiral angle F and the bag radius R [15]. This cosF
dependence of the quark scalar density is similar to that
obtained in the present calculation, as we see from
Eq. (26). Although the direct comparison of the coeffi-
cients does not make much sense, qualitative agreement
between the two results indicates that we can proceed with
further discussions about quark condensates in a formalism
of the NJL chiral bag model.

Previously, it was discussed by Kunihiro to employ the
NJL model inside the chiral bag [13,14]. There the strong
�� h �qqi field is considered to cause the chiral symmetry
breaking in the bag. In our discussion, the dynamical quark
mass in the empty bag takes a maximum value at the chiral
angle F � 0 and � as shown by the dashed line in

0 1 2
R [fm]

0

0.25

0.5

m
 [G

eV
]

FIG. 8. The quark mass as a function of the bag radius for G �
0:2.

0 1 2
R [fm]

0

0.5

1

[G
eV

]

total
pion
quark

FIG. 7. The total (solid lines), the pion (dashed lines), and
quark (dotted-dashed lines) energies as functions of the bag
radius. G � 0:2 for thick lines and G � 0 for thin lines.

0 1 2
R [fm]

0

0.5

1
F

/π
G=0.2
G=0

FIG. 6. The chiral angle as functions of the bag radius for G �
0:2 (thick line) and G � 0 (thin line).
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Fig. 5(b). This means that the quark mass becomes maxi-
mum when the point on the chiral circle approaches the
sigma axis. Therefore the idea of Refs. [13,14] is supported
by the present analysis in the NJL chiral bag model.

V. CONCLUSION

We discuss the quark condensate in the chiral bag with
the NJL interaction inside the chiral bag. We employ the
1� 1-dimensional model in order to avoid numerical com-
plication. In the outside region of the bag, the sine-Gordon
field is introduced for topological properties as a pion
cloud to mimic the Skyrmion in the 1� 3-dimensional
system.

Considering the strong correlation between the quarks
and pions, the hedgehog ansatz is employed for the mean
fields of the quarks and pions. The scalar and pseudoscalar
densities are defined as mean fields with the chiral angle in
a self-consistent way. These quark condensates are then
computed explicitly as mode sums in the chiral bag.
Solutions of the mean field equation leads to the generation
of the dynamical quark mass. As a chiral vacuum polar-
ization, conservation of baryon number is shown to be
valid for finite quark condensate. The chiral Casimir en-
ergy is also shown to be well defined without divergence.
There it is important that the symmetry of the single quark
spectrum is conserved by the chiral phase. Consequently,
the NJL chiral bag connects smoothly the finite size bag
and the Skyrmion as the Cheshire Cat picture implies. We
emphasize that, without the chiral phase, the smooth be-

havior is not obtained for massive quarks [25,26]. In gen-
eral various quantities of quarks are divergent, from which
we need to extract finite terms. In this paper, we have first
regularized the divergent quantities by the point splitting
method and then investigated the chiral angle dependence
at around F � 0 and � in order to identify the divergent
and finite terms. This prescription has been used for the
computation of quantities such as the Casimir energy and
the axial flux in the 1� 3 dimension, but not tested for
various quantities including the quark condensates. We
expect that a similar method can be generally applied to
the 1� 3-dimensional case, which is left as a future work.

The generation of a dynamical quark mass in a bag
supports the previous conjectures that the nonperturbative
dynamics of quarks and gluons remain inside the bag [13–
15]. It suggests to us to reconsider the original picture of
the MIT bag model in which a perturbative space is
assumed inside the bag. In order to have a clear picture
for nonperturbative dynamics of the bag, it will be an
interesting subject to study the realistic 1�
3-dimensional NJL chiral bag and discuss physical observ-
ables, which can be compared with experimental data.

ACKNOWLEDGMENTS

We express thanks to Professor T. Kunihiro for com-
ments and discussions. This work is partially supported by
a Grant-in-Aid for Scientific Research for Priority Areas,
MEXT (Ministry of Education, Culture, Sports, Science
and Technology) with No. 17070002.

[1] A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F.
Weisskopf, Phys. Rev. D 9, 3471 (1974).

[2] T. DeGrand, R. L. Jaffe, K. Johnson, and J. Kiskis, Phys.
Rev. D 12, 2060 (1975).

[3] A. Chodos and C. B. Thorn, Phys. Rev. D 12, 2733
(1975).

[4] T. Inoue and T. Maskawa, Prog. Theor. Phys. 54, 1833
(1975).

[5] G. E. Brown and M. Rho, Phys. Lett. 82B, 177 (1979).
[6] G. E. Brown, M. Rho, and V. Vento, Phys. Lett. 84B, 383

(1979).
[7] V. Vento, M. Rho, E. M. Nyman, J. H. Jun, and G. E.

Brown, Nucl. Phys. A345, 413 (1980).
[8] A. W. Thomas, Adv. Nucl. Phys. 13, 1 (1984).
[9] A. Hosaka, H. Toki, and W. Weise, Nucl. Phys. A506, 501

(1990).
[10] Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345

(1961); 124, 246 (1961); U. Vogl and W. Weise, Prog.
Part. Nucl. Phys. 27, 195 (1991); S. P. Klevansky, Rev.
Mod. Phys. 64, 649 (1992); T. Hatsuda and T. Kunihiro,
Phys. Rep. 247, 221 (1994).

[11] K. A. Milton, Phys. Lett. 104B, 49 (1981).
[12] K. Johnson, MIT Report No. CTP 1101, 1983.

[13] T. Kunihiro, Book of Abstracts I (Panic, Heidelberg,
1984), p. B41.

[14] T. Kunihiro, Soryushiron Kenkyu, 68, C26 (1983).
[15] I. Zahed, A. Wirzba, and U-G. Meissner, Ann. Phys.

(N.Y.) 165, 406 (1985).
[16] N. I. Kochelev, Sov. J. Nucl. Phys. 41, 291 (1985).
[17] A. E. Dorokhov, Yu. A. Zubov, and N. I. Kochelev, Sov. J.

Part. Nucl. 23, 522 (1992).
[18] M. C. Birse and M. K. Banerjee, Phys. Lett. 136B, 284

(1984).
[19] A. Manohar and H. Georgi, Nucl. Phys. B234, 189

(1984).
[20] T. Hatsuda and T. Kunihiro, Prog. Theor. Phys. 74, 765

(1985).
[21] D. Bak and H. U. Yee, Phys. Rev. D 71, 046003 (2005).
[22] O. Kiriyama and A. Hosaka, Phys. Rev. D 67, 085010

(2003).
[23] S. Yasui, A. Hosaka, and H. Toki, Phys. Rev. D 71, 074009

(2005).
[24] S. Yasui and A. Hosaka, Int. J. Mod. Phys. E 15, 595

(2006).
[25] S. Yasui and A. Hosaka, Phys. Rev. D 74, 054036 (2006).
[26] S. Yasui, Phys. Rev. D 74, 114003 (2006).

QUARK CONDENSATES IN THE CHIRAL BAG WITH THE . . . PHYSICAL REVIEW D 77, 054007 (2008)

054007-9



[27] G. E. Brown and M. Rho, Comments Nucl. Part. Phys. 18,
1 (1988).

[28] A. Hosaka and H. Toki, Prog. Theor. Phys. Suppl. 109, 137
(1992).

[29] G. E. Brown, A. D. Jackson, M. Rho, and V. Vento, Phys.
Lett. 140B, 285 (1984).

[30] A. Hosaka and H. Toki, Phys. Lett. 167B, 153 (1986).
[31] P. J. Mulders, Phys. Rev. D 30, 1073 (1984).
[32] A. Hosaka and H. Toki, Phys. Rep. 277, 65 (1996).
[33] A. Hosaka and H. Toki, Quarks, Baryons and Chiral

Symmetry (World Scientific, Singapore, 2001).
[34] J. Goldstone and R. L. Jaffe, Phys. Rev. Lett. 51, 1518

(1983).
[35] I. Zahed, U-G. Meissner, and A. Wirzba, Phys. Lett. 145B,

117 (1984).

[36] E. Farhi, N. Graham, R. L. Jaffe, and H. Weigel, Nucl.
Phys. B595, 536 (2001).

[37] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[38] I. Zahed, Phys. Rev. D 30, 2221 (1984).
[39] I. Zahed and D. Klabucar, Phys. Rev. D 30, 2647 (1984).
[40] T. H. R. Skyrme, Proc. R. Soc. A 260, 127 (1961).
[41] G. S. Adkins, C. P. Nappi, and E. Witten, Nucl. Phys.

B228, 552 (1983).
[42] I. Zahed and G. E. Brown, Phys. Rep. 142, 1 (1986).
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