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The Berger model of perturbative fragmentation of quarks to pions is improved by providing an
absolute normalization and keeping all terms in a (1� z) expansion, which makes the calculation valid at
all values of fractional pion momentum z. We also replace the nonrelativistic wave function of a loosely
bound pion by the more realistic procedure of projecting to the light-cone pion wave function, which in
turn is taken from well known models. The full calculation does not confirm the �1� z�2 behavior of the
fragmentation function (FF) predicted in [E. L. Berger, Z. Phys. C 4, 289 (1980); Phys. Lett. 89B, 241
(1980] for z > 0:5, and only works at very large z > 0:95, where it is in reasonable agreement with
phenomenological FFs. Otherwise, we observe quite a different z-dependence which grossly under-
estimates data at smaller z. The disagreement is reduced after the addition of pions from decays of light
vector mesons, but still remains considerable. The process dependent higher twist terms are also
calculated exactly and found to be important at large z and/or pT .
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I. INTRODUCTION

The fragmentation of colored partons, quarks, and glu-
ons, into colorless hadrons is an essential ingredient of any
semi-inclusive hadronic reaction, since confinement does
not allow propagation of free color charges. For this reason
hadronization is usually considered to be related neces-
sarily to confinement specific to the string model [1].
Indeed, the string model of hadron production is rather
successful in describing data.

In a typical event of quark fragmentation the mean
production time tp of a prehadron (i.e. a colorless cluster
developing afterwards a corresponding wave function)
linearly rises with its energy, and the most energetic hadron
in such event takes about half of the initial quark energy. In
some rare events, however, the leading hadron may take the
main fraction z! 1 of the initial quark energy. This pro-
cess cannot last long, since the leading quark is constantly
losing momentum, dpq=dt � ��, where � is the string
tension. Therefore the production time should shrink at
z! 1 as [2]

 tp � �1� z�
Eq
�
: (1)

Notice that the endpoint behavior of the production time,
tp / �1� z�, is not specific for the string model, but is a
result of energy conservation.

The shortness of the production time is an indication that
a nonperturbative approach for the production of hadrons
with large z! 1 is not really required. Indeed, according
to (1), in this region the hadronization time shrinks, i.e. the
quark directly radiates a hadron, q! h� q. Furthermore,
since the invariant mass squared of the final state is M2

qh �

m2
h=z�m

2
q=�1� z� � p2

T=z�1� z�, where pT is the trans-

verse hadron momentum, at z! 1 the initial quark is far
off mass shell, and this process can be treated perturba-
tively. This observation motivates a perturbative QCD
calculations for leading pion production q! �q, within
the model proposed by Berger [3], as is illustrated in Fig. 1
for l�l annihilation. He found that the fragmentation func-
tion of a quark to a pion vanishes as �1� z�2 at z! 1, and
falls as function of transverse pion momentum as 1=p4

T .
Besides, a nonfactorizable, scaling violating term was
found to dominate at z! 1. The shape of z-dependence
calculated by Berger [3] was found to agree well with data
after the inclusion of gluon radiation cf. Ref. [4].

Unfortunately, the calculation performed in [3] missed
the absolute normalization of the cross section, which
makes it difficult to compare with data. Moreover, it was
done in lowest order in (1� z), therefore it is not clear in
which interval of z the model is realistic. And last, but not
least, the calculations were based on the nonrelativistic
approximation for the pion structure function, assuming
equal sharing of longitudinal and transverse momenta by
the quark and antiquark in the pion. However, the dominant
configuration of the �qq pair projected to the pion is asym-
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FIG. 1 (color online). l�l annihilation with production of two
�qq pairs. The large blob contains gluon radiation by either �q1 or
q2. Four-momenta of particles are shown in parentheses.
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metric, with the projectile quark carrying the main fraction
of the momentum.

Here we perform calculations first in the Berger approxi-
mation, but retaining the absolute normalizations and
higher powers of (1� z) (Sec. III). Then, in Sec. IV we
give up the nonrelativistic approximation and project the
amplitude of �qq production onto the light-cone (LC) wave
function of the pion. For this wave function we consider
three different models and find reasonable agreement with
phenomenological fragmentation functions (FF), but only
at large z > 0:95. To improve agreement at smaller z we
add pions originating from decays of � and ! mesons,
which are produced by the same mechanism, and which is
depicted in Fig. 1. In Sec. V we study higher-twist con-
tributions, which gives a sizeable contribution in semi-
inclusive pion production in DIS at moderately large Q2

and large z.

II. LEADING HADRONS IN BORN
APPROXIMATION

The amplitude of the process l�l! �q1 � q2 �G!
�q1 � q2 � �q3 � q4, depicted in Fig. 1, in the lowest order
of pQCD is given by
 

A�l�l! �q1q2 �q3q4� �
1

Q2 J
�l�
� �k1; ��1; k2; ��2�

� J�h�� �p1; �1; i1;p2; �2; i2;

p3; �3; i3;p4; �4; i4�: (2)

Here k1, ��1 and k2, ��2 are 4-momenta and helicities of the
lepton and antilepton respectively; pl, �l, and il are the 4-
momenta, helicities, and color indexes of the quarks q1 and
q3 (l � 1, 3) and antiquarks �q2 and �q4 (l � 2, 4). The 4-
momentum Q � k1 � k2.

The leptonic and hadronic currents in (2) read

 J�l�� �k1; ��1; k2; ��2� � e �u ��2
�k2���v ��1

�k1�; (3)

 

J�h�� �p1; �1; i1;p2; �2; i2;p3; �3; i3;p4; �4; i4�

�
1

M2

X8

a�1

gs
2
��a�i2i1

gs
2
��a�i4i3T���p1�1; p2�2�j��p3�3; p4�4�:

(4)

Here M2 � �p3 � p4�
2 is the gluon invariant mass

squared; g2
s � 4��s; �

�a�
ij are Gell-Mann matrices;

 T���p1�1; p2�2� � eq1
�u�2
�p2����Ĝ�Q� p1���

� ��Ĝ�p2 �Q����v�1
�p1�; (5)

where Ĝ�q� � �q̂�mq�=�q2 �m2
q�; q̂ � q���; mq is the

quark mass; and

 j��p3�3; p4�4� � �u�4
�p4���v�3

�p3�: (6)

III. BERGER MODEL

In the Berger model [3] the amplitude ~A of the reaction
l�l! �q1q4 is a result of projection of the amplitude
equation (2) on the S-wave colorless state of the q2 �q3

pair having zero total spin. The result of the projection is
proportional to ���~r � 0� (~r is 3-dimensional) with a
prefactor

������������
2=m�

p
[5], where m� is the pion mass. Then

we get

 

~A�l�l! �q1q4� �
1

Q2 J
�l�
� �J�h��

�������
2

m�

s
���0�: (7)

Here
 

�J�h�� �
1���
3
p

X3

i�1

1���
2
p

X
��	1=2

sgn���

� J�h�� �p1; �1; i1;p; �; i;p;��; i;p4; �4; i4�; (8)

and the summations 1��
3
p
P3
i�1 and 1��

2
p
P
��	1=2sgn��� per-

form projections to colorless and spinless states of the q2 �q3

pair, respectively.
Then we can make use of the relations

 X8

a�1

X3

i1

�ai4i�
a
ii1
�

16

3
	i4i1 ;

X
��	1=2

sgn���v���p4�

� �u��p3�jp3�p4
p

� �5�p̂�m�; (9)

and arrive at the following form of the hadronic current:

 

�J �h�� �
2g2

seq1

3
���
6
p
M2
�j1� � j2��; (10)

where
 

j1� � �u�4
�p4����5�p̂�mq���Ĝ�Q� p1���v�1

�p1�

� �u�4
�p4��5

�
�� �

2mqp̂��
M2

�
v�1
�p1�; (11)

 

j2� � �u�4
�p4����5�p̂�mq���Ĝ�p2 �Q���v�1

�p1�

�
4

Q2 � 2pQ
�u�4
�p4��5��p1p�m2

q���

� �p1� � p��p̂�mqp̂�� �mqQ��v�1
�p1�: (12)

Here we applied the algebra of �-matrices, the Dirac
equation and 4-momentum conservation, Q � p1 � 2p�
p4. The invariant gluon mass M was defined in (4).

It is convenient to choose the z-axis along the momen-
tum ~p1 in the collision c.m. frame, and to switch from
Lorentz 4-vectors a� (e.g. J�l;h�� , p�1, p�4, Q�, etc.) to
light-cone vectors, �a�; a�; ~a?�, where a	 � a0 	 az.
Since ~Q � 0, i.e. Q� � Q�, the condition of gauge in-
variance, Q�J

�l�
� � Q�

�J�h�� � 0, takes the form J�l�� �

�J�l�� and �J�h�� � � �J�h�� . Then the product of the lepton
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and hadronic currents can be presented as

 J�l�� �J�h�� � �J
�l�
�

�J�h�� � J
�l�
?

�J�h�? : (13)

The typical values of transverse components are j ~p?j �

mq, ~p4T � �2 ~p, j ~J�l�? j � J
�l�
� , so

 

�J �h�� �
mq

Q
j ~J�h�? j: (14)

Therefore, the first term in (13) can be safely neglected.
Then we get

 

�J �h�? �
4g2

seq1
	i4i1

3
���
6
p
M2

�u�p4��5

�

�? �

2mq

M2 p̂�?

�
v�p1�;

(15)

where 
 � �2� z�=�2� z�, and

 z �
p��
Q�
�

2p�
Q�

; (16)

is the fractional pion momentum. In this approximation the
invariant gluon mass reads

 M2 � �p� p4�
2 � 2

m2
q�1� z=2�2 � ~p2

?

z�1� z�
: (17)

Notice that although the second term in (15) is propor-
tional to the quark mass (which was assumed in [3] to be
zero), it should not be neglected. Indeed, after integration
over ~pT the interference of the two terms in (15) is of the
same order as the first term squared.

In this approximation the fragmentation function gets
the form
 

D�
q �z� �

64�2
s

27m�m2
q
j���0�j

2 z�1� z�
2

�2� z�2

�

2 � 2�
� 1�

�

�
z

2� z

�
2
�

16

3

z2�1� z�

�2� z�4

�
: (18)

The pion wave function at the origin correlates with the
shape of the parametrization for ���r�. In the case of a
Gaussian parametrization,

 j��� ~r�j2gauss �
�3

1

�3=2
exp���2

1r
2=2�; (19)

the pion form factor has the form, F��q2� �
exp��q2=16�2

1�. So �2
1 � 3=8hr2

chi.
With a bit more realistic exponential shape,

 j��� ~r�j2exp �
�3

2

�2 exp��2�2r�; (20)

the pion form factor reads, F��q2� � �1� q2=16�2
2�
�2.

Then �2
2 � 2�2

1.
These two examples demonstrate the high sensitivity of

the wave function at the origin to the choice of
r-dependence. One finds j���0�j

2
exp=j���0�j

2
Gauss �

�������
8�
p

� 5. Therefore, it is difficult to conclude whether
the Berger model agrees or not with data.

Another, more realistic option would rely on the pole
form of the pion form factor, F��q2� � �2

3=��
2
3 � q

2�,
where �2

3 � 1=6hr2
chi. Then,

 j���~r�j2 �
1

r
exp���3r�: (21)

In this case, however, the wave function at the origin is
divergent.

The Berger approximation, assuming that the pion pro-
duction amplitude is proportional to the amplitude of �qq
production with equal momenta, would be justified if the
pion was a nonrelativistic, loosely bound system, i.e.m� �

2mq, 2mq �m�  mq. However, the mean charge radius
squared is much smaller than the value given by such a
nonrelativistic model, hr2

chi � �4m
2
q �m2

��
�1.

On the other hand, a description of the pion as a rela-
tivistic bound system has been a challenge so far.

IV. PROJECTION TO THE LC WAVE FUNCTION

A. Direct pions

In the light-cone (LC) representation the pion wave
function depends on the fractional LC momenta of the
quark, � � p2�=p��, and antiquark, 1� � � p3�=p��,
and the relative transverse momentum, k? � �p3? �
�1� ��p2?. In this representation the amplitudes,
Eqs. (2) and (7), are related as

 

~A �
1

�2��3
Z 1

0

d�����������������������
2��1� ��

p Z
d2k?A��; k?�����; k?�;

(22)

where the �qq Fock component of the pion LC wave func-
tion is normalized to unity,

 

Z 1

0
d�

Z
d2k?j����; k?�j

2 � 1: (23)

In this case the projection of the distribution amplitude
of q2 and �q3 on the pion LC wave function is more
complicated than in the Berger model (� � 1=2), however
it can be grossly simplified if one neglects small terms of
the order of m and k? in comparison with large p2� and
p3� order terms. Then the combination in Eq. (9) gets the
simple form

 

X
��	1=2

sgn���v���p3� �u��p2� � �5p̂� �O�m; k?�: (24)

Furthermore, neglecting small terms we arrive at a new
relation for the hadronic current of Eq. (15)

 

�J �h�? �
8g2

seq1
	�4�1

3
���
6
p
M2

1� �1� ��z�
1� �z

�u�p4��5�?v�p1�:

(25)
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When the momentum fractions of the quark and antiquark
in the pion wave function are � and 1� �, then the
invariant mass squared reads

 M2 �
m2�1� �z�2 � ��1� �� ~p�? � �1� z� ~k?�2

z�1� z��1� ��
:

(26)

The light-cone pion wave function can be parametrized
as

 ����; ~r� � ���� �r; ��: (27)

If the wave function in momentum representation has a
monopole form, ����; k� / �k2=��1� �� � �2��1, then

  �r; �� � NK0��r
��������������������
��1� ��

p
�; (28)

where K0 is the modified Bessel function. Since the mo-
mentum dependence of ����; k� is poorly known, we also
performed calculations with a dipole dependent wave func-
tion in the appendix, since comparison of the results shows
the scale of the theoretical uncertainty.

The parameter � is fixed by the condition

 �
dF��q�

dq2

��������q2�0
�

1

6
hr2

chi � 1:83 GeV�2; (29)

where the pion form factor reads

 F��q� �
Z
d2r

Z 1

0
d�j����; ~r�j2ei�

~q� ~r: (30)

Thus, the parameter � as well as the normalization
constant N in (27) depend on the choice of function
����. We consider two popular models (compare with [6]):

Model 1: Standard (asymptotic) shape [7,8]:

 �1��� � ��1� ��; (31)

 N2
1 �

6�2
1

�
; �2

1 �
2

hr2
chi
: (32)

Model 2: Chernyak-Zhitnitsky model [9]:

 �2��� � �1����1� 2��2; (33)

 N2
2 �

70�2
2

�
; �2

2 �
6

hr2
chi
: (34)

3. Intermediate shape [6] which is closer to the realistic
double-humped form [10] adjusted to data:

 �3��� � �1����0:2� �1� 2��2�;

N2
3 �

175�2
3

6�
; �2

3 �
40

9hr2
chi
:

(35)

To be specific we will calculate D��
u �p2

T; z� which is the
FF of a u quark into ��. For the transverse momentum
dependent fragmentation function we have for each of

these versions (taking into account the longitudinal current
contribution)

 

dD��
u �z; p2

T�

dp2
T

��������i
� 2

�
�s
2�

�
2
Ci�2

i z
�
�1� z�2F2

i �z; pT�

� �z2 4p2
T

Q2 G
2
i �z; pT�

�
: (36)

Here i � 1, 2.3; C1 � 1; C2 � 35=3; C3 � 175=36;

 Fi�z; pT� �
Z 1

0
d�
�1� ���i�������������������

a2
i � bi

q 1� �1� ��z
1� �z

� ln

0@ai �
����������������
a2
i � bi

q
ai �

����������������
a2
i � bi

q
1A; (37)

 Gi�z; pT� �
Z 1

0
d�

�1� ��2�i���

�1� �z�
����������������
a2
i � bi

q

� ln

0@ai �
����������������
a2
i � bi

q
ai �

����������������
a2
i � bi

q
1A; (38)

 ai � p2
T�1� ��

2 �m2
q�1� �z�2 � �2

i ��1� ���1� z�
2;

(39)

 bi � 4m2
q�

2
i �1� �z�

2�1� z�2��1� ��: (40)

In fact, only the first leading twist term in square brack-
ets in (36) corresponds to the factorized FF. The second
term is a higher twist term, whose value (factor �) is
process dependent, and which is discussed in more detail
in Sec. V below. Following Berger [3] we include the
higher twist terms in the FF. Otherwise, one can retain in
the FF only the first, leading twist term, and treat the higher
twist contribution as a part of the cross sections of concrete
processes (DIS, e�e� annihilation, high pT , etc.)

The results of the numerical calculations of the
p-integrated FF, for each of the three models, are plotted
as functions of z in Fig. 2. The QCD coupling was fixed at
�s � 0:4.

The calculated fragmentation functions fall off with z
only at very large z! 1, otherwise are rather flat, or even
rise at small values of z. Such a behavior does not comply
with data which suggest FF monotonically falling with z
[11]. Apparently, the present calculations are missing some
mechanisms contributing at small z.

B. Vector meson decays

One of the processes contributing to the pion spectrum
should be the production, by the same mechanism shown in
Fig. 1, of heavier mesons which decay to pions. One of the
most important corrections should come from �-meson
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production, which gives the following contribution

 �D�=��
u �z� �

1������������
1� 

p

Z 1

zmin

dz0

z0
�D��

u �z0� �D
�0

u �z0��:

(41)

The bottom integration limit reads

 zmin � 2z
1�

������������
1� 

p



; 
 �

4m2
�

m2
�
: (42)

We assume that D��
u �z� � 3D��

u �z�, since � has spin 1,

and that D�0

u �z� � 1
2D

��
u �z�.

The !-meson production may also be important. Pions
from ! decays should be even softer because of the three-
particle phase space. The corresponding correction to the
pion spectrum can be calculated as follows.

 �D!=��
u �z� �

Rm!�m�
2m�

dM2�g�M2��I�z;M2��Rm!�m�
2m�

dM2�g�M2��
; (43)

where

 

g�M2�� �
�������������������������������������������������������������
�M2

2� � 4m2
����

2 � 4m2
!m2

��
q

;

� � m2
! �m2

� �M2
2�; (44)

and

 I�z;M2�� �
Z z2

z1

dz0

z0
D!
u �z

0�; (45)

 z1 � min
�
1;

2m2
!z

��
�����������������������������
�2 � 4m2

!m
2
�

p �
;

z2 � min
�
1; z

��
�����������������������������
�2 � 4m2

!m
2
�

p
2m2

�

�
:

(46)

We assume that D!
u �z� � D��

u �z�, since the factor of 3
coming from spin enhancement is compensated by an
isospin suppression.

Figure 3 shows our results for D��
u �z� (dashed-dotted

line), �D�=��
u �z� and �D!=��

u �z� (dotted line), and their
sum (solid line). We also plotted the phenomenological
D��
u �z� (dashed line) obtained from a global fit to data [11].

As anticipated, the production of � contributes to the softer
part of the pion momentum distribution, and does not affect
its hard part.

Other meson decays should pull the medium-z part of
D��
u �z� further up, but accurate calculation of all those

contributions is still a challenge.
Notice that our results have no Q2 evolution, since the

calculations are done in Born approximation. Modification
of the z-dependence by gluon radiation makes it softer,
closer to data, generating also a Q2 evolution. These cor-
rections were studied within the Fock state representation
in [4].

The transverse momentum distribution of pions is given
by Eq. (36). One cannot compare with data the mean value
of hp2

Ti since it is poorly defined. Indeed, Fi � ln�pT�=p
2
T

at high pT , so hp2
Ti is divergent and depends on the upper

cutoff.

10
-3

10
-2

0.8 0.9 1
z

D
π q(

z)

1

2
3

FIG. 2. The fragmentation function, Eq. (36), integrated over
transverse momentum. Solid, dashed and dotted curves corre-
spond to the models 1, 3 and 3 for the pion LC wave function
(see text), respectively.

10
-3

10
-2

10
-1

0.7 0.8 0.9 1

direct pions

ρ decay

ω decay
x10

z

D
π+ u(

z)

FIG. 3. Comparison of the Model 1 (asymptotic shape of the
pion wave function) with data. The curves from bottom to top
are: dotted line—pions from ! and � decays; dot-dashed line—
direct fragmentation to pions; solid line—sum of the three
previous contributions; dashed line—phenomenological FF for
charged pions [11] fitted to data at scale �2 � 0:5 GeV2.
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Instead, one should compare with data the pT depen-
dence. Our results for the pT-distribution of the FF,
Eq. (36), is depicted in Fig. 4 for several values of z.

It might be too early to compare these results with data,
since we did not include yet the gluon radiation, intrinsic
motion of quarks in the target, and decays of heavier
mesons. Nevertheless it is useful to check whether the
calculated pT dependence is in a reasonable accord to
data. Notice that the data depicted in Fig. 4 are integrated
over a rather large z-bin, 0:4< z< 1. The latter causes a
considerable mismatch in normalization (see Fig. 3), so we
renormalized the data [12] to be able to compare the
shapes, which then are in reasonable agreement.

V. HIGHER TWIST TERMS

The last term, in square brackets in Eq. (36), is a higher
twist effect. It does not vanish at z! 1, but is suppressed
by powers of Q. We neglected corrections of the order of
hp2

Ti=�zQ
2�, which are important only at small z.

This higher twist term breaks down the universality of
the fragmentation function, since the factor � depends on
the process. For e�e� annihilation it is given by

 ��l�l! � �q1q4� �
sin2

1� cos2
; (47)

where  is the angle between the direction of l�l collision
and momentum ~p1 in the c.m. frame.

For deep-inelastic scattering it reads

 ��lq1 ! l0q4�� �
1� y

2�1� y� � y2 ; (48)

where y � q�=l�; q� is 4-momentum of the virtual pho-
ton; l is 4-momentum of the initial lepton.

The relative contribution of the higher twist term is

 Ri�z; pT� � 4�
�

z
1� z

�
2 p2

TG
2
i �z; pT�

Q2F2
i �z; pT�

; (49)

where subscript i denotes the number of the model used for
the LC pion wave function, and Gi, Fi are defined in (37)
and (38).

While the relative value of the nonfactorizable higher
twist term is expected to be vanishingly small in l�l anni-
hilation, it might be a sizeable effect in SIDIS, usually
associated with medium to large values of Q2. The relative
correction, Eq. (49), is plotted in Fig. 5 as function of pT ,
forQ2 � 2:5 GeV2 and several fixed values of z. Solid and
dashed curves correspond to the models 1 and 2 for the LC
pion wave function, respectively. Although the higher twist
term is relatively small for forward fragmentation, it be-
comes a dominant effect at p2

T * 1 GeV2.
The corresponding higher twist correction to the

pT-integrated FF reads

 Ri�z� � 4�
hp2

Ti

Q2

�
z

1� z

�
2
R
1
0 dp

2
TG

2
i �z; pT�R

1
0 dp

2
TF

2
i �z; pT�

; (50)

The factor hp2
Ti is divergent and depends on experimental

kinematic cuts. Therefore one should rely on its value
specific for each experiment.

Apparently, a direct way to see the higher twist contri-
bution in data is to study the Q2 behavior of the FF.
However, such data at sufficiently large z are not available
so far. Therefore, we try to extract the higher twist con-
tribution from the z-dependence. To do so we first fit data at
moderate values z < 0:65 where we do not expect a size-
able higher-twist corrections, with the standard parametri-
zation D�

q �z� � Nz��1� z��. We use data from the
HERMES experiment [13]. We added the statistic and
systematic errors in quadratures. The data are corrected
by subtraction of the contribution from diffractive vector
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FIG. 4. The transverse momentum dependent FF,
dD�

q �z�=dp
2
T , calculated with Eq. (36) and the Model 1 for the

production of direct pions. Solid, dashed, and dotted curves are
calculated at z � 0:75, 0.85 and 0.95, respectively. Data from
[12] at W2 > 350 GeV2 are renormalized for a better compari-
son with our results.
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FIG. 5. The relative higher twist correction to the FF of a quark
in DIS as function of transverse momentum for fixed values of
z � 0:75, 0.95, and Q2 � 2:5 GeV2. The solid and dashed
curves come from calculations with Model 1, Eq. (31). and
Model 2, Eq. (33), respectively.
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mesons, ��p! �p, which is another higher twist contri-
bution (see Sec. VI). We found � � �1:24	 0:04, � �
1:5	 0:07, N � 0:88	 0:07. The data divided by this
fitted z� dependence are depicted in In Fig. 6 We compare
this data with the relative contribution of higher twists
R1�z�, Eq. (50), calculated at Q2 � 2:5 GeV2 and with
the measured value of hp2

Ti � 0:25 GeV2 [13]. Our results
agree with the data reasonably well.

An attempt to see the higher twist effects in nuclear
attenuation data was made in [14]. They found higher twist
corrections of similar magnitude.

Notice that other sources of pions, like decays of heavier
mesons produced via the same mechanism, are important
for leading twist part. However, they also supply the cross
section with higher twist terms. Nevertheless, we assume
that these corrections affect the ratio much less than the
cross section.

VI. HINTS FROM TRIPLE-REGGE
PHENOMENOLOGY

The factorized part, Eq. (18), of the cross section of pion
production in l�l annihilation, is the same as in deep-
inelastic scattering (DIS), where it can be compared with
the expectations of the triple-Regge description, illustrated
in Fig. 7. The inclusive cross section at fixed z is energy
independent (Feynman scaling), and at fixed energy and
1� z 1 depends on z as

 

d����p! �X�

dzdp2
T

/ �1� z�n; (51)

where z equals to Feynman xF in the triple-Regge kine-
matic region:

 z � xF �
�
1�

M2
X

s

�
�1� xBj�; (52)

and xBj is the Bjorken variable.
The exponent in (51) is related to the parameters of the

Regge trajectories involved:

 n � 1� 2�IR�p2
T�: (53)

Here �IR�p2
T� is the trajectory of Reggeon IR. The rapidity

interval, �y � � ln�1� z�, covered by the Reggeon is not
large for the values of z� 0:9 under discussion. Therefore
the pion Regge pole should dominate, since it has large
coupling to nucleons. In this case, ���p2

T� � ��
0
�p2

T ,
where �0� � 1 GeV�2. Thus,

 n� � 2�0�hp
2
Ti � 1:5: (54)

Here we rely on the value hp2
Ti � 0:25 GeV2 measured in

both HERMES [13] and EMC [12] experiments. The value
of the exponent given in Eq. (54) agrees quite well with
data. Although our calculation confirmed the value n � 2
found in [3], the inclusion of gluon radiation reduces the
exponent n down to the value observed in data [4].

Notice that the z-dependence presented in Eqs. (51)–
(53) changes at very small 1� z 1, and becomes rather
flat. Indeed, we assumed that the invariant mass squared of
the excitation X is sufficiently large, s�1� z� � m2

N for
the Pomeron to dominate in the bottom leg of the triple-
Regge graph in Fig. 7. However, this condition breaks
down at very small 1� z and Reggeons with �IR�0� �
1=2 dominate in the bottom leg. Another assumption we
have made, pion dominance in the t-channel exchange, is
also violated when the rapidity interval ln�1� z� becomes
very large. Then Reggeons with a higher intercept
�IR�0� � 1=2 become the dominant contribution. Thus,
the endpoint behavior has the same power dependence,
Eq. (51), but with a different exponent,

 n�z! 1� � �IR�0� � 2�IR�p2
T� � �

1
2� 2�0IRhp

2
Ti � 0:

(55)

Thus we arrive at the remarkable conclusion that the FF,
which falls steeply with z, levels off at very small 1�z1.
This behavior, dictated by the triple-Regge formalism, is
more general than perturbative calculations. One may
wonder why this endpoint feature is absent in our calcu-
lations. What has been missed? Notice that we did not care
about the fate of the recoil quark q4 in Fig. 1, which was
justified by the condition of completeness. However, if the
target excitation X has a small invariant mass, it affects the
probabilities of different final states of q4.

The triple-Regge approach also indicates as an addi-
tional source of a higher twist contribution, which is spe-
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0.2 0.4 0.6 0.8 1
z

da
ta

 / 
fit

FIG. 6. Hermes data [13] for multiplicity of charged pions
produced in DIS on a proton, corrected for decays of vector
mesons. The data points are divided by the fit to the data at z <
0:65 (see text). The curve corresponds to R1�z� � 1 calculated
with Eq. (50) at Q2 � 2:5 GeV2 and hp2

Ti � 0:25 GeV2.
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FIG. 7. Virtual photoproduction of a pion via Reggeon ex-
change. The projectile quark from the photon fluctuation picks
up an antiquark, produced either from the vacuum or perturba-
tively (see Fig. 1), and they form a pion.
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cific for semi-inclusive DIS (SIDIS), the diffractive inclu-
sive process ��p! �X. The pT-integrated cross section
corresponding to the triple-Pomeron graph can be pre-
sented in the form

 

d����p! �X�
dz

�
Gpp

3IP�0�=2�0IP
�1� z�j ln�1� z�j

16�

��pptot�2

�
d����p! �p�

dp2
T

��������pT�0
; (56)

where Gpp
3IP�0� � 3:2 mb=GeV2 is the effective triple-

Pomeron coupling, extracted from the fit [15] to data on
pp! pX. Here we neglected the transverse size of the �qq
dipole projected to �, since it is small, 1=Q2, and the pT
dependence of the bare triple-Pomeron vertex, since it is
very weak [16]. All the cross sections in (56) should be
taken at a c.m. energy squared s0 � s0=�1� z�, where s0 �
1 GeV2.

The z-distribution of the produced �0-mesons strongly
peaks at z! 1 (as any diffractive process should) and their
decays feed the effective FF D�

q �z�,

 ��D�=��
u �z��diff �

1

��
�p

tot

Z 1

zmin

dz0������������
1� 

p

d����p! �0X�
z0dz0

:

(57)

Here 
 and zmin are defined in (42). Because of color
transparency the amplitude of rho production is inversely
proportional to Q2, therefore ����p! �0X� / 1=Q4. On
the other hand, the total virtual photoabsorption cross
section is ��

�p
tot / 1=Q2 (Bjorken scaling). Therefore, the

diffractive contribution to the effective FF q! � is a
higher twist effect, ��D�=��

u �z��diff / 1=Q2.
The elastic production of vector mesons, ��p! Vp

certainly also contributes to inclusive pion production,
and is also a higher twist effect. It can be evaluated using
Eq. (57) and a delta function for the z0-distribution of
produced vector mesons. However, in some cases, like in
[13], this contribution has been removed from data.

VII. SUMMARY

We performed calculations for the Berger perturbative
mechanism [3] of quark fragmentation into leading pions,
keeping all the subleading terms in powers of (1� z) and
all the coefficients. Our results can be summarized as
follows.

(i) We performed a full calculation of the quark FF
including higher twist terms within the Berger ap-
proximation. However, we concluded that the ap-
proximation of a nonrelativistic pion wave function
is unrealistic and brings too much uncertainty to the
results of the calculation.

(ii) We projected the produced �qq pair distribution am-
plitude to the light-cone pion wave function. For the
latter we employed two extreme shapes: (1) the stan-

dard asymptotic shape (31); (2) Model of Chernyak-
Zhitnitsky (33); and (3) a more realistic intermediate
double-humped form [6]. These models lead to a
z-dependence quite different from the one inferred
from data. Only at z � 0:95 our calculations agree
reasonably with data (both the shape and value), but
greatly underestimate data at smaller values of z.

(iii) Remarkably, the main amount of pions produced in
quark fragmentation are not produced directly, ex-
cept the most energetic ones with z > 0:95. This fact
should be taken into account in models employing
perturbative hadronization [17]

(iv) Searching for ways of improving the description of
data we added pions originated from decay of light
vector mesons � and !. Although this contribution
pulled up the production of pions at medium to large
z, apparently some contributions are still missing.
That may be production and decays of heavier me-
sons, which are difficult to evaluate.

(v) We also performed a full calculation for the higher
twist term originated from the longitudinal current
contribution. It overcomes the leading twist term at
large z and/or large transverse momenta.

(vi) A new higher twist contribution to pion production is
found. It is related to decays of diffractively pro-
duced vector mesons.

It worth reminding the reader that our results for the FF
at large z > 0:9 should be compared with a phenomeno-
logical one with precaution. First of all, data at such large z
are scarce and different parametrizations [11,18,19] differ
from each other considerably. Second of all, our FF is
calculated in the Born approximation. Evolution (gluon
radiation) may considerably change the shape of the
z-dependence [4].

ACKNOWLEDGMENTS

We are grateful to Delia Hasch, Achim Hillenbrand, and
Pasquale Di Nezza for providing us with the preliminary
HERMES data. This work was supported in part by
Fondecyt (Chile) grants 1050519 and 1050589, and by
DFG (Germany) grant PI182/3-1.

APPENDIX: DIPOLE FORM OF THE PION LC
WAVE FUNCTION

To see the sensitivity to the form r-dependence of the LC
wave function of the pion we also performed calculations
with the dipole parametrization of transverse momentum
dependent part of the LC wave function ����; ~k� /

� k2

��1��� � �
2��2. In impact parameter representation it

takes the form [compare with (27)]

 ����; ~r� � N����
��������������������
��1� ��

p
rK1��r

��������������������
��1� ��

p
�; (A1)

In this case we can still employ Eq. (36) for the fragmen-
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tation function, but with a new form of function Fi�z; pT�,
 

Fi�z; p� �
Z 1

0
d�
�1� ���i���

a2
i � bi

1� �1� ��z
1� �z

264ai � 2di

�
di�a� 2ei�����������������
a2
i � bi

q ln
�ai � ����������������

a2
i � bi

q
ai �

����������������
a2
i � bi

q �375; (A2)

where di � �2
i ��1� ���1� z�

2; ei � m2
q�1� �z�2.

Parameters Ci and �i in (36) also get new values,
Model 1: asymptotic shape

 N2
1 �

9�2
1

2�
; �2

i �
36

5hr2
chi

; C1 � 3: (A3)

Model 2: Chernyak-Zhitnitsky shape

 N2
1 �

105�2
2

2�
; �2

i �
108

5hr2
chi

; C2 � 35: (A4)

The results of numerical calculations are depicted in
Fig. 8 in comparison with calculations performed with
the pole parametrization for the pion wave function.
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FIG. 8. Fragmentation functions for direct pions calculated
with pole, Eq. (27) (solid curves), and dipole, Eq. (A1) (dashed
curves), parametrization for the transverse momentum depen-
dent part of the LC pion wave function. Labels 1 and 2 indicate
the model used for the longitudinal momentum dependence of
the pion wave function.
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