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We classify �QCD=mb power corrections to nonleptonic B! M1M2 decays, where M1;2 are charmless
nonisosinglet mesons. Using recent developments in soft-collinear effective theory, we prove that the
leading contributions to annihilation amplitudes of order �s�mb��QCD=mb are real. The leading annihi-
lation amplitudes depend on twist-2 and twist-3 three-parton distributions. A complex nonperturbative
parameter from annihilation first appears at O��2

s�
�����������
�mb

p
��QCD=mb�. ‘‘Chirally enhanced’’ contributions

are also factorizable and real at lowest order. Thus, incalculable strong phases are suppressed in
annihilation amplitudes, unless the �s�

�����������
�mb

p
� expansion breaks down. Modeling the distribution

functions, we find that �11� 9�% and �15� 11�% of the absolute values of the measured �B0 !
K��� and B� ! K�K0 penguin amplitudes come from annihilation. This is consistent with the expected
size of power corrections.
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I. INTRODUCTION

Nonleptonic charmless B decays are important probes of
the standard model (SM). They are sensitive to the CP
violating phase � (or �) via the interference of tree and
penguin contributions, and to possible new physics that
could modify the penguin amplitudes. They also provide a
powerful laboratory to study strong interactions, the under-
standing of which is crucial if one is to claim sensitivity to
new physics in these decays.

The theory of nonleptonic B decays underwent impor-
tant progress in the last few years. Factorization theorems
for B! MM0 decays have been proven to all orders in �s
at leading order in �=mb, for decays when M is a light
(charmless) meson and M0 is either charmed or charmless
[1–5]. Here ���QCD � 500 MeV denotes a typical had-
ronic scale. An important difference between the various
approaches to making predictions for the charmless B!
M1M2 decay rates [2,5–13] is how certain O��=mb� power
suppressed corrections are treated. In particular, it was
observed that so-called annihilation diagrams (as in
Fig. 2) give rise to divergent convolution integrals if one
attempts calculating them using conventional factorization
techniques [7]. In the KLS, or perturbative QCD (pQCD),
approach [7], these are rendered finite by k? dependences,
which effectively cut off the endpoints of the meson dis-
tribution functions. KLS found large imaginary parts from
the jet scale,

����������
mb�

p
, from propagators via Im�xm2

b � k
2
? �

i���1 	 ����xm2
b � k

2
?� [14]. They also found that for

the physical value of mb the power suppression of these
terms relative to the leading contributions was not very
significant. In the BBNS, or QCD factorization (QCDF),
approach [2,10,11], the divergent convolutions are inter-
preted as signs of infrared sensitive contributions, and are
modeled by complex parameters, XA 	

R
1
0 dy=y 	

�1� �Aei’A� ln�mB=��, with �A 
 1 and an unrestricted
strong phase ’A. In Ref. [15] annihilation diagrams were
investigated in the soft-collinear effective theory (SCET)
[16] and parametrized by a complex amplitude. When
annihilation is considered in SU�3� flavor analyses, a com-
plex parameter is also used [17]. In the absence of a
factorization theorem for annihilation contributions, a di-
mensional analysis based parametrization with �=mb mag-
nitude and unrestricted strong phases is a reasonable way
of estimating the uncertainty. In order not to introduce
model dependent correlations, a new parameter could be
used for each independent channel.

It was recently shown by Manohar and Stewart [18] that
properly separating the physics at different momentum
scales removes the divergences, giving well-defined results
for convolution integrals through a new type of factoriza-
tion that separates modes by their invariant mass and
rapidity. The analysis involves a minimal subtraction
with the zero-bin method to avoid double counting rapidity
regions, and with the regulation and subtraction of diver-
gences for large p� and p� momenta that behave like
ultraviolet divergences. Additional subtractions would cor-
respond to scheme dependent terms, so the minimal sub-
traction is the usual and simplest choice. We refer to this as
MS factorization.1 In this paper we classify annihilation
contributions to B! M1M2 decays and demonstrate how
this rapidity factorization works for the leading terms of
order �s�mb��=mb. These leading order annihilation con-
tributions are real despite the presence of endpoint diver-
gences. We also classify which terms can involve a
nonperturbative complex hadronic parameter, and show
that they first show up for annihilation at higher order in
perturbation theory, O��2

s�
����������
mb�

p
��=mb�.

1Over the objection of one of the authors.
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Our analysis demonstrates that, while certain annihila-
tion contributions are only sensitive to the hard short-
distance scale �2 �m2

b (local annihilation), there exist
other annihilation contributions that start at the same order
in �s and 1=mb and are sensitive to the intermediate scale
�2 �mb� (hard-collinear annihilation terms). The lead-
ing local annihilation terms involve fB and a modified type
of twist-2 distribution functions, while the leading hard-
collinear terms have twist-3 meson distributions. In this
work we perform matching calculations for the two-body
distributions that require rapidity factorization. The calcu-
lation of the leading amplitude involving the three-body
functions is given in a separate publication [19]; however,
we review the numerical results here.

An interesting set of power corrections are those pro-
portional to �P, where �� 	 m2

�=�mu �md� and �K 	
m2
K=�mu �ms� [20]. For kaons and pions �P � 2 GeV, so

corrections proportional to �P=mb can be sizable, and
were labeled ‘‘chirally enhanced’’ in Refs. [2,10]. In the
chiral limit �P / ��, where �� is the chiral symmetry
breaking scale, so the enhancement is not parametric, and
comes from the fact that �� >�QCD. In the BBNS ap-
proach these �2=m2

b annihilation power corrections are
included along with the leading order terms, and when
they multiply divergent convolutions they are described
by complex parameters. Below we show that, much like the
lowest order annihilation contributions, these terms are
also real and factorizable.

In Sec. II we review the leading order factorization
theorem, and classify power corrections to B! M1M2,
with a focus on annihilation amplitudes. In Sec. III a
factorization theorem is derived for local annihilation am-
plitudes at order �=mb for final states not involving iso-
singlets [given in Eq. (23)]. These amplitudes start at
O��s�mb�� and involve fB and a modified type of twist-2
meson distributions. The extension to chirally enhanced
local annihilation terms is considered in Sec. IV. In Sec. V
we study annihilation amplitudes from time-ordered prod-
ucts, and classify complex contributions generated at the
hard scale mb, the intermediate scale

����������
mb�

p
, and the non-

perturbative scale �. Our results give absolute predictions
for the annihilation amplitudes in B! PP, PV, VV chan-
nels, given the meson distribution functions as inputs,
which are studied in Sec. VI. This section also discusses
the implications of our results for models of annihilation
used in the literature, and a numerical analysis of the
annihilation amplitudes in �B! K� and �B! K �K. The
Appendix gives the derivation of a two-dimensional con-
volution formula with overlapping zero-bin subtractions.

II. ANNIHILATION CONTRIBUTIONS IN SCET

We use M to denote a charmless pseudoscalar or vector
meson ��;K; �; . . .�. The relevant scales in B! M1M2

decays are mW , mb, E � mB=2, mc, the jet scale
��������
E�
p

,
and the nonperturbative scale �. Here E is the energy of

the light mesons, which is much greater than their masses,
mM1;2

��. To simplify notation, we denote by mb here-
after the expansion in all hard scales, fmb; E;mcg. The
decays B! M1M2 are mediated by the weak �B 	 1
effective Hamiltonian, which has �S 	 0 terms for �b!
�dq1 �q2 transitions and �S 	 1 terms for �b! �sq1 �q2. For
�S 	 0 it reads

 HW 	
GF���

2
p

X
p	u;c

VpbV
�
pd

�
C1O

p
1 � C2O

p
2 �

X10;7�;8g

i	3

CiOi

�
;

(1)

where the operators are

 

Ou
1 	 � �ub�V�A� �du�V�A;

Ou
2 	 � �u	b��V�A� �d�u	�V�A;

Oc
1 	 � �cb�V�A� �dc�V�A;

Oc
2 	 � �c	b��V�A� �d�c	�V�A;

O3 	
X
q0
� �db�V�A� �q0q0�V�A;

O4 	
X
q0
� �d	b��V�A� �q

0
�q
0
	�V�A;

O5 	
X
q0
� �db�V�A� �q0q0�V�A;

O6 	
X
q0
� �d	b��V�A� �q0�q0	�V�A;

O7 	
X
q0

3eq0

2
� �db�V�A� �q

0q0�V�A;

O8 	
X
q0

3eq0

2
� �d	b��V�A� �q0�q0	�V�A;

O9 	
X
q0

3eq0

2
� �db�V�A� �q

0q0�V�A;

O10 	
X
q0

3eq0

2
� �d	b��V�A� �q0�q0	�V�A;

O7� 	 �
e

8�2 mb
�d
��F���1� �5�b;

O8g 	 �
g

8�2 mb
�d
��Ga

��T
a�1� �5�b: (2)

Here Ou
1;2 and Oc

1;2 are current-current operators, � and 	
are color indices, O3–6 are penguin operators, and O7–10

are electroweak penguin operators, with a sum over q0 	
u, d, s, c, b flavors, and electric charges eq0 . Results for
�S 	 1 transitions are obtained by replacing d! s in
Eqs. (1) and (2), and likewise in the equations below.
The coefficients in Eq. (1) are known at next-to-leading-
log (NLL) order [21] (we have Op

1 $ Op
2 relative to [21]).

In the naive dimensional regularization (NDR) scheme,
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taking �s�mZ� 	 0:118 and mb 	 4:8 GeV,
 

C1�10�mb� 	 f1:080; � 0:177; 0:011;

� 0:033; 0:010; � 0:040; 4:9
 10�4;

4:6
 10�4; � 9:8
 10�3; 1:9
 10�3g: (3)

To define what we mean by annihilation amplitudes we
use the contraction amplitudes A1, A2, P3, PGIM

3 in the full
electroweak theory from Ref. [22] (which thus includes
penguin annihilation). These amplitudes are scheme and
scale independent and correspond to Feynman diagrams
with a Wick contraction between the spectator flavor in the
initial state and a quark in the operators Oi. Using SCET
these annihilation amplitudes can be proven to be sup-
pressed by �=mb to all orders in �s [5]. These contribu-
tions differ from emission-annihilation amplitudes, EA1

and EA2, which involve at least one isosinglet meson. As
demonstrated in Refs. [11,23], EA1;2 occur at leading order
in the power expansion. We focus on isodoublet and iso-
triplet final states, so ignore the EA1;2 amplitudes hereafter.

To separate the mass scales occurring below mb, we
need to match HW onto operators in SCET. The nonper-
turbative degrees of freedom are soft quarks and gluons for
the B meson, n-collinear quarks and gluons for one light
meson, and �n-collinear fields for the other light meson, as
defined in [24]. Expanding in �=mb gives
 

hM1M2jHW jBi 	 A�0� � Ac �c � A
�1�
ann � A

�1�
rest � . . .

	
GFmBfM1

fM2
fB���

2
p

�0

�Â�0� � Âc �c � Â
�1�
ann

� Â�1�rest � . . .�: (4)

In the second and third lines we switched to dimensionless
amplitudes Â by pulling out a prefactor with the correct
�5=2m1=2

b scaling. Here �0 	 500 MeV represents a
B-meson scale that is O��QCD�. Taking � 	 �=mb we
have the leading order amplitude Â�0� 	 O��0�, and the
subleading amplitude Â�1� 	 Â�1�ann � Â

�1�
rest 	 O��1�, which

we have split into the annihilation amplitude Â�1�ann and the
remainder Â�1�rest. The amplitude Âc �c in Eq. (4) denotes
contributions from long-distance charm effects in all am-
plitudes, while perturbative charm loops contribute in the
amplitudes A�0� and A�1�.2

There are two formally large scales,mb �
����������
mb�

p
� �,

which we will refer to as the hard scale �h �mb, and
intermediate or hard-collinear scale �i �

����������
mb�

p
. These

scales can be integrated out one by one [27] with effective
theories SCETI and SCETII. Integrating out mb requires

matching theOi onto a series of operators in SCETI,Q�j� �

j where the SCETI power counting parameter 
 	
�1=2 	

�������������
�=mb

p
. To obtain contributions to B! M1M2,

we require an odd number of ultrasoft (usoft) light quarks
qus, two or more n-collinear fields, and two or more
�n-collinear fields, where n2 	 �n2 	 0.

We briefly review results from Refs. [4,5] for the leading
amplitude A�0� for B! M1M2. Here we have weak opera-
tors Q�0�1d–6d � 


6, Q�1�1d–8d � 

7 with no qus’s, taken in

time-ordered products with a usoft-collinear quark
Lagrangian, L�j��q � 


j for j 	 1, 2, which has one qus.

We denote other subleading Lagrangians by L�j�, and list
the O�
7� and O�
8� time-ordered products for A�0� in
Table I. Matching these time-ordered products onto
SCETII gives the leading O��6� operators.3 When com-
bined with the ��7=2 from the states this yields a matrix
element of order �5=2, in agreement with the prefactor in
Eq. (4). Examples of the weak operators in SCETI are

 Q�0�1d 	 � �un;!1
6n�PLbv�� �d �n;!2

n6 PLu �n;!3
�;

Q�1�1d 	 � �un;!1
igB6 ?n;!4

PLbv�� �d �n;!2
n6 PLu �n;!3

�;
(5)

where other Q�0;1�id have different flavor structures. The
‘‘quark’’ fields with subscripts n and �n contain a collinear
quark field and Wilson line with large momenta labels !i,
such as

 

�u n;! 	 � ���u�n Wn��!� �n � P y��: (6)

Here ��n creates an n-collinear quark, or annihilates an
antiquark, Wn 	 W� �n � An� is the standard SCET collinear
Wilson line built from the �n component of n-collinear
gluons, �n � P y is an operator that picks out the large �n �
p label momentum of the fields it acts on [16], and
igB?�n;! 	 �1= �PWyn �i �n �Dc;n; iD

�
n;?�Wn��!� �P y��. The

bv is an HQET b-quark field.
The leading order factorization theorem from SCETI is

[5]
 

A�0� 	
GFm2

BfM1���
2
p

�Z 1

0
dudzT1J�u; z��

BM2
J �z��M1�u�

�
Z 1

0
duT1� �u��BM2�M1�u�

�
� fM1 $ M2g: (7)

Here T1J and T1� contain contributions from the hard
scales mb, and �M is the nonperturbative twist-2 light-
cone distribution function. The terms �BM and �BMJ �z�
contain contributions from both the intermediate scale
�i �

����������
mb�

p
and the scale �, and are defined by SCETI

matrix elements between B and M states. In particular,
2Âc �c has the c fields in Oc

1;2 and O3–10 replaced by non-
relativistic fields [5], and is suppressed by at least their relative
velocity, v� 0:3–0:5. The possibility of large nonperturbative
charm loop contributions was first discussed in Refs. [12,13],
and the size of these terms remains controversial [25,26].

3Recall that, to derive the �6, we note that 
8 	 �4, and
changing the scaling 
! � for four collinear quark fields in
matching SCETI ! SCETII gives the extra �2. The 
7 term
gains an extra 
 from the change in scaling to a collinear D?.
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their scaling is

 �BM�E�; �BMJ �z; E� �
�

�

mb

�
3=2
��s��i� � . . .�; (8)

explaining the �s��i� entry in the A�0� rows of Table I. The
�BM functions occur in both semileptonic decays and non-
leptonic decays (E � mB=2). Integrating out the scale����������
mb�

p
to all orders in �s by matching onto SCETII gives

[5,18]
 

�BMJ �z;E�	
fBfMmB

4E2



Z
dx
Z
dk�J�z;x;k�;E��M�x��B

��k
��;

�BM�E�	
fBfMmB

4E2

X
a;b

Z
dx1dx2

Z
dk�1 dk

�
2 Jab�xi;k

�
j ;E�


�M
a �xi��B

b �k
�
j �; (9)

where the �M
a and �B

b ’s are twist-2 and twist-3, two- and
three-parton distributions, and we pulled out fBfM for
convenience. The jet functions J, Jab occur due to the
time-ordered product structure in SCETI and contain con-
tributions from the scale

����������
mb�

p
. Using the result for �BMJ at

order �s��i� this result agrees with Ref. [2] (where ex-
pressing �BM in terms of the full theory form factor gen-
erates an additional �BMJ term). The result for �BM in
Eq. (9) was derived in Ref. [18] and required the MS
factorization with zero-bin subtractions. The set of con-
tributing functions (indices a, b) is determined by the
complete set of SCETII operators derived in Ref. [28].

The power counting in �s��i� for the SCETI functions
�BM and �BMJ agrees with that derived in pQCD [29].

Next we classify the contributions to the power sup-
pressed B! M1M2 amplitudes A�1�. In SCETI we need
to study operators and time-ordered products with scaling
up to O�
10�. These have one or three light usoft quark
fields. The relevant terms are listed in Table I, whereQ�j�i �

6�j and our notation for the Lagrangians up to second
order is taken from Ref. [30]. All the listed terms have an
odd number of soft light quark fields. A basis for the Q�4�i
operators is constructed in Sec. III, for theQ�2�i L�1��q terms in

Ref. [19], and for the Q�5�i terms in Sec. IV. A basis is not
yet known for the remaining Q�2�i operators, for Q�3�i , and
for the L�3;4��q and L�3� Lagrangians, but they do not con-
tribute at O��s�, and only general properties of these
operators are required for our analysis. Dashes in Table I
indicate terms that are absent to all orders in �s for reasons
to be explained below. To determine the perturbative order
listed in the table, we count the number of hard �s��h�
factors from the matching onto SCETI, and the number of
intermediate scale �s��i� factors from matching onto
SCETII. The ‘‘Dependence in SCETII’’ column lists the
nonperturbative quantities that appear in the factorization
theorem for the leading order result described above, and
from the factorization theorems we will derive in Secs. III
and IV below. The ‘‘Properties’’ column lists whether the
nonperturbative distribution functions are complex or real
as described in detail in Sec. V, and has implications for
strong phase information in the power corrections. The
results in Table I imply the following power counting

TABLE I. All contributions to B! M1M2 amplitudes at leading order (A�0�) and at order �=mb (A�1�), besides Ac �c. In the first A�1�

row, j0 � j�
P
ki 
 4. The second column lists all SCETI time-ordered products that can contribute to the amplitude at zeroth and

first order in the power counting, as well as the local chirally enhanced operator that contributes at order �2=m2
b. The perturbative

expansions of these contributions start with factors of �s listed in the columns labeled ‘‘Peturbative order.’’ In these columns, a factor
of 1=� indicates a perturbative loop and ‘‘–’’ means that the time-ordered products first contribute at order �3

s or not at all. The
‘‘Dependence in SCETII’’ column lists the known dependence on nonperturbative parameters, with . . . referring to nonperturbative
inputs that have not yet been classified. The ‘‘Properties’’ column indicates whether at least one of the nonperturbative parameters is
complex.

Order in �=mb Time-ordered products in SCETI Perturbative order Dependence in SCETII Properties
Annihilation Other

A�0� Q�0�i L�1��q , Q�0�i L�2��q , Q�0�i L�1��qL
�1� – �s��i� �B

i �
M
j �

M0 Real

Q�1�i L�1��q – �s��i� �B
��

M�M0 Real

A�1� Q�j
0	0;1�

i L�j
4�
�q �iL

�ki� – �s��i� � � � Complex

Q�4�i �s��h� – fB�
M�M0 Real

Q�2�i L�1��q �s��h� �s��i� �B�3M�M0 Real

Q�0�i �L
�1�
�q�

3, Q�0�i �L
�1�
�q�

3L�1� �2
s��i�=� �2

s ��i�=� Sj�k
�
1;2; k

�
3 �; . . . Complex

Q�0�i �L
�1�
�q�

2L�2��q , Q�1�i �L
�1�
�q�

3 �2
s��i�=� �2

s ��i�=� Sj�k�1;2; k
�
3 �; . . . Complex

Q�2�i �L
�1�
�q�

2 – �2
s ��i�=� � � � Complex

Q�2�i L�1��qL
�1�, Q�2�i L�2��q , Q�3�i L�1��q �s��h��s��i�=� �s��i� � � � Complex

A�2� Q�5�i �s��h� – fB�M�
M
pp�

M0 Real
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(for amplitudes not involving Ac �c),
 

Re�Â�0����s��i�; Im�Â�0����s��i��s��h�;

Re�Â�1�ann����s��h���
2
s��i��

�

mb
; Im�Â�1�ann���

2
s��i�

�

mb
;

Re�Â�1�rest���s��i�
�

mb
; Im�Â�1�rest���s��i�

�

mb
: (10)

To facilitate the discussion we divide the annihilation
amplitudes into local annihilation contributions, A�1;2�Lann

from the operatorsQ�4;5�i that are insensitive to the jet scale,
and into the remaining annihilation amplitudes, A�1�Tann,
which are from time-ordered products in SCETI. Thus,

 A�1�ann 	 A�1�Lann � A
�1�
Tann: (11)

In the literature [7,8,10,11,31] only local annihilation
amplitudes have been studied, and their matrix elements
were parametrized by complex amplitudes. In SCET, Q�4�i
is a six-quark operator with one usoft quark, such as

 � �ds�sbv�� �u �n;!2
� �nq �n;!3

�� �qn;!1
�nun;!4

�; (12)

where other Q�4�i operators have different flavor structures.
To derive the power counting for this operator, start with
Q�0� � 
6, then note that switching a collinear quark to a
usoft quark costs 
2, and adding a �n and � �n from a hard
gluon also costs 
2. This yields Q�4�i �O��s��h�
10�. In
matching onto SCETII we simply replace Q�4�i ! O�1L�i �
�7, with the operator having an identical form. SCETI

operators Q�4�i that do not have the form in Eq. (12) exist,

but they must be taken in time-ordered products with a
subleading Lagrangian and so do not contribute to A�1�. For
this reason all local operator contributions to A�1� contrib-
ute in the annihilation terms and not in A�1�rest. Since the
matching onto O�1L�i is local, it appears as in Fig. 1(a) with
an �s��h�, but with no jet function. Thus this contribution
to A�1�ann is of order �s��h�=�s��i��=mb relative to A�0�. In
Sec. III we construct a complete basis ofQ�4�i operators and
show that their matrix elements are factorizable in SCET at
any order in perturbation theory, and do not generate strong
phases at O��s��h��. We prove a similar theorem for
chirally enhanced terms in the set Q�5�i in Sec. IV.

The annihilation amplitudes and other �=mb suppressed
amplitudes also occur through time-ordered products. Two
examples are shown by Figs. 1(b) and 1(c). A subset of
these terms were considered in Ref. [15], including the
diagram in Fig. 1(c), and the phenomenological impact of
these power corrections was studied. So far, no attempt has
been made to work out the strong phase properties and
perturbative orders in �s of the time-ordered products, a
task we take up here. A complete classification of time-
ordered products for the leading power corrections to B!
M1M2 is listed in Table I. A subset of these terms contrib-
ute to the annihilation amplitudes. To see which, we note
that terms with a Q�0;1�i and only one L�1��q do not contribute
to annihilation at either leading or next-to-leading order;
the weak operator is not high enough order in 
 to contain
an extra n� �n pair, and there are not enough L�q’s to
produce the pair through a soft quark exchange. To rule out
these terms it is important that we are not considering

x ~ 1
mb

µ M1

M2

B

ζ ~ η0

ζ ~ η−2

ζ ~ η2

(a)
x ~ 1

mb

2 M1

M2

B

x ~ 1
mb

2
Λ

∆

∆

2
(b)

x ~ 1
mb

µ

M1

M2

B

(c) Λ( )1/2

FIG. 1 (color online). Three types of factorization contributions to annihilation amplitudes which are the same order in � 	
�QCD=mb. (a) shows Q�4�i which has � 1 hard gluon and factorizes at the scale mb. The rapidity parameter, � 	 p�=p�, controls the
MS factorization between soft momenta (B), n-collinear momenta (M2), and �n-collinear momenta (M1). (b) shows the time-ordered
product Q�2�i L�1��q , which involves factorization at mb and

�����������
mb�

p
. (c) shows the time-ordered product Q�1�i �L

�1�
�q�

3, which factorizes at

the scale
�����������
mb�

p
and does not need a hard gluon. Graphs (a) and (b) are of order �s��h�, while (c) is �s��i�

2.
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isosinglet final states, which receive emission-annihilation
contributions already at leading order. The termQ�2�i �L

�1�
�q�

2

does not contribute to annihilation because we find that all
annihilation-type contractions are further power sup-
pressed when matched onto SCETII.

Time-ordered products with either a Q�j�2� or with three
L�q’s do contribute to annihilation. Examples of these two
types are shown in Figs. 1(b) and 1(c). Compared to the
local annihilation amplitude from Q�4�i , only the time-
ordered product Q�2�L�1��q contributes at the same order in
�s. To demonstrate this, note that for terms with three
L�q’s all graphs have at least two contracted hard-collinear
gluons and so are O��2

s��i��. Graphs with a Q�2;3� start
with one �s��h�, and will also have an additional �s��i�
from a hard-collinear gluon, unless it remains uncontracted
in matching onto SCETII. The uncontracted gluon costs an
additional 
 in the matching onto SCETII, so only the time-
ordered product Q�2�L�1��q can have a leading, O��s�mb��,
contribution. Figure 1(b) gives an example of a diagram
occurring from this time-ordered product. The resulting
amplitude involves the three-parton distribution, �3M2

. As
shown in Ref. [19] it also involves the twist-2 distribution
��B , and its leading order convolution integrals converge.

The time-ordered products with three L�q’s are sup-

pressed by �2
s��i�=�s��h� relative to Q�4�i , and can be

proven to involve a complex nonperturbative function, as
labeled in Table I [an example is shown in Fig. 1(c)]. Thus,
if perturbation theory converges rapidly at the scale �i,
then complex annihilation amplitudes are highly sup-
pressed. If perturbation theory at �i is poorly convergent,
then the time-ordered product contribution could be im-
portant numerically, comparable or even larger than the
leading local annihilation amplitude from Q�4�i . Local an-
nihilation contributions are discussed in detail in Secs. III
and IV, while strong phase properties of the amplitudes and
the time-ordered product contributions are taken up in
Sec. V.

III. LOCAL SIX-QUARK OPERATORS IN SCETII

In this section we construct a complete basis of O�1L�i

operators in SCETII (the Q�4�i terms in SCETI) and derive a
factorization theorem for their contributions to B!
M1M2. To find a complete basis we consider color, spin,
and flavor structures that could appear when matching at
any order in �s. Color is simple; the six-quark operator
must have �s � � �n � �n 	 1 � 1 � 1. Although operators
with a TA in one or more bilinears are allowed at this order,
with the factorization properties of the leading Lagrangians
and hMnM �njOjBsi 	 h0j . . . jBsihM �nj . . . j0ihMnj . . . j0i,
the terms with TA’s give a vanishing matrix element be-
tween the color singlet hadronic states [1].

For spin we start by looking at chirality which is pre-
served by the matching atmb. Since there is no jet function,

the soft field that interpolates for the spectator quark in the
B meson must come from the original operator in HW .
Fierz identities allow us to choose a basis in which this
spectator field is always in a bilinear with the b-quark field.
To be definite, we take the other � field from HW to go in
the �n direction (in the SCET Hamiltonian we sum over
n$ �n). This implies that the pair-produced quark is in the
n direction. For O1–4;9;10 the allowed chiral structures
induced in SCET by matching are �LH��LL��LL� and
�LH��LR��RL� where L and R correspond to the handed-
ness for the light quarks in the bilinears in the order shown
in Eq. (12). We cannot assign a handedness to the heavy
quark denoted here by H. For O5–8 we can have �LH�

�RL��LR�, �LH��RR��RR�, �RH��LL��LR�, and �RH�

�LR��RR�. A complete basis of Dirac structures for the
individual bilinears is

 �s 	 ��; � �n 	 fn6 ; n6 ��?g; �n 	 f6n� ; 6n��
�
?g: (13)

Structures with �5 are not needed because we have speci-
fied the handedness. Here 6n���? and n6 ��? connect left- and
right-handed quarks, while 6n� and n6 connect quarks of the
same handedness. From the basis in Eq. (13) we must
construct an overall scalar using the tensors v�, n�, �n�,
g��? , and ���? � ����	 �n�n	=2. We take �0123 	 1, and
work in a frame where v�? 	 0 and n � v 	 �n � v 	 1,
which makes the set fn; �n; vg redundant. For reasons that
will become apparent, we pick v� and �n� � �n�� as our
basis in this section. The definite handedness allows us to
turn any contraction involving i���? into a contraction with
g��? , for example, i���?

��Ln 6n��?� �Rn 	 ��Ln 6n��
�
?�5�Rn 	

��Ln 6n��
�
?�

R
n . The �LH��LR��RL� and �LH��RL��LR� struc-

tures can be ruled out since

 n6 ��?PR �6n��
?
�PL 	 n6 ��?PL � 6n��

?
�PR 	 0: (14)

Noting that v6 hv 	 hv this leaves four allowed spin struc-
tures,
 

�s � � �n � �n 	 f1 � n6 � 6n� ; �6n� � n6 � � n6 � 6n� ;

��? � n6 � 6n��
?
� ; ��? � n6 �

?
� � 6n� g: (15)

The last two structures have �qs�
�
?bv and vanish identically

for B-meson decays (they would contribute for B�’s).
Furthermore, the local annihilation operators are not sen-
sitive to the k� momentum of the soft spectator quark.
Thus in taking the matrix element we can use

 h0j �qs�5hvjBi 	 �imBfB; h0j �qs�5�6n� � n6 �hvjBi 	 0:

(16)

Here fB is the decay constant in the heavy quark limit. The
fact that we can match onto a basis of local SCET operators
of the form in Eq. (12) demonstrates to all orders in �s that
the local annihilation contributions are proportional to fB.
Using Eq. (16) the second Dirac structure in Eq. (15) is
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eliminated, so we do not list operators with �6n� � n6 � in the
soft bilinears below.

Next we consider the allowed flavor structures. From the
operators O1;2 we have � �ub�� �dq�� �qu�, � �db�� �uq�� �qu�, from
O1–6;7�;8g we have � �db�� �q0q�� �qq0�, � �q0b�� �dq�� �qq0�, and
O7–10 give a combination of these. Here q0 �q0 appeared in
the weak operator, while q �q is the pair produced in the
matching onto SCET. Thus a basis for B-decay operators is

 O�1L�1d 	
2

m3
b

X
q

� �dsPRbv�� �u �n;!2
n6 PLq �n;!3

�� �qn;!1
6n�PLun;!4

�;

O�1L�2d 	
2

m3
b

X
q

� �usPRbv�� �d �n;!2
n6 PLq �n;!3

�� �qn;!1
6n�PLun;!4

�;

O�1L�3d 	
2

m3
b

X
q;q0
� �dsPRbv�� �q0�n;!2

n6 PLq �n;!3
�� �qn;!1

6n�PLq0n;!4
�;

O�1L�4d 	
2

m3
b

X
q;q0
� �q0sPRbv�� �d �n;!2

n6 PLq �n;!3
�� �qn;!1

6n�PLq
0
n;!4
�;

O�1L�5d 	
2

m3
b

X
q

� �dsPRbv�� �u �n;!2
n6 PRq �n;!3

�� �qn;!1
6n�PRun;!4

�;

O�1L�6d 	
2

m3
b

X
q

� �usPRbv�� �d �n;!2
n6 PRq �n;!3

�� �qn;!1
6n�PRun;!4

�;

O�1L�7d 	
2

m3
b

X
q;q0
� �dsPRbv�� �q0�n;!2

n6 PRq �n;!3
�� �qn;!1

6n�PRq0n;!4
�;

O�1L�8d 	
2

m3
b

X
q;q0
� �q0sPRbv�� �d �n;!2

n6 PRq �n;!3
�� �qn;!1

6n�PRq0n;!4
�:

(17)

Here we integrated out c and b quarks in the sum over
flavors, so the remaining sums are over q 	 u, d, s and
q0 	 u, d, s. For the �S 	 0 effective Hamiltonian with
Wilson coefficients a�d�i �!j� we use the notation

 HW 	
4GF���

2
p

X
n; �n

Z
�d!1d!2d!3d!4�

X
i	1�8

adi �!j�O
�1L�
id �!j�:

(18)

To pull the Cabibbo-Kobayashi-Maskawa (CKM) struc-
tures out of the SCET Wilson coefficients we write

 adi �!j� 	

�

�d�u aiu�!j� � 


�d�
c aic�!j� �i 	 1; 2; 3; 4�;

�
�d�u � 

�d�
c �ai�!j� �i 	 5; 6; 7; 8�;

(19)

where 
�d�p 	 VpbV
�
pd. Identical definitions for asi are made

by replacing 
�d�u ! 
�s�u and 
�d�c ! 
�s�c . For i 	 5, 6, 7, 8
only penguin operators contribute.

Next we take the B! M1M2 matrix element ofHW . The
factorization properties of SCET yield

 

hM1M2jO
�1L�
1d jBi 	

2

m3
b

X
q

hM1j �u �n;!2
n6 PLq �n;!3

j0i


 hM2j �qn;!1
6n�PLun;!4

j0i


 h0j �dsPRbvjBi � fM1 $ M2g; (20)

with similar results for the other O�1L�id terms. Here the
fM1 $ M2g indicates terms where the flavor quantum
numbers of the M2 state match those of the �n-collinear
operator. The matrix elements in Eq. (20) are zero for
transversely polarized vector mesons in agreement with
the helicity counting in Ref. [31]. Equation (20) can be
evaluated using Eq. (16) and
 

hPn1
�p�j �q�f�n;! 6n�PL;Rq

�f0�
n;!0 j0i	

�ifP
2

cPff0�nn1


�� �n �p�!�!0��P�y�;

hVn1
�p;"�j �q�f�n;! 6n�PL;Rq

�f0�
n;!0 j0i	

ifVmV �n �"
2 �n �p

cVff0�nn1


�� �n �p�!�!0��Vk �y�:

(21)

Here f, f0 are flavor indices, �P�y� and �Vk �y� are the
twist-2 light-cone distribution functions for pseudoscalars
and vectors, y 	 != �n � p 	 !=mb, and cPff0 , cVff0 are
Clebsch-Gordan coefficients. For the M2 mesons, Pn2

and
Vn2

, we have the same equation with n$ �n, and y! x.
Since the PL;R only induce � signs in the pseudoscalar
matrix element, it is convenient to define

 ~a d1 	 ad1 � �a
d
5 ; ~ad2 	 ad2 � �a

d
6 ;

~ad3 	 ad3 � �a
d
7 ; ~ad4 	 ad4 � �a

d
8 ;

(22)

with similar definitions for ~asi . Here � 	 �1 for PP, VV,
and � 	 �1 for PV channels. Using these results, the
O��=mb� local annihilation amplitudes are
 

A�1�Lann�
�B! M1M2� 	 �

GFfBfM1
fM2���

2
p



Z 1

0
dxdyH�x; y��M1�y��M2�x�:

(23)

HereH�x; y� are perturbatively calculable hard coefficients
determined by the SCET Wilson coefficients ~ai�!j�.
Results for different final states are listed in Table II for
�B0 and B� decays, and in Table III for �Bs decays. Our
derivation of the local annihilation amplitude in Eq. (23) is
valid to all orders in �s, and provides a proof of factoriza-
tion for this term.

Matching at tree level involves computing the
O��s�mb�� graphs in Fig. 2 and comparing them with
matrix elements of the SCET operators Q�4�i . Doing so,
we find that the Wilson coefficients ai�x; y� are
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 a1u 	
CF��s��h�

N2
c

F�x; y�
�
C1 �

3

2
C10

�
; a1c 	

CF��s��h�

N2
c

F�x; y�
�
3

2
C10

�
;

a2u 	
CF��s��h�

N2
c

F�x; y�
�
C2 �

3

2
C9

�
; a2c 	

CF��s��h�

N2
c

F�x; y�
�
3

2
C9

�
;

a3u 	
CF��s��h�

N2
c

F�x; y�
�
C4 �

1

2
C10

�
; a3c 	

CF��s��h�

N2
c

F�x; y�
�
C4 �

1

2
C10

�
;

a4u 	
CF��s��h�

N2
c

F�x; y�
�
C3 �

1

2
C9

�
; a4c 	

CF��s��h�

N2
c

F�x; y�
�
C3 �

1

2
C9

�
;

a5 	
CF��s��h�

N2
c

F� �y; �x�
�
3

2
C8

�
; a6 	 0; a7 	

CF��s��h�

N2
c

F� �y; �x�
�
C6 �

1

2
C8

�
; a8 	 0;

(24)

where �h �mb, �x 	 1� x, �y 	 1� y, with quark mo-
mentum fractions x and y as defined in Eq. (21) and shown
in Fig. 2. The function F is

 F�x; y� 	
�

1

�x2y
�

1

y�x �y� 1�

�
�
�
d�����

0� �x�
y

; (25)

where the � notation and term involving the Wilson coef-
ficient d���� are discussed below. The function F� �y; �x�
will involve d����. Note that the coefficients a3u;3c;4u;4c;7;8
are polluted in the sense of Ref. [5], meaning that O��2

s�
matching results proportional to the large coefficients C1;2
could compete numerically. The others are not polluted:
a1u;2u involve C1;2 at O��s�, while a1c;2c;5;6 only get con-
tributions from electroweak penguins. Our results for the
diagrams in Fig. 2 agree with Refs. [7,10]. This includes

the appearance of the combinations of momentum frac-
tions in the functions F�x; y� and F� �y; �x�, up to
�-distribution and d-term. For later convenience we define
moment parameters which convolute the hard coefficients
with the meson distributions

TABLE III. Hard functions for �Bs decays for the annihilation amplitude A�1�Lann in Eq. (23).

M1M2 H�x; y�

��K����, ��K���� �~ad4�y; x�
�0K���0, �0K���0 1��

2
p ~ad4�y; x�

����, ����, ����, ���� �~as1�x; y� � ~as3�x; y� � ~as3�y; x�
�0�0, �0�0, �0�0 �12 ~as1�x; y� � ~as3�x; y�� � �x$ y�
K����K���� �~as1�x; y� � ~as4�y; x� � ~as3�x; y� � ~as3�y; x�
�K���0K���0 ~as3�x; y� � ~as3�y; x� � ~as4�y; x�

TABLE II. Hard functions for �B0 and B� decays for the annihilation amplitude A�1�Lann in
Eq. (23). For each pair of mesons in the table, the first is M1 and the second M2.

M1M2 H�x; y�

����, ����, ����, ���� �~ad1�x; y� � ~ad4�y; x� � ~ad3�x; y� � ~ad3�y; x�
���0, ���0, ���0, ��

k
�0
k

1��
2
p �~ad2�x; y� � ~ad4�x; y� � ~ad2�y; x� � ~ad4�y; x��

�0�0, �0�0, �0�0 �12 ~ad1�x; y� � ~ad3�x; y� �
1
2 ~ad4�x; y�� � �x$ y�

K����K���� �~ad1�x; y� � ~ad3�x; y� � ~ad3�y; x�
�K���0K���0 ~ad3�x; y� � ~ad3�y; x� � ~ad4�x; y�
K����K���0 ~ad2�x; y� � ~ad4�x; y�
�� �K���0, �� �K���0 ~as2�x; y� � ~as4�x; y�
�0 �K����, �0K���� � 1��

2
p �~as2�x; y� � ~as4�x; y��

�0 �K���0, �0 �K���0 1��
2
p ~as4�x; y�

��K����, ��K���� �~as4�x; y�

n

n(a) (b) (c) (d)

soft

x
x

y
y

FIG. 2. Tree-level annihilation graphs for B! M1M2 decays.
Here, soft, n, �n denote quarks that are soft, n-collinear, and
�n-collinear, respectively.
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 	M1M2
iu 	

Z 1

0
dxdy�aiu�x; y� � �ai�4�x; y���

M1�y��M2�x�;

	M1M2
ic 	

Z 1

0
dxdy�aic�x; y� � �ai�4�x; y���M1�y��M2�x�:

(26)

In Eq. (25) the subscript � denotes the fact that singular
terms in convolution integrals are finite in SCET due to the
MS factorization which involves convolution integrals
such as

 

X
x;x0�0

Z
dxrdx

0
r��1� x� x

0�
�M�x; x0; ��

�x2 ; (27)

where x�0� and x�0�r correspond to label and residual mo-
menta [18]. Implementing x � 0 and x0 � 0 in the MS-
factorization scheme requires zero-bin subtractions, and
divergences in the rapidity must also be regulated. The
�-function sets x0 	 1� x, so x0 � 0 enforces x � 1. With
the usual assumption that �M�x� vanishes at its endpoints
with a powerlike falloff slower than quadratic, only inte-
grals over 1= �x2 in F�x; y� and 1=y2 in F� �y; �x� require
special care,

 h �x�2iM 	
Z 1

0
dx
�M�x;��

� �x2��
;

hy�2iM 	
Z 1

0
dy
�M�x;��

�y2��
:

(28)

The resulting moments h �x�2iM and hy�2iM should be con-
sidered hadronic parameters, for which we use the minimal
subtraction scheme. Their value depends on� and �� and
are scheme dependent beyond the usual MS scheme for
�M. This can be viewed as a modification of the distribu-
tion function, �M�x;�� ! �M�x;�;���, where the x�2

moment of �M�x;�;��� converges. In order to derive a
result that makes it easy to find a model for these moments,
we follow Ref. [18] and assume there is no interference
between the rapidity renormalization and invariant mass
renormalization, which gives
 

h �x�2iM 	
Z 1

0
dx
�M�x;�� � �x�0M�1; ��

�x2

��0M�1; �� ln
�

�n � pM
��

�
;

hy�2iM 	
Z 1

0
dy
�M�y;�� � y�0M�0; ��

y2

��0M�0; �� ln
�
n � pM
��

�
: (29)

Here �0M�1� is generated by a zero-bin subtraction which
avoids double counting the region where �x! 0. When
�x! 0 the corresponding outgoing quark becomes soft,
and this contribution is taken into account by a time-
ordered product term in Table I. To obtain the renormalized

h �x�2iM result in Eq. (29) requires 1=�UV counterterms
which correspond to operators with the �n-collinear bilin-
ears in Eq. (17), � �u �n;!2

n6 �5q �n;!3
� etc., which can be written

as [18]

 Oct 	
@
@!3
� �� �nW�!2

n6 �5�W
y� �n�!3

��������!3!0
: (30)

The matrix element of these terms is taken prior to per-
forming the partial derivative and the limit !3 ! 0, and
gives �0M�1; ��. These terms do not have an !3 � 0 re-
striction, and consistency of the renormalization procedure
used to obtain Eq. (29) demands that the fields here are �n
collinear. An analogous set of terms are required for
�0M�0; ��. These terms are real at any scale, which follows
from the requirements discussed in Sec. V for an SCETII

operator to be able to generate a physical strong phase. The
dependences on�� in Eq. (29) are canceled by the leading
dependences on these scales, d���� 	 ln�p�M=��� � �
and d���� 	 ln�p�M=��� � �, which appeared in
Eq. (25). Here � can be fixed by a matching computation.
The d���� correspond to the renormalized coefficients of
the Oct, and must be included for consistency at this order
[32]. In the rough numerical analysis we do later on, we
will treat the contributions from these coefficients as part
of the uncertainty.

Note that in deriving the result in Eq. (25) we have
dropped i� factors from the propagators. If these terms
were kept, the second term in F�x; y� would be

 

1

�y� i���x �y� 1� i��
: (31)

The i�’s yield imaginary contributions with ��y� and
��x �y� 1�. They contribute for y 	 0 or for x 	 �y 	 1,
so these contributions occur in zero bins, which are ex-
cluded from the convolution integrals in the factorization
theorem we have derived with SCET. The zero bins corre-
spond to degrees of freedom that are soft, and including
these regions would induce a double counting, so the
correct factorization theorem in QCD does not include
them. Factors analogous to x � 0 and x0 � 0 in Eq. (27)
ensure that there is no contribution to the integral from any
zero-bin momentum, and we find that the �-function terms
give zero. This remains true for more singular distributions
yielding ��n��x�, and so also applies to the first term in
F�x; y�. Thus it is correct to drop the i� factors from the
start. This should be compared with the approach in KLS
where the i� factors generate a strong phase from the tree-
level diagrams from a k2

? dependent � function. In our
derivation any such k2

? imaginary terms could only occur
at higher orders in �=mb.

Thus at order �s��h� the lowest order annihilation fac-
torization theorem is determined by the convolutions
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Z 1

0
dxdyF�x; y��M1�y��M2�x�

	 h �x�2iM2hy�1iM1 � h�y�x �y� 1���1iM1M2

� d�����
0
M2
�1�hy�1iM1 ;

Z 1

0
dxdyF� �y; �x��M1�y��M2�x�

	 hy�2iM1h �x�1iM2 � h� �x�x �y� 1���1iM1M2

� d�����
0
M1
�0�h �x�1iM2 :

(32)

Here we use Eq. (29), and
 

hy�1iM 	
Z 1

0
dy
�M�y;��

y
;

hf�x; y�iM1M2 	
Z 1

0
dx
Z 1

0
dyf�x; y�


�M1�y;���M2�x;��: (33)

These results do not have a complex phase because the
right-hand side of Eq. (32) is real.

We have shown that the convolution formula in Eq. (23)
for the local contributions O�1L�i yields a well-defined
annihilation amplitude. At order �s�mb� the result is real,
so A�1�Lann is real up to perturbative corrections. Order
�2
s�mb� corrections to the ai will produce perturbative

strong phases in A�1�Lann. Further discussion on strong phases
is given in Sec. V, while phenomenological implications
are taken up in Sec. VI.

IV. CHIRALLY ENHANCED LOCAL
ANNIHILATION CONTRIBUTIONS

At order �s��h��M�=m2
b there are contributions from

chirally enhanced operators that could compete with the
�s��h��=mb terms [10]. In SCET we define these contri-
butions as the set of SCETII operators analogous to O�1L�i
but with an extra 6P? between collinear quark fields. We

start by constructing a complete basis for local operators at
this order with a P	

?, calling them O�2L�i . These operators
have the same color and flavor structures as Eq. (17). The
chiral structures induced from the operators O1–10 and the
initial basis of Dirac structures shown in Eq. (13) are also
the same, and allow us to eliminate many possibilities.

The complete set of Dirac structures from matching the
operators O1–4;9;10 include
 

�s�� �n��nP
	
? 	 f�

?
	 �n6 � 6n�P

	
?;�

�
? �n6 �

?
� � 6n��?	P

	
?;

�?	 �n6 �
�
? � 6n��

?
�P

	
?;

��? �n6 �
?
	 � 6n��

?
�P

	
?g; (34)

plus the analogous set �s � � �nP
	
? � �n. Our basis does not

include operators with P y?, because the mesons Mi have
zero? -momenta, so we can integrate these terms by parts
to put them in the form in Eq. (34). The third term in
Eq. (34) has chiral structure �LH��LR��RL� and vanishes
by Eq. (14). The terms in Eq. (34) all have �qs�

�
?bv, and so

do not contribute for B decays. The same holds if we
replace P	

? by igB	
?. Thus, at any order in perturbation

theory the only O��8� local operator contributions from
O1–4;9;10 are those with a D�

s in the soft bilinear.
For O5–8 we have the structures in Eq. (34), and when

the q0 flavor is a soft quark with PL � PR Dirac structure
from Oi, we also have

 �s � � �n � �nP
	
? 	 f1 � n6 � 6n�P6 ?; 1 � n6 �

?
	 � 6n�P

	
?g;

�s � � �nP
	
? � �n 	 f1 � n6 P

	
? � 6n��

?
	 ; 1 � n6 P6 ? � 6n� g;

(35)

plus operators with 1 replaced by 6n� � n6 , which vanish due
to Eq. (16). The operators in Eq. (35) contribute to B
decays. In particular, they yield both transverse and longi-
tudinal polarization in B! VV. A complete basis for the
local O��8� operators with one P	

? is

 O�2L�1d 	
1

m4
b

X
q;q0
� �q0sPLbv�� �d �n;!2

n6 PLq �n;!3
�� �qn;!1

6n�P6 ?PRq
0
n;!4
�;

O�2L�2d 	
1

m4
b

X
q;q0
� �q0sPLbv�� �d �n;!2

n6 P6 ?PRq �n;!3
�� �qn;!1

6n�PRq0n;!4
�;

O�2L�3d 	
1

m4
b

X
q;q0
� �q0sPLbv�� �d �n;!2

n6 �?	PRq �n;!3
�� �qn;!1

6n�PRP
	
?q
0
n;!4
�;

O�2L�4d 	
1

m4
b

X
q;q0
� �q0sPLbv�� �d �n;!2

n6 PLP
	
?q �n;!3

�� �qn;!1
6n��?	PRq

0
n;!4
�; O�2L�5d–8d 	 O�2L�1d–4d

3eq0

2
;

(36)

with sums over q, q0 	 u, d, s. Note that the flavor struc-
ture of these operators is identical to O�1L�4d . For the elec-
troweak penguin operators O7;8 an additional four
operators O�2L�5d–8d are needed, which have the same spin-
flavor structures as O�2L�1d–4d, but with an eq0 charge factor,

P
q;q03eq0=2. Again we caution that we have not considered

the complete set of local �2=m2
b operators, since our basis

does not include three-body terms with an igB�
?, nor terms

with an extraDs soft covariant derivative. We have also not
considered O��M1

�M2
�=m3

b� terms. All these terms are
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real, and it would be interesting to calculate them in the future.
The weak Hamiltonian with Wilson coefficients for the operators O�2L�id is

 

HW 	
4GF���

2
p �
�d�u � 


�d�
c �

X
n; �n

Z
�d!1d!2d!3d!4�

X
i	1�8

a�i �!j�O
�2L�
id �!j�: (37)

Since only the penguin operators O5–8 contribute, we pulled out the common CKM factor. Matching at tree level onto the
operators O�2L�id by keeping terms linear in the ? -momenta in Fig. 2, we find

 a�1 �x; y� 	
4CF��s��h�

Nc

��
C6 �

C5

Nc

�
F1�x; y� �

C5

Nc
F2�x; y�

�
�
;

a�2 �x; y� 	
4CF��s��h�

Nc

�
�

�
C6 �

C5

Nc

�
F1� �y; �x� �

C5

Nc
F2� �y; �x�

�
�
;

a�3 �x; y� 	
4CF��s��h�

Nc

�
�

�
C6 �

C5

Nc

�
F3�x; y� �

C5

Nc
F2�x; y�

�
�
;

a�4 �x; y� 	
4CF��s��h�

Nc

��
C6 �

C5

Nc

�
F3�x; y� �

C5

Nc
F2� �y; �x�

�
�
;

a�5�8�x; y� 	 a�1�4�x; y� with C5 ! C7; C6 ! C8;

(38)

where x and y are defined in Fig. 2 and

 

F1�x; y� 	
�

1� �x

y2 �y �x2

�
�
� d1�����0� �x�

�
1

y2 �y

�
�

� d2�����
0�y�

�
1� �x

�x2

�
�
� d3�����

0� �x��0�y�;

F2�x; y� 	
�

1

�1� x �y� �xy2

�
�
;

F3�x; y� 	
�

1

y2 �x2

�
�
� d4�����

0� �x�
�

1

y2

�
�

� d5�����0�y�
�

1

�x2

�
�
� d6�����0� �x��0�y�:

(39)

Here d1–6 play the same role as d in Eq. (25). The coef-
ficients a�1–8 are polluted in the sense of Ref. [5], meaning
that O��2

s� matching results proportional to the large co-
efficients C1;2 could compete numerically. This makes the
computation of these O��2

s� corrections important.
For decays involving a pseudoscalar in the final state, the

operators O�2L�1d and O�2L�2d generate so-called ‘‘chirally
enhanced’’ terms, proportional to �M. Time-ordered prod-
ucts of SCETI operators also generate �M terms, but only
at O��2

s�. It is not clear that the chirally enhanced terms are
larger numerically than other power corrections. In par-
ticular, three-body distributions from operators with
��n�igB

�
?���n are parametrically (and sometimes numeri-

cally as well) of similar importance [33]. The distributions
are related by [34]

 fP�P

�
�P0

 �x� �

�2x� 1�

x�1� x�
�P

�x�

�

	 �6f3P

�G�t�Pz�x�
x
�
G�t�Py�x�

1� x

�
;

fP�P

�
�P
p�x� �

1

6x�1� x�
�P

�x�

�

	 �f3P

�G�t�Pz�x�
x
�
G�t�Py�x�

1� x

�
;

(40)

whereG�t�Pz�x� andG�t�Py�x� are integrals over the three-parton

distribution, �3P. These relations allow certain chirally
enhanced terms with �PfP to be traded for nonchirally
enhanced terms with f3P. Thus it is clear that the chirally
enhanced terms dominate over the three-body operators
only in the special case when the linear combinations in the
square brackets on the left-hand side of Eq. (40) are
numerically suppressed. Solving with these linear combi-
nations set to zero determines the two-body distributions
�P

 and �P

p in the Wandzura-Wilczek (WW) approxima-
tion [35]. Thus in order to uniquely specify the �P depen-
dent terms, the WW approximation was needed in
Ref. [10].

In contrast, in SCET we are not forced to assume a
numerical dominance of the �P terms to uniquely identify
them. We can instead define local chirally enhanced anni-
hilation terms to be the matrix elements of the operators
O�2L�1d and O�2L�2d for final states with a pseudoscalar. With a
minimal basis of operators, the matrix elements of these
terms are unique. The remaining terms involve other op-
erators, and we postpone discussing them to future work.
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We proceed to work out the factorization formula for O�2L�1d

and O�2L�2d with steps analogous to Eqs. (20)–(23). To take
the matrix element we need Eq. (21) and the result
 

hPn1
�p�j �q�f�n;! 6n�P6 ?PRq

�f0�
n;!0 j0i	�

i
6
cPff0�nn1

�� �n �p�!�!0�


fP�P�
P
pp�y�: (41)

Here cPff0 are Clebsch-Gordan factors, y 	 != �n � p, and
we have not written the !0 dependence in the distribution
due to the � function. The distribution �P

pp�y� is related to
more standard twist-3 two-parton and three-parton distri-
butions by [18,34]
 

�P
pp�y� 	 3y

�
�P
p�y� �

1

6
�P0

 �y�

�
2f3P

fP�P

Z dy0

y0
�3P�y� y0; y�

�
: (42)

Note that in �P�P
pp, the �3P term does not have the chiral

enhancement factor �P. There will be additional terms
proportional to �3P generated by three-body operators.
We choose the �P

pp and �3P basis of twist-3 distributions,
keeping in mind the relations in Eq. (40). For decays
involving one or more pseudoscalars in the final state, we
find the chirally enhanced local annihilation amplitudes

 A�2�Lann 	 �
GFfBfM1

fM2

6
���
2
p
mb

�
�d�u � 

�d�
c �



Z 1

0
dxdy��M1

H�1�x; y��
M1
pp�y��M2�x�

��M2
H�2�x; y��M1�y��M2

pp�x��; (43)

where �� 	 �K� 	 0 and using isospin �� 	 m2
�=�mu �

md�, �K 	 m2
K=�ms �mu� 	 m2

K=�ms �md�. Terms with
�3P or terms of the same order with a D�

s in their soft

matrix elements have not been included in our A�2�Lann,
though they also give local annihilation contributions to
A�2�. Furthermore, we focused on the pseudoscalar matrix
element in Eq. (41) to derive the contribution in Eq. (43).
The O�2L�1d;2d operators in Eq. (36) will contribute additional
terms for decays to longitudinal vector mesons involving
distributions h�s�

0

k
and h�t�

k
(our notation for these distribu-

tions follows Ref. [34]). The operators O�2L�3d;4d will produce
decays to two transverse vectors with distributions from
among �?, F, V , A. It would be straightforward to work
out a factorization theorem from the operators O�2L�id in
terms of these distributions, though we will not do so here.

Results for the hard coefficients H�1 andH�2 in terms of
the Wilson coefficients a�i are given in Table IV for �B0 and
B� decays and in Table V for �Bs decays. Note that there are
no chirally enhanced annihilation contributions for the
�Bs ! �� or �Bs ! �� channels, so Bs decays could po-
tentially be used to separate annihilation contributions
from A�1�Lann and A�2�Lann. For later convenience we define
moment parameters

 	M1M2
�1;�5 	

1

6

Z 1

0
dxdya�1;5�x; y��

M1
pp�y��M2�x�;

	M1M2
�2;�6 	

1

6

Z 1

0
dxdya�2;6�x; y��

M1�y��M2
pp�x�:

(44)

Neglecting�3P in the WW approximation yields�P
pp�y� 	

6y�1� y�. At order �s��h� our results for 	�1 and 	�2,
taken with the WW approximation, agree with the convo-
lutions derived in this limit in Refs. [10,11]. Ignoring the�
distributions we would find that these convolution integrals
diverge. The zero bin avoided double counting in our
convolutions, and yields a finite and real result for the
chirally enhanced annihilation amplitude.

TABLE IV. Hard functions for the annihilation amplitude A�2�Lann in Eq. (43) for �B0 and B�

decays. The result for B� ! �0�� is obtained by adding the results using the entries from the
first two rows, and so vanishes in the isospin limit.

M1M2 H�1�x; y� H�2�x; y�

�0��, �0���0�� � 1��
2
p a�1 �x; y� �

1��
2
p a�5 �x; y�

1��
2
p a�2 �x; y� �

1��
2
p a�6 �x; y�

���0, ���0���0 1��
2
p a�1 �x; y� �

1��
2
p a�5 �x; y� � 1��

2
p a�2 �x; y� �

1��
2
p a�6 �x; y�

����, ����, ���� �a�1 �x; y� �
1
2 a

�
5 �x; y� a�2 �x; y� �

1
2 a

�
6 �x; y�

�0�0, ��K����, �0�0 a�1 �x; y� �
1
2 a

�
5 �x; y� �a�2 �x; y� �

1
2 a

�
6 �x; y�

K�K����, K����K� � � � � � �

�K0K���0, �K���0K0 a�1 �x; y� �
1
2 a

�
5 �x; y� �a�2 �x; y� �

1
2 a

�
6 �x; y�

K�K���0, K����K0 a�1 �x; y� � a
�
5 �x; y� �a�2 �x; y� � a

�
6 �x; y�

�� �K���0, �� �K0 a�1 �x; y� � a
�
5 �x; y� �a�2 �x; y� � a

�
6 �x; y�

�0K����, �0K� � 1��
2
p a�1 �x; y� �

1��
2
p a�5 �x; y�

1��
2
p a�2 �x; y� �

1��
2
p a�6 �x; y�

�0 �K���0, �0 �K0 1��
2
p a�1 �x; y� �

1
2
��
2
p a�5 �x; y� � 1��

2
p a�2 �x; y� �

1
2
��
2
p a�6 �x; y�

��K����, ��K� �a�1 �x; y� �
1
2 a

�
5 �x; y� a�2 �x; y� �

1
2 a

�
6 �x; y�
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Let us see how the convolutions work out at order
�s��h� following Ref. [18]. We need two standard con-
volutions involving zero-bin subtractions,

 

Z 1

0
dxdy

�
1� �x

y2 �y �x2

�
�
�M1
pp�y��M2�x�

	 hy�2 �y�1i
M1
pp�h �x�2iM2 � h �x�1iM2�;

Z 1

0
dxdy

�
1� y

y2x �x2

�
�
�M1�y��M2

pp�x�

	 h �x�2x�1i
M2
pp�hy�2iM1 � hy�1iM1�:

(45)

Here we model the y�2, y�1 moments as in Eqs. (29) and
(33), and for the remaining convolution we again assume

there is no interference between the rapidity renormaliza-
tion and invariant mass renormalization to find

 hy�2 �y�1i
M1
pp 	

Z 1

0
dy
�
�M1
pp�y;��

y2�1� y�
�
y�M10

pp �0; ��

y2

�

��M10
pp �0; �� ln

�n � pM1

��

�
: (46)

The �� dependence is canceled by tree-level logarithmic
dependence in the coefficients, d1;4���� 	 ln�p�M=���,
d2;5���� 	 ln�p�M=���, d3;6���� 	 ln�p�M=���

ln�p�M=���. The kernels in Eq. (38) also involve two
more complicated convolutions that are derived in the
Appendix,

 h��1� x �y� �xy2��1i
M1M2
pp 	

Z 1

0
dxdy

�
1

�1� x �y� �xy2

�
�
�M1
pp�y��M2�x�

	
Z 1

0
dx
Z 1

0
dy
�
�M1
pp�y��M2�x�

� �x� y� �xy� �xy2 �
�M10
pp �0��M2�x�
� �x� y� �xy

�
��M10

pp �0�
Z 1

0
dx
�M2�x� ln�2� x�

�1� x�2
;

h��1� x �y� �x2y��1i
M2M1
pp 	

Z 1

0
dxdy

�
1

�1� x �y� �x2y

�
�
�M1�y��M2

pp�x�

	
Z 1

0
dy
Z 1

0
dx
�
�M1�y��M2

pp�x�

� �x� y� �xy� �x2y
�
�M1�y��M20

pp �1�

� �x� y� �xy

�
��M20

pp �1�
Z 1

0
dy
�M1�y� ln�1� y�

y2 :

(47)

As promised, the minimal subtraction scheme yields a
well-defined result for A�2�Lann. The scheme dependence
cancels order by order in �s between the matrix element
and perturbative corrections to the kernels obtained by
matching. In any scheme the result at order �s��h� is real.

V. GENERATING STRONG PHASES

In this section we derive results for the order at which
strong phases occur in the power suppressed amplitudes
A�1�. It is convenient to classify complex contributions to
the B! M1M2 amplitudes according to the distance scale
at which they are generated. We use the terminology hard,
jet, and nonperturbative to refer to imaginary contributions
from the scales mb,

����������
mb�

p
, and �2, respectively. We will

not attempt to classify strong phases generated by charm
loops, since a complete understanding of factorization for
these terms order by order in a power counting expansion is
not yet available.

For a matrix element to have a physical complex phase it
must contain information about both final state mesons.
Generically, terms in the factorized power expansion of
B! M1M2 amplitudes involve only vacuum to meson
matrix elements, so strong phase information can be con-
tained in the Wilson coefficients or the factorized opera-
tors, but not in the states. This provides tight constraints on
the source of strong phases. Nonperturbative strong phases
will occur if matrix elements of these factorized operators
give complex distribution functions. A sufficient condition
to generate a nonperturbative phase is to have a factorized
operator that is sensitive to the directions of two or more
final state mesons [3], information that can be carried by
Wilson lines. Physically, this is a manifestation of soft
rescattering of final states. In processes like ours where
soft-collinear and collinear (n)-collinear ( �n) factorization
are relevant, and there is only one hadron in any given
light-cone direction, this criterion implies that all strong
phases reside in the soft matrix elements, where the direc-

TABLE V. Hard functions for the annihilation amplitude A�2�Lann in Eq. (43) for �Bs decays.

M1M2 H�1�x; y� H�2�x; y�

K���, K����, K��� �a�1 �x; y� �
1
2 a

�
5 �x; y� a�2 �x; y� �

1
2 a

�
6 �x; y�

K0�0, K�0�0, K0�0 1��
2
p a�1 �x; y� �

1
2
��
2
p a�5 �x; y� � 1��

2
p a�2 �x; y� �

1
2
��
2
p a�6 �x; y�

K�K�, K��K�, K�K�� �a�1 �x; y� �
1
2 a

�
5 �x; y� a�2 �x; y� �

1
2 a

�
6 �x; y�

K0 �K0, K�0 �K0, K0 �K�0 a�1 �x; y� �
1
2 a

�
5 �x; y� �a�2 �x; y� �

1
2 a

�
6 �x; y�
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tional information from collinear hadrons is retained in soft
Wilson lines, Sr, with direction r�. Since Syr Sr 	 1 these
Wilson lines often cancel, but for many of the power sup-
pressed terms listed in Table I the cancellation is not
complete. This mechanism for generating a strong phase
was first observed for �B0 ! D0�0 [3], where a nonpertur-
bative soft matrix element occurs through four-quark op-
erators depending on n and v0 (which are null and timelike
vectors for the final state light and charmed mesons,
respectively).

For the B! M1M2 decays with two energetic light
mesons, a nonperturbative strong phase requires a soft
matrix element depending on the Sn and S �n Wilson lines
in SCETII. The simplest way to obtain the Wilson lines for
the soft operators is to match SCETI onto SCETII [27]. In
SCETI one first uses the decoupling field redefinition on
collinear fields [16], �n ! Yn�n, � �n ! Y �n� �n, An !
YnAnY

y
n , and A �n ! Y �nA �nY

y
�n , which generates the Wilson

lines and factorizes usoft and collinear fields. The fields of
a given type are then grouped together by Fierz rearrange-
ments. Matching the resulting operators or time-ordered
products onto SCETII gives Yr ! Sr, and we can read off
which soft Wilson lines are present. Because of the prop-
erties of the subleading SCETI operators, we will not have
an Sn and S �n in the final SCETII operator unless we have a
subleading SCETI Lagrangian with an n-collinear field and
usoft fields, and one with �n-collinear fields and usoft fields.
We used this property to determine which entries are real or
complex, and listed the results in the last column of Table I.
The complex entries with multiple L�j��q’s [36] also have at
least two hard-collinear gluons, and so generate contribu-
tions that start at �s��i�

2 when matched onto SCETII.
To determine the perturbative order of the complex

contributions, we must also classify which hard and jet
coefficients give complex phases. In general, any hard
coefficient generated by matching at � 1 loop will give
imaginary contributions, since these loops involve fields
for both final state mesons, as pointed out for the general
case in Ref. [2] and for charm loops in Ref. [37]. Since all
leading order contributions in Table I have at least one
�s��i�, the hard imaginary contributions for A�0� are
O��s��i��s��h�=��. At order �=mb all annihilation con-
tributions but Q�4�i have at least one �s��i�, and for these
terms the hard complex contributions involve
�s��i��s��h� and thus are smaller than the nonperturba-
tive terms proportional to �s��i�

2. For Q�4�i the amplitude
is real at the leading perturbative order, �s��h�, as dem-
onstrated in Sec. III, and so hard complex contributions
start at �2

s��h�. In contrast, for the amplitude A�1�rest a com-
plex amplitude is generated at order �s��i��=mb, which is
only suppressed by �=mb compared to A�0�.

Finally, we should examine complex contributions from
the jet scale. At leading order there is a unique jet function
J [5]. J also contributes to the heavy-to-light form factors

and only knows about the n-collinear direction. Thus A�0�

does not get imaginary contributions at any order in the
�s��i� expansion (which has been demonstrated explicitly
to �2

s��i� [38]). At next-to-leading order in the power
expansion, there is no known relation of the power sup-
pressed jet functions with analogous jet functions in the
form factors. However, the subleading jet functions also
depend only on one collinear direction, and do not carry
information about both final state mesons that could gen-
erate a physical strong phase. We demonstrate this fact
more explicitly by examining the calculation at O��s��i��,
which is sufficient to see that the amplitudes are real up to
the order where a nonperturbative phase first occurs. At
this order the jet functions are generated by matching tree-
level SCETI diagrams onto SCETII. A typical example is

 

1

�x� i���k� � i��
; (48)

where x is a momentum fraction that will be convolved
with a collinear distribution function, and the k� will be
convolved with a soft distribution function. These jet func-
tions are real if and only if we can drop the i� factors.
However, just as in Sec. III, the i� terms can be dropped
because the zero-bin subtractions [18] ensure that this does
not change the convolution.4 Thus factorization gives real
O��s��i�� jet functions.

This demonstrates that complex contributions in the
power suppressed annihilation amplitudes are suppressed,

 Im
�
A�1�ann

A�0�

�
	 O

�
�s��i�

�
�

mb

�
�O

�
�2

m2
b

�
: (49)

On general grounds one might have expected O��=mb�
suppressed strong phases, which we have demonstrated are
absent in A�1�ann, though they do occur in A�1�rest.

We close this section by giving two examples of time-
ordered products generating the nonperturbative strong
phases discussed above. We consider a time-ordered prod-
uct with three L�1��q insertions contributing to annihilation.
When matching onto SCETII we integrate out the hard-
collinear modes, leading to an eight-quark operator.
Figure 3(a) shows the order �2

s��i� contribution to this
matching. The soft quark lines remain open as their con-
traction leads to an on-shell line which must be treated
nonperturbatively. The resulting SCETII operator has the
generic form
 

OII 	 J�n2 � p; n1 � l; n1 � r; n2 � q; n1 � k�


 � �qsSn1
�n1�r�

�1��Syn2
qs�n2�q� �qsSn2

�n1�k�
�2��Syn1

hv�


 � �qn1;l�
�3�qn1;l0 �� �qn2;p0�

�4�qn2;p� (50)

4An equivalent physical argument for dropping the i� factors
was given in Ref. [3] to demonstrate that certain long-distance
contributions are absent in color suppressed decays.
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where we use the shorthand subscript notation,
�Syniqs�ni�q � ���ni � q� ni � P �S

y
niqs�. We took the jet di-

rections to be n1 and n2, rather than n and �n, to emphasize
that the soft operator is sensitive to the relative directions
of the jets. The functions Si shown in Table I are defined by
the matrix element of this type of operator,

 Si�n1 � k; n1 � r; n2 � q; � � h0j� �qsSn1
�n1�r�

�1�
i �S

y
n2
qs�n2�q


� �qsSn2
�n1�k�

�2�
i �S

y
n1
hv�jB�v�i;

(51)

where i runs over color, Dirac, and flavor structures. To
count the factors of � in these amplitudes, note that the
hard-collinear contractions give g4, and that the matrix
element of the resulting four-quark operator, h0j� �q . . . q�

� �q . . . bv�jBi, is suppressed by 1=�4��2 relative to
h0j� �q . . . bv�jBi. (The four-quark operator has an extra
loop with no extra couplings.) This demonstrates that non-
perturbative complex contributions first occur at order
��s��i�

2=����=mb�, i.e., suppressed by ��s��i�=��

��=mb� compared to the leading amplitudes. The phases
arising from the type of matrix element shown in Eq. (51)
play a crucial role in explaining the observed strong phases
which arise in color suppressed decays [3]. Their resulting
operators predict the equality of amplitudes and strong
phases between decays involving D and D� mesons and
have been confirmed in the data [39]. This type of diagram
also has long-distance contributions of the same order,
which arise from time-ordered products in SCETII and
can also be complex. To see this note that the hard-
collinear quark propagator in Fig. 3(a) could also be on
shell [i.e., have O��2� virtuality], in which case it would
remain open until the matrix element is taken at the low
scale. By opening that line we see that this contribution
corresponds to the time-ordered product of a four-quark
operator and a six-quark operator, both of which are gen-
erated when matching onto SCETII. A long-distance part is
the same order in �s��i� and does not change our con-
clusions about these terms. In Fig. 3(b) we show a non-
annihilation contribution to Â�1�rest which is of order

�s��i��=mb. This term is generated by the time-ordered
product ofQ�1�, an insertion of the n1-collinear L�1��q , and an
operator with n2-collinear quarks and usoft gluons,

 L �2�
�� 	 �

��nW�Y
y
n2
i 6D?usi 6D?usYn2

6n�
2 �P �Wy�n�: (52)

VI. APPLICATIONS AND CONCLUSION

A. Phenomenological implications

To understand the implications of the experimental data,
it is crucial to know which contributions to the B! M1M2

amplitudes can be complex. The best sensitivity to non-SM
physics is via interference phenomena, where new inter-
actions enter linearly (instead of quadratically), such as
CP-violating observables. The sensitivity to such effects
depends on how well we understand the dominant and
subdominant SM amplitudes, including their strong
phases. The existence of strong phases in B decays is
experimentally well established (e.g., the B! D� and
B! �� rates, the CP asymmetry AK��� , the transversity
analysis in B! J= K�, etc.).

One example of how strong phase information can be
useful is the method for determining � from B! ��
proposed in Ref. [40]. The method uses isospin, the facto-
rization prediction that Im�C=T� �O��s�mb�;�=mb�, and
does not require data on the poorly measured direct CP
asymmetry C�0�0 .5 The phases in A�0� at �s�mb��s��i� are
calculable and partially known [2,41]. The current B!
�� data are in mild conflict (at the�2
 level) with the SM
CKM fit [42]. More precise measurements are needed to
understand how well the theoretical expectations are sat-
isfied, and to decipher whether there might be a hint for
new physics. Obviously further information about power
corrections in Im�C=T� could help to clarify the situation.

In all factorization-based approaches to charmless B
decays, several parameters are fit from the data or are
allowed to vary in certain ranges. The choice and ranges
of these parameters should be determined by the power
counting. This motivated keeping the charm penguin am-
plitudes, Ac �c, as free parameters in SCET [5], as was done
earlier in Ref. [12]. In the BBNS approach these are argued
to be factorizable [2]. A fit to the data using this parame-
trization found large power suppressed effects [43] includ-
ing annihilation amplitudes, which might be interpreted as
a breakdown of the �=mb expansion. In QCD sum rules,
the annihilation amplitude was found to be of the expected
magnitude and to have a sizable strong phase [44], but a
distinction between the terms we identify as real local
annihilation and complex time-ordered product annihila-
tion was not made.

(a)

q
k r

l

p

n1

n1

n1

n2

n2

(b)

n1

n1

n2

n2

FIG. 3 (color online). Graphs which generate a strong phase in
lowest order matching of SCETI operators onto SCETII: (a) has a
Q�1�, two L�1��n1

q, and one L�1��n2
q and contributes to the annihila-

tion amplitude at O��2
s��i��; and (b) has a Q�1�, one L�1��n1

q, and

one L�2��n2
�n2

and contributes to nonannihilation amplitudes at

O��s��i��. Dashed quark lines are n1 or n2 collinear, and solid
quark lines are soft.

5Here C and T are isospin amplitudes defined in the t con-
vention, where 
t is eliminated from the amplitudes in favor of

c and 
u.

POWER CORRECTIONS IN CHARMLESS NONLEPTONIC . . . PHYSICAL REVIEW D 77, 054006 (2008)

054006-15



Channels like B! K� and B! K �K are sensitive to
new physics, but by the same token are dominated by
penguin amplitudes, which can have charm penguin, anni-
hilation, and other standard model contributions. Since
there are possible large nonperturbative c-loop contribu-
tions in Ac �c that have the same SU�3� flavor transformation
properties as annihilation terms, they cannot be easily
distinguished by simple fits to the data. However, in a
systematic analysis based on SCET these correspond to
different operators’ matrix elements, so it is possible to
disentangle the various contributions and determine their
expected size. The factorization theorems for annihilation
amplitudes derived here only involve distributions that

already occurred at leading order. This means that we
can compare the size of annihilation amplitudes to experi-
mental data without further ambiguities from additional
hadronic parameters. We take up this comparison in
Sec. VI B below.

As an explicit example of how to assemble our results in
Secs. III and IV, we derive the local annihilation amplitude
for �B0 ! K���. From Table II we can read off the result
for this channel, H�x; y� 	 �as4�x; y� � a

s
8�x; y�, and from

Table IV, H�1 	 �a
�
1 �x; y� � 1=2a�5 �x; y� and H�2 	

a�2 �x; y� � 1=2a�6 �x; y�. With the lowest order matching
results in Eqs. (24) and (38) we can set a8 	 0 and a4u 	
a4c, which inserted into Eqs. (23) and (43) gives

 

A�1�Lann�K
���� 	

GFfBf�fK���
2
p �
�s�c � 


�s�
u �

Z
dxdya4u�x; y����y��K�x� 	

GFfBf�fK���
2
p �
�s�c � 


�s�
u �	�K4u ;

A�2�Lann�K
���� 	

GFfBf�fK
6
���
2
p �
�s�c � 


�s�
u �

Z
dxdy

�
��

mb

�
a�1 �x; y� �

1

2
a�5 �x; y�

�
��
pp�y��K�x�

�
�K

mb

�
a�2 �x; y� �

1

2
a�6 �x; y�

�
���y��K

pp�x�
�

	
GFfBf�fK���

2
p �
�s�c � 


�s�
u �

�
��

mb

�
	�K�1 �

1

2
	�K�5

�
�
�K

mb

�
	�K�2 �

1

2
	�K�6

��
: (53)

Thus, both the leading order annihilation amplitude A�1�Lann and the chirally enhanced annihilation amplitude A�2�Lann are
determined by the 	’s defined in Eqs. (26) and (44). Other K� channels have similar expressions with different Clebsch-
Gordan coefficients. To the local annihilation contributions we must add the hard-collinear annihilation terms computed in
Ref. [19], A�1ann�

hard-collin, since they are the same order in �s and 1=mb as the A�1�Lann terms. To see explicitly what the 	’s
involve, we insert the O��s� values of a3u�x; y�, a

�
1 �x; y�, and a�2 �x; y� to give

 

ALann�K
���� 	 �

GFfBfM1
fM2���

2
p �
�s�c � 


�s�
u �

4��s��h�

9

��
C9

6
�
C3

3

�
�h �x�2iKhy�1i� � h�y�x �y� 1���1i�K

� d�����0K�1�hy
�1i�� �

2��

3mb

�
C6 �

C8

2
�
C5

3
�
C7

6

�
�hy�2 �y�1i�pp�h �x�2iK � h �x�1iK� � d1����


�0K�1�hy
�2 �y�1i�pp � d2�����0��0��h �x�2iK � h �x�1iK� � d3�����0K�1��

0
��0��

�
2��

3mb

�
C5

3
�
C7

6

�
h��1� x �y� �xy2��1i�Kpp �

2�K

3mb

�
C5

3
�
C7

6

�
h��1� x �y� �x2y��1iK�pp

�
2�K

3mb

�
C6 �

C8

2
�
C5

3
�
C7

6

�
��hy�2i� � hy�1i��hx�1 �x�2iKpp � d1�����0��0�h �x�2x�1iKpp

� d2�����
0
K�1��hy

�2i� � hy�1i�� � d3�����
0
��0��

0
K�1��

�
: (54)

Here results for the convolutions denoted by brackets h� � �i
can be found in Eqs. (29), (33), (46), and (47) in
the minimal subtraction scheme. Results for other
channels can be assembled in a similar fashion.
Corrections to ALann � A

�1ann�
hard-collin are suppressed by

O��2
s��i�=���s�mb���, while we caution that additional

�s��h��=mb terms without a �� or �K will be present
in Eq. (54). In the next subsection we derive results for all
of these channels using a simple model for the distribution
functions, and study numerically the size of the annihila-
tion amplitudes.

Annihilation contributions have been claimed to play
important roles in several observables [7,8,10,11,31], in
particular, in generating large strong phases in B! K�
decays [7,8]. The B! �� and K� data indicate that the
latter decays are dominated by penguin amplitudes, and the
pattern of rates and CP asymmetries is not in good agree-
ment with some predictions. In particular, it is not easy in
the BBNS analysis to accommodate the measured CP
asymmetry, AK��� 	 �0:108� 0:017 [45], except in the
S3 and S4 models of Ref. [11]. In these models the anni-
hilation contributions are included by using asymptotic
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distributions, and divergent integrals are parametrized asR
1
0 dx=x! XA and

R
1
0 dx lnx=x! �X2

A=2, with XA 	
�1� %Aei’A� ln�mB=500 MeV�. Model S3 postulates %A 	
1, ’A 	 �45� for all final states, while in the S4 scenario
%A 	 1 and ’A 	 �55�,�20�,�70� for the PP, PV, VP
channels, respectively. Thus

 S3: XA 	 4:0� 1:7i;

S4: XA 	 f3:7� 1:9i; 4:6� 0:8i; 3:2� 2:2ig:
(55)

In addition, �s��� and the Wilson coefficients are eval-
uated at the �i intermediate scale [11].

Our result for the factorization of annihilation contribu-
tions derived in Sec. III constrains models of annihilation.
Equation (23) gives a well-defined and real amplitude at
leading order, which depends on twist-2 distributions, �M.
It does not involve model parameters %A and ’A. For A�1�Lann,
using Eq. (29) and the asymptotic form of the meson
distributions, we find a correspondence

 “XA” 	 1�
Z 1

0
dx
���x�

6�x2��
	 ln

�
mb

��

�
: (56)

Clearly, XA is real. The asymptotic distributions �6x�1�
x� are more accurate for large scales, and at the matching
scale where �� �mb, XA is not enhanced by a large
logarithm. This matching scale �� should not be de-
creased below mb since �� �mb is already the correct
scale for collinear modes with p� �mb. We estimate
jXAj & 1. Thus, the modeling of annihilation contributions
with complex XA in the BBNS approach (including the
phenomenologically favored S3 and S4 scenarios) is in
conflict with the heavy quark limit, and should be con-
strained to give smaller real XA’s.

In the KLS [7] treatment of annihilation, complex am-
plitudes are generated from dynamics at the intermediate
scale from the i� in propagators. The MS factorization
used in the derivation of our annihilation amplitudes dem-
onstrates that including the i� term in collinear factoriza-
tion would induce a double counting. Thus we expect such
contributions to physical strong phases to be realized by
operators with soft exchange that occur at higher order in
�=mb, and therefore to be small.

Annihilation contributions were also argued to play an
important role in explaining the large transverse polariza-
tion fraction in B! �K� [31]. It was shown that factori-
zation implies RT 	 O�1=m2

b�, where RT denotes the
transverse polarization fraction [31]. Subsequently, it was
shown using SCET that RT is power suppressed unless a
long-distance charm penguin amplitude Ac �c spoils this
result [5,23]. Experimentally, one finds RT�B! �K�� �
0:5 [45], while RT�B! ��� is at the few percent level. It
has been argued that the large RT�B! �K�� may provide
a hint of new physics in the b! s�ss channel. In Ref. [31] it
was suggested that standard model annihilation contribu-
tions may account for the observed large value of RT�B!

�K��. Our analysis in Sec. IV agrees with [31] in that
annihilation contributions to the transverse polarization
amplitude at first order in �s are suppressed by not one,
but two powers of �=mb. However, we do not find a
numerical enhancement of these terms [which in [31] is
partly due to the large sensitivity of the �2XA � 3��1� XA�
function to %A in the BBNS parametrization]. The opera-
tors in Eq. (36) give rise to transverse polarization, but
since MS factorization renders the naively divergent con-
volutions finite, these power suppressed amplitudes do not
receive sizable enhancements. Although we have not de-
rived explicit results for the B! �K� annihilation ampli-
tudes (since� is an isosinglet), our results make it unlikely
that local annihilation can explain the RT�B! �K�� data.
We have not explored whether the time-ordered products at
O��2

s��i��=mb� could give rise to transverse polarization,
and it would be interesting to do so.

B. Annihilation amplitudes with simple models for
�M�x� and �Mpp�x�

In this section we derive numerical results for the local
annihilation amplitudes in various channels using a simple
model for the distributions. It is convenient to write the
�S 	 0 local annihilation amplitude as
 

ALann� �B!M1M2� 	 �
GFfBfM1

fM2���
2
p

�

�d�u hu� �B!M1M2�

�
�d�c hc� �B!M1M2�

� �
�d�u �

�d�
c �

��M1

mb
h�1� �B!M1M2�

�
�M2

mb
h�2� �B!M1M2�

��
: (57)

For �S 	 1 decays we replace 
�d�u;c ! 
�s�u;c. The coeffi-
cients hu, hc, h�1, and h�2 are equal to linear combinations
of 	iu, 	ic, 	�1, 	�2, 	�5, and 	�6 with Clebsch-Gordan
coefficients determined from Tables II, III, IV, and V. The
combinations are simply determined by the replacements
 

hu	�H�x;y� with ~ad;si �x;y�!	M1M2
iu ; ~ad;si �y;x�!	M2M1

iu �;

hc	�H�x;y� with ~ad;si �x;y�!	M1M2
ic ; ~ad;si �y;x�!	M2M1

ic �;

h�1	�H�1�x;y� with a�1;5�x;y�!	�1;�5�;

h�2	�H�2�x;y� with a�2;6�x;y�!	�2;�6�: (58)

For the coefficients a3u;3c;4u;4c;7;8 and the a�i ’s, the
O��2

sC1;2� matching corrections could be comparable nu-
merically to the O��sC3–10� corrections considered here.
This should be kept in mind when examining numbers
quoted below for the corresponding 	’s.

Results for the coefficients 	iu, 	ic, and 	�i can be
found in Eqs. (26) and (44). To derive numerical results
we need to model the meson distribution functions. The
Ci’s are given in Eq. (3). We use
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�s��h� 	 0:22; ����h� 	 2:3 GeV;

�K��h� 	 2:7 GeV; fK 	 0:16 GeV;

f� 	 0:13 GeV; fB 	 0:22 GeV; (59)

where �h 	 mb 	 4:7 GeV, and fB comes from a recent
lattice determination [46]. For the �’s we take simple
models with parameters aMi and aMipp which we consider
specified at the high scale �h,
 

�M�x� 	 6x�1� x��1� aM1 �6x� 3�

� 6aM2 �1� 5x� 5x2��;

�P
pp�x� 	 6x�1� x��1� aP1pp�6x� 3�

� 6aP2pp�1� 5x� 5x2��: (60)

Based on recent lattice data for moments of the � and K
distributions [47], we take a�;K2 	 0:2� 0:2, where the
lattice error was doubled to give some estimate for higher
moments. For the�we set a�1 	 a�1pp 	 0, while for theK
we use [47] aK1 	 0:05� 0:02. We also take w3�;K 	

�3� 1, a�;K2pp 	 0� 0:4, and aK1pp 	 0:0� 0:2. Note
that the range for our parameters is similar to those used
in the BBNS models [10,11] and light-cone sum rules [48].
Since the uncertainties in the model parameters are large
and not significantly affected by variation of the�� scales,
we keep these fixed at mb, where the logs in the di����
terms drop out and the constant under the logs are ne-
glected. A scan over models with parameters in these limits
gives predictions for the annihilation coefficients. For the
�B! K� channels we find

 

	�K2u 	 1:8� 1:2; 	�K4u 	 	�K4c 	 �0:15� 0:10;

	�K2c 	 0:14� 0:09; 	�Khc1 	 0:09� 0:33;

	�Khc2 	 �0:29� 0:09; 	�Khc3 	 �0:012� 0:002;

	�Khc4 	 0:002� 0:01; 	�K�1 	 0:0� 6:5;

	�K�2 	 0:0� 5:8; 	�K�5 	 0:0� 0:094;

	�K�6 	 0:0� 0:11: (61)

Using these numbers we can compare the size of the local
annihilation amplitudes to the �B! K��� data,

 RA�K���� 	
jA�1�Lann�K

���� � A�2�Lann�K
����j

jAExpt: Penguin�K��j

	 0:11� 0:09;

RA� �K0��� 	
jA�1�Lann�

�K0��� � A�2�Lann�
�K0���j

jAExpt: Penguin�K��j

	 0:12� 0:09:

(62)

For the numerator we did a Gaussian scan using the values
from Eq. (61), and determined the error by the standard
deviation. For the denominator we used the experimental
penguin amplitude determined by a fit to the B! K� data

in Ref. [6]. Numerical results for annihilation amplitudes
with three-body distribution functions were considered in
Ref. [19]. Although they are similar in size to A�1�Lann, they
cause only a �10% change in the value of RA�K���� in
Eq. (62). The values of RA indicate that a fairly small
portion of the measured penguin amplitude is from anni-
hilation. We do not quote values for the ratio A�2�Lann=A

�1�
Lann,

since the numerator and denominator can each vanish and
the parametric uncertainties are large. For typical values of
the parameters in the K� channels, we find that the A�2�Lann is
comparable or even larger than A�1�Lann in agreement with
Ref. [10]. The size of the annihilation amplitudes in
Eq. (62) are consistent with our expectation for these
power corrections. For B! �KK we find
 

	 �KK
1u 	 �9:6� 6:2; 	 �KK

2u 	 1:7� 1:1;

	 �KK
3u 	 	 �KK

3c 	 0:63� 0:37;

	 �KK
4u 	 	 �KK

4c 	 �0:14� 0:09;

	 �KK
1c 	 �0:03� 0:02; 	 �KK

2c 	 0:13� 0:08;

	K �K
3u 	 	K �K

3c 	 0:63� 0:37; 	 �KK
�1	 0:0� 6:5;

	 �KK
�2 	 0:0� 5:5 	 �KK

�5 	 0:0� 0:095;

	 �KK
�6 	 0:0� 0:11: (63)

Using these results to determine the 
�d�c annihilation con-
tributions to B! �KK and comparing this to the experi-
mental penguin amplitude from Ref. [6] gives

 RA�K
�K0� 	

jA�1�Lann�K
�K0� � A�2�Lann�K

�K0�j

jAExpt: Penguin� �KK�j

	 0:15� 0:11: (64)

The size of the ratios in Eqs. (62) and (64) are similar and
consistent with the expected size of power corrections.

C. Conclusions

In summary, we exhibited how a new factorization in
SCET renders the annihilation and ‘‘chirally enhanced’’
annihilation contributions finite in charmless nonleptonic
B! M1M2 decays to nonisosinglet mesons. We con-
structed a complete basis of SCETII operators for local
annihilation contributions as well as factorization theorems
valid to all orders in �s. By matching the full QCD
diagrams onto SCETII operators, we showed that their
matrix elements are real at leading order in �=mb and
�s�mb�. The lowest order annihilation contributions de-
pend on fB and a modified type of twist-2 distributions
�M1;2 with dependence on rapidity cutoffs. Chirally en-
hanced local annihilation contributions depend, in addi-
tion, on modified distributions �M1;2

pp . The annihilation
contributions can only have an unsuppressed complex
part at O��=mb� if perturbation theory at the intermediate
scale,

����������
�mb

p
, breaks down.
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In the previous literature models for the power sup-
pressed annihilation corrections were often found to give
enhanced contributions with large strong phases, and such
assumptions have been important in some fits to the data.
By considering all power suppressed amplitudes not in-
volving charm loops, we proved that complex annihilation
contributions are parametrically suppressed by at least
�s�

����������
�mb

p
��=mb compared to the leading amplitude.

From our factorization theorem we found that annihilation
contributes �11� 9�% of the penguin amplitude in �B0 !
K���, �12� 9�% in B� ! �K0��, and �15� 11�% in
B� ! K�K0. We anticipate that our results will guide
future fits to the vast amount of data on charmless B
decays, and yield a better understanding of what these
data mean.
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APPENDIX: ZERO-BIN SUBTRACTIONS FOR A
TWO-DIMENSIONAL DISTRIBUTION

In this appendix we derive a result for the action of the
zero-bin subtractions on the integrand obtained from the
chirally enhanced annihilation computation, shown in
Eq. (47). Since the result involves a correlation in the x
and y integrals, it cannot be read off from the results in
Ref. [18]. It is convenient to write the momentum fraction
factor coming from the off-shell b-quark propagator as
�1� x �y� 	 � �x� y� �xy�. Including the rapidity conver-
gence factors [18], the integral we need is
 

I 	
X

x�1;y�0

Z
dxrdyr

�M1
pp�y��M2�x�

� �x� y� �xy� �xy2 �x�y


 jx�1� x�j�jy�1� y�j�
�

����
�n � p1n � p2

�
2�
; (A1)

where �x 	 ��x���1� x�. To determine the subtraction
terms we must look at the singular behavior as we scale
towards the x 	 1 and y 	 0 bins, which we do by taking
�x� � and y� �. In this limit the gluon and b quark in
Fig. 2 become soft, and this region would be double
counted without the zero-bin conditions. First consider
the denominator,

 

1

�x� y� �xy
	

1

� �x� y�
�

�xy

� �x� y�2
� . . . : (A2)

In the first term the x and y dependence does not decouple,
so we must consider them simultaneously. All terms be-
yond the first one produce finite integrals and are dropped
in the minimal subtraction scheme. For the numerator in
Eq. (A1) we use �M1

pp�0� 	 �M2�1� 	 0 and expand

 

�pp�y���x� 	 �y�
0
pp�0� �x�

0�1� �
y2

2
�00pp�0� �x�

0�1�

� y�0pp�0�
�x2

2
�00�1� � . . .

	 y�0pp�0�
X1
n	1

�� �x�n

n!
��n��1�

�
y2

2
�00pp�0� �x�0�1� � . . . : (A3)

In the term on the second to last line we have identified all
terms which remain singular when multiplied by
1=� �xy2� �x� y��. This term is equal to y�0pp�0���x�.
Taken together with the expansion of �x�y we therefore
find that the required minimal subtraction is

 

y�M10
pp �0��M2�x�

� �x� y� �xy2
�x��y�: (A4)

Following Ref. [18] we use this to convert Eq. (A1) into an
integral that includes the x 	 1 and y 	 0 regions,

 

I 	
Z 1

0
dx
Z 1

0
dy
�
�M1
pp�y��M2�x�

� �x� y� �xy� �xy2 �
y�M10

pp �0��M2�x�

� �x� y� �xy2

�

�
Z 1

0
dx
Z 1

1
dy
y�M10

pp �0��M2�x�

� �x� y� �xy2 x��1� x��y��y� 1��
�

����
�n � p1n � p2

�
2�

	
Z 1

0
dx
�M2�x�

�x

Z 1

0
dy
�

�M1
pp�y�

� �x� y� �xy�y2 �
�M10
pp �0�

� �x� y�y

�
�
Z 1

0
dx
Z 1

1
dy
�M10
pp �0��M2�x�
� �x� y� �xy

y��y� 1��

	
Z 1

0
dx
�M2�x�

�x

Z 1

0
dy
�

�M1
pp�y�

� �x� y� �xy�y2 �
�M10
pp �0�

� �x� y�y

�
��M10

pp �0�
Z 1

0
dx
�M2�x� ln�2� x�

�1� x�2
: (A5)
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Here, in simplifying the term carrying the y! 1 limit, we
noted that the integral is finite, and so it does not induce��
dependence in our subtraction scheme. This result for I
was used in Eq. (47). For the asymptotic pion wave func-
tions,���x� 	 6x�1� x� and��

pp�y� 	 6y�1� y�, we ob-

tain I 	 36� 6�2 � 144 ln2 	 �4:60. Note that the steps
used here to derive the subtraction also give the correct
result for cases where the x and y integrals factorize, such
as an integrand ��x���y�=�x2y2�.
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