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We have carried out a new evaluation of the eighth-order contribution to the electron g� 2 using
FORTRAN codes generated by an automatic code generator GENCODEN. Comparison of the new result
with the old one has revealed an inconsistency in the treatment of the infrared divergences in the latter.
With this error corrected we now have two independent determinations of the eighth-order term. This
leads to the revised value 1 159 652 182:79�7:71� � 10�12 of the electron g� 2, where the uncertainty
comes mostly from that of the best non-QED value of the fine structure constant �. The new value of �
derived from the revised theory and the latest experiment is ��1 � 137:035 999 084�51� �0:37 ppb�,
which is about 4.7 ppb smaller than the previous ��1.

DOI: 10.1103/PhysRevD.77.053012 PACS numbers: 13.40.Em, 06.20.Jr, 12.20.Ds, 14.60.Cd

I. INTRODUCTION AND SUMMARY

The anomalous magnetic moment of the electron has
played a central role in testing the validity of QED [1,2].
The test became very stringent when the precision of
measurement of the electron and positron was improved
by 3 orders of magnitude over the best earlier result [3] by
the University of Washington group in the Penning trap
experiment [4]

 ae� � 1 159 652 188:4�4:3� � 10�12 �3:7 ppb�;

ae� � 1 159 652 187:9�4:3� � 10�12 �3:7 ppb�;
(1)

where ae 	 �g� 2�=2 and g is the g-factor of the electron.
The main source of the remaining uncertainty in Eq. (1) is
the uncontrolled shift of the frequency due to the resonance
between the electron and the metal cavity of hyperbolic
shape. Brown et al. [5] showed that this source of uncer-
tainty can be reduced significantly using a metal trap with
the cylindrical cavity whose resonance structure can be
calculated analytically.

The recent Harvard measurement is based on the cylin-
drical cavity. Their value announced in 2006 is [6]
 

ae�HV06� � 1 159 652 180:85�0:76� � 10�12 �0:66 ppb�;

(2)

which has a 5.5 times smaller uncertainty than the previous
measurements listed in Eq. (1). Very recently, the same
Harvard group has succeeded in reducing the uncertainty
further by a factor 2.7 [7]:

 

ae�HV08� � 1 159 652 180:73�0:28� � 10�12 �0:24 ppb�:

(3)

To match the precision of the measurement the theory of
ae must include radiative corrections of up to the eighth
order of QED perturbation theory as well as the hadronic
and weak contributions

 ae � ae�QED� � ae�hadron� � ae�weak�: (4)

The hadronic [8–11] and weak contributions [12] to ae are
very small, but not entirely negligible relative to the mea-
surement uncertainties (2) or (3):

 ae�hadron� � 1:682�20� � 10�12; (5)

 ae�weak� � 0:0297�5� � 10�12: (6)

The QED contribution ae�QED� can be divided further
into four parts taking account of the presence of other
leptons:

 ae�QED� � A1 � A2�me=m�� � A2�me=m��

� A3�me=m�;me=m��; (7)

whereme,m�, andm� are masses of the electron (e), muon
(�), and tau-lepton (�), respectively. A1, being dimension-
less, depends only on the fine structure constant �. A2

denotes contributions from the Feynman diagrams which
have closed loops of either the muon or tau-lepton. A3

stands for the contributions of the Feynman diagrams
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which contain both the � loop and � loop. Each Ai can be
calculated by the QED perturbation theory

 Ai � A�2�i

�
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�

�
� A�4�i

�
�
�

�
2
� A�6�i

�
�
�

�
3
� 
 
 
 : (8)

The purpose of this paper is to give a detailed account of
derivation of the revised value of the eighth-order coeffi-
cient of A1 reported recently [13]

 A�8�1 � �1:9144�35�: (9)

Making use of our automating algorithms in handling
ultraviolet (UV) and infrared (IR) divergences [14,15], we
are now able to generate the eighth-order FORTRAN codes
very easily and swiftly. However, numerical evaluation of
these codes is still nontrivial and requires a huge computa-
tional resource. Thus far the ‘‘new’’ calculation has
achieved a relative uncertainty of about 3%. Although
this is still more than an order of magnitude less accurate
than that of Ref. [16], it is good enough for the purpose of
checking the old calculation.

Comparison of the new numerical result with the old one
has revealed an inconsistency in the treatment of the IR
divergence in the latter. With this error of the old calcu-
lation corrected, we now have two independent determi-
nations of A�8�1 . Of course, precise evaluation of all terms of
new A�8�1 by the integration routine VEGAS [17] requires
an enormous amount of computation. Fortunately, as is
described in Sec. IV D, the correction term itself can be
evaluated easily and very precisely. This is why we are able
to give the uncertainty in Eq. (9) which is essentially
identical with that of the previous calculation [16].

Besides A�8�1 the known terms of Eq. (7) are as follows
[2,18–29]:
 

A�2�1 � 0:5;

A�4�1 � �0:328 478 965 579 
 
 
 ;

A�6�1 � 1:181 241 456 587 
 
 
 ;

A�10�
1 � 0:0�4:6�;

A�4�2 �me=m�� � 5:197 386 70�27� � 10�7;

A�4�2 �me=m�� � 1:837 63�60� � 10�9;

A�6�2 �me=m�� � �7:373 941 58�28� � 10�6;

A�6�2 �me=m�� � �6:5819�19� � 10�8;

A�6�3 �me=m�;me=m�� � 0:190 945�62� � 10�12:

(10)

Here, A�2�1 , A�4�1 , and A�6�1 are known analytically. A�4�2 , A�6�2 ,
and A�6�3 are known analytically as functions of mass ratios
so that their uncertainties are due to those of measured
lepton masses only. Note that A�10�

1 is actually unknown and
the value listed above is an educated guess calculated by
the recipe proposed in Ref. [29] to indicate a likely range of

the value taken by A�10�
1 . This will soon be replaced by a

real number, which is being evaluated by FORTRAN codes
generated with the help of the automatic code generator
GENCODEN [14,15]. Until then A�10�

1 in Eq. (10) is the
largest source of theoretical uncertainty.

In order to obtain the numerical value of the theoretical
g� 2, an explicit value of the fine structure constant �,
which is determined by the physical phenomena other than
g� 2, is required. At present the best values of � available
in the literature are from the Cesium atom experiments
[30,31] and the Rubidium atom experiment [32]

 ��1�Cs06� � 137:036 000 00�110� �8:0 ppb�; (11)

 ��1�Rb06� � 137:035 998 84�91� �6:7 ppb�: (12)

They lead to the theoretical predictions of ae:
 

ae�Cs� � 1 159 652 172:99�0:10��0:31��9:32� � 10�12;

ae�Rb� � 1 159 652 182:79�0:10��0:31��7:71� � 10�12;

(13)

respectively, where the uncertainty 0.10 comes from the
eighth-order result (9), 0.31 is an estimated uncertainty of
the tenth-order term, and 9.32 and 7.71 come from the
uncertainties of the input values of the fine structure con-
stants given in Eqs. (11) and (12). The uncertainty due to
the hadronic and weak contributions (6) is 0:02� 10�12.
The revised theoretical anomaly ae is in closer agreement
with the experimental values (2) and (3) than the old value
[16].

Unfortunately, the precision of ae given in Eq. (13) is not
high enough for direct confrontation between the experi-
mental and theoretical ae’s. This is because the uncertain-
ties in ae due to these �’s amount to 9:3� 10�12 for
��Cs06� and 7:7� 10�12 for ��Rb06�, respectively, which
are an order of magnitude larger than the experimental
uncertainty 0:76� 10�12 and the theoretical uncertainty
0:28� 10�12 of ae.

This implies that, assuming the validity of QED, the
electron g� 2 is in fact the best source of the fine structure
constant �, an order of magnitude better than any alter-
native. Because of high precision of the experiments (2)
and (3) the fine structure constant � determined from ae is
rather sensitive to the revision of the theoretical prediction.
Equating the Harvard measurements (2) or (3), and the
theory (4), we obtain [7,33,34]
 

��1�ae�HV06 � Th07�� � 137:035 999 070�12��37��90�

�0:71 ppb�; (14)

 

��1�ae�HV08 � Th07�� � 137:035 999 084�12��37��33�

�0:37 ppb�; (15)

where the first and second uncertainties come from the
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numerical uncertainties of A�8�1 and A�10�
1 , respectively, and

the third in Eq. (14) or Eq. (15) comes from the experiment
(2) or (3), respectively.

These values of ��1 are smaller than the old
��1�ae�HV06 � Th06�� by �6:411 80�73� � 10�7 which
is about 4.7 ppb (or about 7 s.d.), but are still in good
agreement with ��1�Rb06� of Eq. (11) and ��1�Cs06� of
Eq. (12), whose uncertainties are about 7 ppb.

The organization of the paper is as follows. In Sec. II, we
briefly overview the ‘‘old’’ and new approaches to the
numerical calculation of the electron g� 2 in QED. In
Sec. III, the diagrams of Group V of the eighth-order term
are discussed. We compared the results of the old and new
calculations and found an unaccountable difference in the
results of the diagram M18. In Sec. IV, the diagram M16 is
closely examined instead ofM18. This is becauseM16 has a
similar structure toM18, but somewhat simpler. We found a
source of the discrepancy between the old and new results
and the errors in the old calculation of M16 and M18

are corrected. Section V gives the summary of the updated
value of the eighth-order contribution to the electron
g� 2.

Appendix A presents the tests of the automation system
GENCODEN for the fourth-order and sixth-order g� 2’s.
Appendix B gives our renormalization scheme of the
magnetic-moment amplitude in the new approach.
Similarly, Appendix C gives the renormalization scheme
of the renormalization constants in the new approach.

II. OLD VS NEW APPROACH

The purpose of this paper is the presentation of the
results of evaluation of A�8�1 by two independent methods.
Although these methods started from the same Feynman-
parametric representation of A�8�1 , they took different ap-
proaches, in particular, in the handling of the self-energy
subdiagrams and associated IR divergences. Furthermore,
the new approach was instrumental in discovering an error
in the handling of infrared divergence in the old method
[16]. After correcting this error, we now have two inde-
pendent evaluations of A�8�1 , enhancing substantially the
credibility of the calculation.

A. Common starting point

The anomalous magnetic moment ae is given by the
static limit of the magnetic form factor that is related to the
proper vertex part ��. Throughout this paper our attention
is focused on the q-type diagrams, namely, proper vertex
diagrams that have no closed lepton loops. In both old and
new formulations, we use a relation derived from the Ward-
Takahashi identity [35,36]

 ���p; q� ’ �q�
�@���p; q�

@q�

�
q!0
�
@��p�
@p�

(16)

between the self-energy part ��p� and the sum of vertex

parts ���p; q� obtained by inserting an external vertex in
the lepton lines of � in all possible ways. Here, the
momentum of the incoming lepton is p� 1

2q and that of
the outgoing lepton is p� 1

2 q. By means of Eq. (16) a set
of vertex diagrams are amalgamated into a single self-
energy-like diagram, which reduces the number of inde-
pendent integrals substantially. For the eighth-order q-type
diagrams, the number of Feynman diagrams is reduced
from 518 to 74. Taking into account the time-reversal
symmetry, the number is further reduced from 74 to 47.

The amplitude of the magnetic-moment contribution of
a diagram is obtained by applying Feynman-Dyson rules of
QED in the momentum space. Carrying out the momentum
integration analytically, we can express the amplitude of
2nth-order diagram G as an integral over the Feynman
parameters zi:
 

M�2n�G �

�
�

1

4

�
n
�n� 1�!

�
Z
�dz�G

�
1

n� 1

�
E0 � C0

U2Vn�1 �
E1 � C1

U3Vn�2 � 
 
 


�

�

�
N0 � Z0

U2Vn
�
N1 � Z1

U3Vn�1 � 
 
 


��
; (17)

where �dz�G �
Q
idzi��1�

P
izi�. The factor ��=��n is

omitted for simplicity.
The quantities Ek, Ck, Nk, and Zk are polynomials of

symbols called building blocks Bij, Ai, and Cij [35]. The
symbols Bij and U are homogeneous polynomials of
Feynman parameters, related to the flow of loop momenta
in the diagram. The symbol Ai is called scalar current that
is associated with the flow of external momenta. They are
functions of Bij, U, and zi. The symbol Cij is given by zi,
Bij, and U. The denominator function V is defined by

 V �
X
i

zi �G; G �
X
i

ziAi; (18)

where the summation is over the electron lines only, and
the electron mass is chosen to unity for simplicity.

B. Different structure of integrand

Although the old and new methods have the common
starting point, they have an important difference in prac-
tice. In the old version of the programs, the size of the
integrand was reduced by taking symmetries of a diagram
into account. One type of modifications was applied to the
integrand by using 8 ‘‘junction laws’’ and 4 ‘‘loop laws’’
satisfied by the scalar currents Ai (where Feynman parame-
ters zi play the role of resistance) [35,36]. Another type of
modification was to reduce the number of integration
variables by exploiting the fact that in some diagrams the
integrand depends only on a particular combination of
Feynman parameters. These resulted in substantial reduc-
tion in the size of integrands and the amount of computing
time required to achieve desired precision. In the new
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version, those modifications were not employed at all
because they are diagram-specific and not suitable for
automation. As a result, the size of the FORTRAN source
code for M01 (see Fig. 1), which requires only vertex
renormalization, is about 515 KB in the new version in
contrast to 316 KB of the old version. A more notable
difference is seen for the diagram M12 which requires IR
subtraction. The new M12 occupies 630 KB while the old
M12 occupies only 21 KB. As a consequence, the old and
new integrals have much different forms so that they can be
regarded to be independent of each other as far as numeri-
cal integration is concerned.

C. UV divergence

The amplitude MG has (logarithmic) UV divergences in
general. Suppose we want to find out whether MG diverges
when all loop momenta of a subdiagram S consisting ofNS

lines and nS closed loops go to infinity. In the parametric
formulation this limit corresponds to the vanishing of U
when all zi for i 2 S vanish simultaneously. To find the
criterion for the UV divergence from S, consider the part of
the integration domain where zi for i 2 S satisfy

P
i2Szi �

�. In the limit �! 0 one finds [36,37]

 V � O�1�; U � O��nS �;

Bij �
�
O��nS�1� for i; j 2 S;
O��nS � otherwise:

(19)

The UV-divergent part can be identified by the following
procedure called K-operation:

(i) In the limit (19) keep only terms with the lowest
power of � inU, Bij, and Ai. In this limitU factorizes
as USUG=S where G=S is obtained from G by
shrinking S to a point in G. Bij factorizes similarly.
V is reduced to VG=S , where VG=S is the V function
defined on G=S.

(ii) Replace VG=S by VG=S � VS .
(iii) Rewrite the integrand of MG in terms of parametric

functions redefined in (i) and (ii), and drop all terms
except those with the largest number of contrac-
tions [35] within S. The result is denoted by
KSMG, in which KS stands for an operator acting
on MG.

By construction, KSMG has the same UV divergence as
MG in the same integration domain. Therefore it can be
used as a pointwise subtraction term in the subtractive
renormalization.

An important feature of K-operation is that the resulting
integral can be factorized exactly into a product or a sum of
products of lower-order quantities that consists of a leading
UV-divergent part of the renormalization constant and the
magnetic-moment part. The K-operation associated with a
UV-divergent subdiagram S produces, when S is of vertex
type, the subtraction term of the form [36,37]

M01 M02 M03 M04 M05 M06 M07

M08 M09 M10 M11 M12 M13 M14

M15 M16 M17 M18 M19 M20 M21

M22 M23 M24 M25 M26 M27 M28

M29 M30 M31 M32 M33 M34 M35

M36 M37 M38 M39 M40 M41 M42

M43 M44 M45 M46 M47

FIG. 1. Eighth-order Group V diagrams represented by 47 self-energy-like diagrams M01–M47.
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 K SMG � LUV
S MG=S ; (20)

where LUV
S is the leading UV-divergent part of the vertex

renormalization constant LS and MG=S is the magnetic-
moment part of the reduced diagram G=S. When S is a
self-energy subdiagram, the K-operation yields [36,37]

 K SMG � �mUV
S MG=S�i?� � B

UV
S MG=�S;i�; (21)

where �mUV
S is the leading UV-divergent part of the mass-

renormalization constant �mS , BUV
S is the leading UV-

divergent part of the wave function renormalization con-
stant BS , and the reduced diagram G=�S; i� is obtained
from G by removing S and a lepton line i adjacent to S.

The whole UV-divergent structure of the amplitude MG

can be recognized by Zimmermann’s forest formula [14].
A forest is a set of UV-divergent subdiagrams in which any
pair of subdiagrams is either disjoint (they do not share
lines or vertices) or inclusive (one subdiagram is a sub-
graph of the other subdiagram). Each subtraction term
corresponds to a forest. In our formulation, the subtraction
term is obtained by successive application of K-operations
for every element of the forest. The UV-finite amplitude
MG created by K-operation is thus expressed in the form

 M G � MG �
X
f

Y
S2f

��KS�MG; (22)

where the summation is taken over the normal forests of
the diagram G that do not include G itself as an element.

N.B.—In both old and new approaches UV divergence
is treated by the same K-operation.

D. IR divergence

A diagram may have an IR singularity when some of the
internal photon momenta vanish. In order that this singu-
larity becomes actually divergent, however, it must be
enhanced by vanishing of denominators of two or more
electron propagators (called enhancers) due to kinematical
constraints. Such a situation occurs in diagrams that have
self-energy-like subdiagrams. In Eq. (17) this corresponds
to the vanishing of the V-function of the denominators in
the integration domain characterized by [36,37]

 zi �

8><>:
O��� if i is an electron line in R;
O�1� if i is a photon line in R;
O���; �� �2; if i 2 S;

(23)

where R � G=S.
This enables us to obtain a simple IR power-counting

rule for identifying IR-divergent terms. When there are two
enhancers, the amplitude shows a logarithmic IR diver-
gence. We can identify and construct the corresponding
subtraction term by the following procedure called
I-operation [36,37]:

(a) In the limit (23) keep only terms with lowest power
of � and � in U, Bij, Ai. The numerator then factor-
izes to the product

 F ! FRFS ; (24)

where FR is a numerical factor obtained by replac-
ing all scalar currents Ai in the diagram R by one.

(b) Make the following replacements:

 U ! USUR; V ! VS � VR;

F ! F0�LR�FS;
(25)

where F0�LR� is the no-contraction part of the
vertex renormalization constant defined in R. The
difference between F0�LR� and FR causes a finite
difference of the integration.

(c) Rewrite the integrand of MG in terms of redefined
parametric functions, keeping only the IR-divergent
terms.

In the old method all logarithmic IR divergences have been
subtracted by means of the I-operation. However, the case
involving linear IR divergence, which has three enhancers,
was handled by an ad hoc manner instead of a systematic
approach. Actually, the cause of linear IR divergence is
easy to identify. It is caused by our treatment of the self-
energy subdiagram by means of K-operation which sub-
tracts only the UV-divergent part of the self-mass. The
unsubtracted part of the self-mass keeps the number of
enhancers unchanged, except in the second-order case
where the K-operation subtracts the self-mass term
completely.

In the new approach, a systematic method is developed
to handle the linear IR divergence. To remove the finite
remnant of the self-mass term completely, an R-subtraction
operation [15] is newly introduced. After the R-subtraction
operation is carried out, which decreases the number of
enhancers to two, only logarithmic IR divergences remain,
which can be handled by the I-subtraction operation simi-
lar to, but different in detail from, the I-operation of the
old method.

For a formal treatment, we introduce two operators for
these subtractions. The R-subtraction operator RS acts as

 R SMG � �mR
SMG=S�i?�; (26)

where �mR
S is the residual part of the mass-renormalization

constant defined by

 �mR
S � �mS � �m

UV
S �

X
f

Y
S02f

��KS0 �f�mS (27)

in which the leading UV-divergent part �mUV
S and the

subdivergent parts associated with the forestsQ
S02f��KS0 �f�mS are subtracted away, where f�m 	

�m� �mUV.
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The I-subtraction operator IS acts on the UV-
renormalized amplitude MG as

 I SMG � LRG=SMS; (28)

where LRG=S is the residual part of the vertex renormaliza-
tion constant defined by

 LRG=S � LG=S � L
UV
G=S �

X
f

Y
S02f

��KS0 � ~LG=S (29)

in which the leading UV-divergent part LUV
G=S and the sub-

divergent parts associated with the forestsQ
S02f��KS0 � ~LG=S are subtracted away, where ~L 	 L�

LUV.
N.B.—The IR power-counting rule identifies only IR-

divergent terms. It does not specify how to handle an IR-
finite term. The new I-subtraction operation handles the
IR-finite terms differently from the old I-operation. The
I-subtraction operation needs not deal with the IR diver-
gence associated with a vertex subdiagram of the self-
energy-like diagram, while the I-operation directly acts
on the vertex subdiagram.

The whole set of IR-subtraction terms can be obtained
by the combinations of these two operations, both of which
belong to annotated forests [15]. An annotated forest is a
set of self-energy-like subdiagrams, to each element of
which the distinct operation of I-subtraction or
R-subtraction is assigned. The IR-subtraction term associ-
ated with an annotated forest is constructed by successively
applying operators I or R, and takes the form

 ��ISi� . . . ��RSj� . . .MG; (30)

where the annotated forest ~f consists of the subdiagrams
Si; . . . and Sj; . . . .

N.B.—The IR divergence is treated differently in the old
and new approaches. This difference plays an important
part in ensuring the independence of two calculations.

E. Residual renormalization

Because of the difference in the handling of IR diver-
gences in the old and new methods, we obtain different
forms of residual renormalization. Since the old residual
renormalization is described in Refs. [36,37], let us con-
sider here only the new residual renormalization.

In the new approach the UV- and IR-finite amplitude has
the form

 �MG � MG �
X
f

Y
S2f

��KS�MG

�
X

~f

��ISi� 
 
 
 ��RSj� 
 
 
MG; (31)

where MG is the UV-finite quantity defined by Eq. (22).
�MG can be readily turned into a numerical integration
code by GENCODEN [14,15] and is to be evaluated by
numerical means.

This procedure is different from the standard on-shell
renormalization which is defined by the on-shell quantities.
The difference between the on-shell quantities and the
quantity evaluated by Eq. (31) must be compensated by
products of known lower-order quantities. We call this step
the residual renormalization. See Appendix B for details.

III. EIGHTH-ORDER TERMS

The eighth-order term A�8�1 receives contributions from
891 Feynman diagrams. The 373 of them have closed
lepton loops and had been evaluated by two or more
independent methods [16]. The remaining 518 diagrams
of q-type form one gauge-invariant set (Group V). In our
approach they are represented by 47 independent diagrams
shown in Fig. 1 by using the relation derived from the
Ward-Takahashi identity and the time-reversal symmetry.
Thus far, there is only one complete evaluation of the
eighth-order term, which was performed by numerical
means [16]. Some of these diagrams have linear IR diver-
gence, which was treated by an ad hoc subtraction method.
In contrast GENCODEN is capable of dealing with such hard
IR divergence in a systematic fashion [15]. The application
of GENCODEN to the calculation of the eighth-order q-type
diagrams provides us the opportunity not only to test if it
works properly, but also to check the previous result.

Even in the eighth-order case GENCODEN creates
FORTRAN programs very rapidly. The entire 47 program
sets are generated in less than ten minutes on hp’s Alpha.
The numerical evaluation is, however, quite nontrivial and
requires a huge computational resource. For the prelimi-
nary evaluation we have used 64 to 256 Xeon CPU’s per
diagram and run the programs over a few months. To our
surprise it uncovered an inconsistency in the treatment of
IR-subtraction terms in the old calculation. In Secs. III and
IV we describe how this inconsistency was uncovered by a
detailed comparison of the old code and the code generated
by GENCODEN.

A. IR treatments of the eighth-order diagrams

The treatments of IR-subtraction terms are different in
GENCODEN and the old approach. The difference of IR-
subtraction terms leads to the difference of the finite part of
the amplitude �Mi (i � 01; 
 
 
 ; 47). The difference
�Mold

i � �Mnew
i between the old amplitude �Mold

i and
the new one �Mnew

i is finite and can be expressed analyti-
cally in terms of finite lower-order quantities. We will see if
this difference is numerically reproduced by substituting
the numerical values calculated separately for these lower-
order quantities. If the numerical discrepancy is found,
there must be something wrong in either the old or new
calculation. This is what we tried to find out.

We noted in Sec. II C that the subtraction of UV diver-
gences is achieved by the same K-operation in both
GENCODEN and old calculation. Therefore, the difference
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between �Mold
i and �Mnew

i , if it exists, comes exclusively
from the difference of IR-subtraction procedures between
the new and old calculations. To examine this difference
more closely let us begin by considering relatively simple
diagrams which contain only 1 second-order self-energy
subdiagram. Diagrams belonging to this class are M02,
M03, M09, M13, M14, M15, M23, M24, M27, M43, M44. As
an example let us consider the diagram M14.

The IR divergence occurs in M14 from the second-order
self-energy subdiagram which consists of an electron line
‘‘2’’ and a photon line ‘‘b’’ in Fig. 2(a). In the W-T summed
diagram this subdiagram plays dual roles. One part of this
subdiagram behaves as a genuine self-mass term and the
associated UV singularity is removed completely by the
K2-operation. Another part works as the second-order
magnetic moment M2, and the residual diagram surround-
ing M2 behaves like a sixth-order vertex diagram L6g5 of
Fig. 2(b), which is IR divergent.

In the old approach, the finite contribution �M14 was
defined by

 �Mold
14 	 M14 �

X
f

Y
S2f

��KS�M14 � �I6g5 � I2�L4l�M2:

(32)

Here the second term on the right-hand side (r.h.s.) is the
sum of UV subtraction terms given by the K-operation.
The last two terms beginning with the letter ‘‘I’’ are the IR-
subtraction terms generated by the I-operations I134567

and I13�1� I134567� in the old approach. They arise from
the ‘‘magnetic-moment part’’ of the self-energy-like sub-
diagram mentioned above. Note that they are exactly iden-
tical with the IR-divergent parts of L6g5:
 

L6g5 	 I6g5 � I2�L4l � �L6g5 �
X
f

Y
S2f

��KS� ~L6g5

� LUV
6g5: (33)

Here the sum appearing on the right-hand side denotes all
the UV subdivergences contained in L6g5 (whose explicit
form is�LUV2

~L4c � L
UV
4l

~L2 � �L
UV
2 �

2 ~L2), and the last term
is the overall UV divergence of L6g5.

In the new (or GENCODEN) approach, we introduce a
term LR6g5 defined by

 LR6g5 	 L6g5 � LUV
6g5 �

X
f

Y
S2f

��KS� ~L6g5 (34)

and �Mnew
14 by

 �Mnew
14 � M14 � I2M14; (35)

where I2 is an I-subtraction operation associated with the
self-energy-like subdiagram S � f2; bg, and yields

 I 2M14 � LR6g5M2: (36)

From Eqs. (33) and (34) we obtain

 LR6g5 � I6g5 � I2�L4l � �L6g5: (37)

This is UV finite and consists of not only IR-divergent
terms but also a completely finite term �L6g5. It follows
that �Mold

14 and �Mnew
14 differ by

 �Mold
14 ��Mnew

14 � �L6g5M2: (38)

Since �L6g5 is UV and IR finite, it can be computed
without encountering with UV or IR divergence. This is
true for every �Mold

i � �Mnew
i as it originates from the

choice of finite pieces that accompany the singular terms.
The choice adopted in �Mnew

14 turned out to be preferred
since it leads to a simpler formula and can be readily
extended to other cases.

All 11 diagrams listed above can be analyzed in the
same manner. The diagrams M04, M11, M12, M17, M29,
M30, which contain two or three second-order self-energy-
like subdiagrams, are slightly more complicated, but can
be treated in a similar manner. Evaluation of the diagrams
with one self-energy subdiagram of fourth- or sixth-order
such asM08,M10,M26,M38,M40,M41 is more complicated
and needs the residual self-mass renormalization, the
R-subtraction, as well as the I-subtraction. But they do
not present particular difficulty as far as IR subtraction is
concerned. (See Appendix B for more information on these
diagrams.)

The diagrams M28, M42, M45, M46, M47 are even more
complicated due to nested structure, but they can also be
handled by slight extensions. (See Appendix B.)

The most difficult of the eighth-order q-type diagrams
are those containing 1 second-order self-energy-like sub-
diagram and one fourth-order self-energy-like subdiagram,
namely, M16 and M18 of Fig. 3. The difficulty originates

M14

(a)

1 2 3 4 5 6 7

a b c d

6g5
(b)

4lM14

(a)

1 2 3 4 5 6 7

a b c d

6g5
(b)

4l

FIG. 2. (a) Self-energy-like diagram of M14. (b) Vertex dia-
grams 6g5 and 4l from which the vertex renormalization con-
stants L6g5 and L4l, respectively, are derived.

M16

1 2 3 4 5 6 7

a b c d

M18

1 2 3 4 5 6 7

a b c d

FIG. 3. Self-energy-like diagrams of M16 and M18. Feynman
parameters assigned to the electron lines are z1 � z7 and those to
the photon lines are za � zd.
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from the fact that these diagrams have linear IR diver-
gence. A detailed analysis of these diagrams is deferred
to Sec. IV.

B. Numerical result of eighth-order calculation

We present the results of our numerical study for
�Mold

i ��Mnew
i in Tables I, II, and III. In these tables,

the second columns list the analytic expression of �Mold
i �

�Mnew
i in terms of finite pieces of lower-order renormal-

ization constants and magnetic-moment amplitudes multi-
plied by the multiplicity, which is 1 for the time-reversal-
symmetric diagram and 2 otherwise. Each value in the
third columns, called ‘‘value A,’’ is obtained by substitut-
ing the values of these renormalization constants, etc.,
listed in Table IV, for the corresponding expression in the
second columns.

In contrast to value A, each value in the fourth columns,
called ‘‘value B,’’ is obtained by taking the difference

TABLE I. Comparison of the numerical calculation of M01–M15 of the eighth-order Group V diagrams. The second column shows
the analytic expression for �Mold

i ��Mnew
i for each diagramMi in terms of lower-order finite quantities multiplied by the multiplicity.

The value A in the third column is obtained by substituting the values of lower-order renormalization constants, such as �M4a, �L4s,
and �M4a�1?�, for the corresponding expression in the second column. See Appendices B and C for the details. In contrast, the value for
�Mold

i ��Mnew
i in the fourth column, denoted by value B, is obtained by taking the direct difference between the value of �Mold

i
quoted from Ref. [16], and the one of �Mnew

i calculated via GENCODEN in the new IR-subtraction procedure [14,15]. The fifth column
lists up the differences A� B. If the whole calculation is done correctly, A� B must vanish within the numerical uncertainty. In
evaluating �Mnew the double precision is used for the diagrams without a self-energy subdiagram, while the quadruple precision is
used for the remainder.

Diagram Difference Value A Value B A� B

M01 0 0 �0:0129 47� � 0.0129(47)
M02 2�L6f1M2 �0:0063 2� � 0.0060(110) �0:0124 110� �
M03 �L6f3M2 �0:1133 1� � �0:1055 100� � �0:0078 100� �
M04 2��L6d1 ��L6d3�M2 0.3350(2) 0.3408(175) �0:0058 175� �
M05 0 0 0.0020(28) �0:0020 28� �
M06 0 0 �0:0223 61� � 0.0223(61)
M07 0 0 �0:0102 40� � 0.0102(40)
M08 2���m4a�M4a�1?� ��L4c�M4a� �2:1809 7� � �2:1790 121� � �0:0019 121� �
M09 2�L6f2M2 0.0806(1) 0.0894(109) �0:0088 109� �
M10 2���m4b�M4a�1?� ��L6d2M2 ��L4c�M4b� 15.8898(49) 15.8795(147) 0.0103(155)
M11 2�L6d5M2 0.6949(2) 0.6827(112) 0.0122(112)
M12 �2�L6a1 ��L6a3�M2 1.2842(0) 1.2875(74) �0:0034 74� �
M13 2�L6h1M2 �0:4211 2� � �0:4238 48� � 0.0027(48)
M14 2�L6g5M2 0.0892(2) 0.0960(95) �0:0068 95� �
M15 2�L6g1M2 0.0883(2) 0.0893(71) �0:0009 71� �

TABLE II. Comparison of the numerical calculations of M16–M30 of the eighth-order Group V diagrams.

Diagram Difference Value A Value B A� B

M16 2���m4a�M4b�1?� ��L6c1M2 ��L4s�M4a� �2:6042 6� � �2:6316 235� � 0.0274(235)
M17 2��L6e1 ��L6d4�M2 �2:1201 2� � �2:1010 189� � �0:0173 189� �
M18 2f��m4b�M4b�1?� � �L4s�M4b � ��L6b1 ��L6a2�M2g 16.9686(39) 17.1897(206) �0:2207 210� �
M19 0 0 0.0002(3) �0:0002 3� �
M20 0 0 0.0010(17) �0:0010 17� �
M21 0 0 0.0003(3) �0:0003 3� �
M22 0 0 �0:0090 25� � 0.0090(25)
M23 2�L6h2M2 0.0501(2) 0.0438(59) 0.0064(59)
M24 2�L6g2M2 0.0789(2) 0.0945(61) �0:0155 61� �
M25 0 0 �0:0031 20� � 0.0031(20)
M26 ��m6f�M2? �M2? �I�� 2.5119(3) 2.5369(95) �0:0250 95� �
M27 2�L6g4M2 �0:0630 1� � �0:0459 90� � �0:0171 90� �
M28 2f��m6d�M2? �M2? �I�� ��L6c2M2g �7:5332 5� � �7:5307 153� � �0:0025 153� �
M29 2�L6e2M2 �0:2857 2� � �0:2809 109� � �0:0048 109� �
M30 ��m6a�M2? �M2? �I�� � 2�L6b2M2 0.2763(6) 0.2675(153) 0.0088(153)
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between the numerical value �Mold
i quoted from the lit-

erature [16] and the one �Mnew
i newly calculated via

GENCODEN according to the new IR-subtraction procedure
[15]. The fifth columns list up the difference of value A and
value B for each i, denoted by A� B. It must be zero
within numerical precision if the whole calculation has
been done correctly. If value A and value B are different,
there are two possible sources. One possibility is that the
program used for a numerical calculation has a bug. It
means that either �Mold

i or �Mnew
i is wrong, or both are

wrong. The other possibility is that we incorrectly identi-
fied the analytic difference between the old and new
methods.

For a diagram Mi without any self-energy-like subdia-
grams, the analytic expression of �Mold

i � �Mnew
i is trivi-

ally zero, as it does not have IR divergence. We can see
from the corresponding values B in Tables I, II, and III that
this is confirmed within the numerical precision employed.

The diagrams containing self-energy-like subdiagrams
suffer from IR divergence. Tables I, II, and III show that old
and new calculations are in good agreement for most of
these diagrams. However, a large discrepancy �0:221�21�
is found for the diagram M18. Though no detectable dis-
crepancy is found for M16, it has a structure similar to M18

and is somewhat simpler to analyze. In Sec. IV we thus
look for the origin of such a discrepancy through a detailed
investigation of M16.

TABLE III. Comparison of the numerical calculations of M31–M47 of the eighth-order Group V diagrams.

Diagram Difference Value A Value B A� B

M31 0 0 0.0007(5) �0:0007 5� �
M32 0 0 �0:0024 10� � 0.0024(10)
M33 0 0 0.0001(3) �0:0001 3� �
M34 0 0 �0:0010 13� � 0.0010(13)
M35 0 0 0.0001(13) �0:0001 13� �
M36 0 0 �0:0027 22� � 0.0027(22)
M37 0 0 0.0004(5) �0:0004 5� �
M38 ��m6h�M2? �M2? �I�� �0:9088 3� � �0:9112 40� � 0.0024(40)
M39 0 0 �0:0031 18� � 0.0031(18)
M40 2��m6g�M2? �M2? �I�� 3.8281(3) 3.8326(71) �0:0045 71� �
M41 ��m4a��M4a�2?�� ��L4x�M4a 0.9809(3) 0.9713(83) 0.0096(83)
M42 ��m6c�M2? �M2? �I�� ��L4l�M4a ���m4af�M4b�2?�

���m2? �M2? �M2? �I��g
�7:0218 4� � �7:0202 114� � �0:0016 114� �

M43 �L6h3M2 0.4724(1) 0.4703(42) 0.0022(42)
M44 2�L6g3M2 �0:0748 1� � �0:0499 69� � �0:0250 69� �
M45 ��m6e�M2? �M2? �I�� ��L6c3M2 �0:0523 3� � �0:0498 90� � �0:0025 90� �
M46 ��m4b�M4a�2?� ��L6e3M2 ��L4x�M4b �7:9339 22� � �7:9232 86� � �0:0107 89� �
M47 ��m6b�M2? �M2? �I�� ��L6b3M2 ��L4l�M4b

���m4bf�M4b�2?� ���m2? �M2? �M2? �I��g
10.5872(15) 10.5864(102) 0.0008(103)

TABLE IV. Finite renormalization constants used in Tables I, II, and III. Sixth-order vertex renormalization constants are shown in
this table. Their validity is checked by comparing the sum XLBD 	

P5
i�1 �L6xi �

1
2 �B6x � 2��m6x, x � a; 
 
 
h to the previous

XLBD values listed in Ref. [16].

�L6a1 0.539 604(45) �L6a2 �0:167 211 81� � �L6a3 1.489 159(98)
�L6b1 �1:479 745 109� � �L6b2 0.582 944(106) �L6b3 �0:016 344 73� �
�L6c1 �0:219 365 98� � �L6c2 0.071 504(87) �L6c3 �0:552 261 107� �
�L6d1 0.834 949(96) �L6d2 �0:090 796 92� � �L6d3 �0:499 995 97� �
�L6d4 �1:378 190 109� � �L6d5 0.694 916(101)
�L6e1 �0:741 904 144� � �L6e2 �0:285 670 108� � �L6e3 �0:141 787 122� �
�L6f1 �0:006 322 114� � �L6f2 0.080 648(97) �L6f3 �0:226 693 106� �
�L6g1 0.088 204(70) �L6g2 0.078 922(103) �L6g3 �0:074 834 92� �
�L6g4 �0:062 995 85� � �L6g5 0.089 213(69)
�L6h1 �0:421 132 108� � �L6h2 0.050 140(108) �L6h3 0.944 887(116)
��m6a �0:153 31 26� � ��m6b 1.837 95(19) ��m6c �3:050 47 17� �
��m6d �1:901 17 11� � ��m6e 0.111 93(13) ��m6f 1.255 94(10)
��m6g 0.957 02(6) ��m6h �0:454 41 5� �
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IV. DETAILED EXAMINATION OF M16

In the old approach the finite contribution �M16 was
given by [36,38]

 �Mold
16 	 M16 �

X
f

Y
S2f

��KS�M16 � I6c1M2 �
1

2
J6cM2

� I4s�M4a ���m4aI4b�1?� � I2?��m4aM2;

(39)

while the new version is given by

 �Mnew
16 	 M16 �

X
f

Y
S2f

��KS�M16 � LR6c1M2

� LR4s�M4a � ��m4aM4b�1?� � LR2?��m4aM2;

(40)

where LR2? � I2? . Note that ‘‘2?’’ denotes the second-order
diagram with a two-point vertex inserted into the internal
lepton line. ‘‘4b�1?�’’ denotes the diagram obtained from
the fourth-order diagram 4b by inserting a two-point vertex
into the lepton line 1.

A. Unrenormalized amplitude and UV subtraction
terms of M16

We began our examination by comparing the unrenor-
malized amplitude M16 and its UV subtraction terms in the
old and new programs. For this purpose we used the ‘‘spot-
check’’ method, by which the values of old and new
integrands are compared at the same set of numerical
values of integration variables. The integrand of M16 is
defined in the Feynman parameter space that spans a
hyperplane in 11-dimensional space satisfying

 z1 � z2 � 
 
 
 � z7 � za � zb � zc � zd � 1: (41)

In the new version, this hyperplane is mapped onto a unit
10-dimensional hypercube. On the other hand, in the old
version the integration space is mapped onto an 8-
dimensional hypercube, since the integrand depends only
on the combination of Feynman parameters z137 � z1 �
z3 � z7. To carry out the spot-check, we must use the same
mappings, so we changed the mapping of the new inte-
grand to the old one defining z1 � z3 � z7 � �1=3�z137. In
practice the set of input parameters is chosen from the
neighborhood of the singular point of interest where nu-
merical disagreement is likely to be magnified. But points
too close to the singular point are avoided, where the noise
due to round-off error obscures the meaningful informa-
tion. The old integrals and new integrals of the unrenor-
malized term and UV subtraction terms should be
algebraically equivalent but have different forms because
of extensive simplification of the old integrands by means
of various relations among scalar currents. The ‘‘spot-
check’’ comparison of old and new unrenormalized and
UV integrands proves unambiguously that they have never-
theless the same values within the precision of numerical

evaluation. (Typically more than 10 digits in 14 digits
precision.)

B. IR-subtraction terms of M16

The spot-check method, however, is not directly appli-
cable for comparison of old and new IR-subtraction terms,
because they are algebraically different by construction.
For this purpose we need to understand precisely the
analytic structure of the IR-subtraction terms in both old
and new methods. Thus we follow an alternative approach
by which we can identify how they differ from each other
in the analytic form.

In the old method, the IR singularities of M16 are iso-
lated by the IR-operations, where R � f1; 3; 7; ag,
f1; 2; 3; 7; a; bg, or f1; 3; 4; 5; 6; 7; a; c; dg. Thus, the formal
expression of the IR-free contribution of M16 is given by
[37]

 �M16 	 �1� I137��1� I134567��1� I1237�M16; (42)

where M16 is the UV-finite amplitude obtained by the
K-operations. The product I134567I1237 gives no contribu-
tion, since they overlap each other and cannot take these IR
limits simultaneously.

Following the old prescription in Ref. [37], individual
IR-subtraction terms of Eq. (42) can be written as follows:

 � I134567M16 � �I6c1M2; (43)

 � I1237M16 � �I4c�M4a �M4b�1?��I���m4a; (44)

 � I137�1� I134567��1� I1237�M16 � �I2?��m4aM2:

(45)

I6c1 and I4c are the no-contraction terms of the vertex
renormalization constant L6c1 and L4c, respectively.
M4b�1?� is the magnetic-moment amplitude, which is ob-
tained from the fourth-order diagram M4b with the two-
point vertex inserted into the fermion line 1. Its argument
�I� implies that the numerator of the no-contraction term of
M4b�1?� is replaced by that of the vertex renormalization
constant L4s, while discarding the contraction terms.

If there were only logarithmic IR divergence, �M16

defined in (42) would be IR finite, but it is not. The problem
here is that I6c1 and M4b�1?��I� in Eqs. (43) and (44) have
linear IR divergence. The I-operation prescription is con-
structed so that it only deals with the leading IR singularity.
Of all eighth-order q-type diagrams, M16 and M18 have the
linear IR divergence. Since these are the only cases, we
chose to deal with their next-to-leading order IR divergen-
ces by an ad hoc method rather than constructing a general
rule.

In the I134567 limit of Eq. (43), the diagram M16 decou-
ples into the vertex diagram L6c1 which consists of lepton
lines 1, 3, 4, 5, 6, 7 and photon lines a, c, d and the
magnetic-moment part M2 which consists of lepton line 2
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and photon line b. All IR singularities originate from the
vertex diagram L6c1. The no-contraction term L6c1�F0�,
namely I6c1, includes the leading linear IR singularity as
well as the next-to-leading logarithmic singularity.

The logarithmic IR singularity also arises from the
I137-limit of the one-contraction term L6c1�F1�. To deal
with this, we constructed the quantity Junrenorm

6c in which the
numerator is the I137 limit of L6c1�F1�, but the denomina-
tor V and U is the same as L6c1. The UV divergences of
Junrenorm

6c are removed by the K456, K56, K45-operations:
 

1

2
J6c � �1�K456��1�K45��1�K56�

�

�
�

1

32

Z
�dz�G=S

f1

U3V2

�
;

f1 � �16�B45�2� A6� � 2B46�1� 2A5�

� B56�2� A4��;

(46)

where S � f2; bg.
Next we consider the I1237-limit of Eq. (44). In this

limit, the self-energy-like subdiagram consisting of lepton
lines 4, 5, 6 and photon lines c, d plays dual roles. When
this fourth-order self-energy-like subdiagram behaves as a
magnetic moment M4a, the residual diagram resembles a
vertex diagram L4s. Its singularity is logarithmic, so
I1237-operation properly works for this part.

The problem arises when the self-energy-like subdia-
gram acts as the self-mass �m4a, which is the second one of
its dual roles. The residual diagram is the magnetic-
moment amplitude with one two-point vertex inserted,
namely, M4b�1?�. The power counting shows that it has a
linear IR singularity. Thus, the I-operation is not enough
to remove the IR singularity of this term. M4b�1?��I� is not
sufficient to remove all IR singularities arising in the I1237

limit. The IR structure of M4b�1?� is more closely scruti-
nized in the next subsection, where I4b�1?� is constructed to
include both linear and logarithmic IR singularities of the
magnetic-moment amplitude M4b�1?�. (A similar subtrac-
tion method works also for M18.)

Taking these considerations into account, we replace the
IR-subtraction terms of M16 in the old method listed in
Eqs. (43) and (44) with [36,38]

 � I0134567M16 � ��I6c1 �
1
2J6c�M2; (47)

 � I01237M16 � �I4c�M4a � I4b�1?���m4a; (48)

which are more convenient for comparison with the new
approach. Note that Eq. (45) is unchanged.

Now, let us look at the new approach. All IR singular-
ities, both linear and logarithmic, are subtracted by using
the general rule applicable to any order of the perturbation
theory. The R- and I-subtractions, and their combinations
determine the IR-subtraction terms of M16 as follows:

 

�I2M16 � �L
R
6c1M2;

�I456M16 � �LR4sM4a;

�R456M16 � ��mR
4aM4b�1?�;

�I2R456M16 � �LR2?�m
R
4aM2:

(49)

By definition given in Eqs. (27) and (29), the residual
quantities are explicitly given by
 

LR6c1 � �1�K456��1�K45��1�K56��L6c1 � L
UV
6c1�

� L6c1 � L
UV
6c1 � �B

UV
4a

~L02 � �m
UV
4a L2? �

� 2LUV
2

~L4s � 2LUV
2 ��m2L2? � B

UV
2

~L02�;

LR4s � �1�K2��L4s � L
UV
4s �

� L4s � L
UV
4s � �B

UV
2

~L02 � �m2L2?�;

M4a � �1�K45��1�K56�M4a � M4a � 2LUV
2 M2;

�mR
4a � �m4a � �m

UV
4a

M4b�1?� � �1�K2�M4b�1?�

� M4b�1?� � �BUV
2 M2? � �m2M2??�; (50)

where ~L � L� LUV. (See below Eq. (27).) In terms of the
old expression of the unrenormalized amplitude and renor-
malization constants, the residual quantities are related to
the IR-divergent and finite pieces of the old method by the
following relations:
 

LR6c1 � I6c1 �
1
2J6c ��L6c1;

LR4s � I4s ��L4s;

M4a � �M4a;

�mR
4a � ��m4a;

M4b�1?� � I4b�1?� � �M4b�1?�:

(51)

We are now ready to compare the IR-subtraction terms
of the old and new method side by side:

 

old new
�a� ��I6c1 �

1
2J6c�M2 ��I6c1 �

1
2J6c � �L6c1�M2

�b� �I4s�M4a ��I4s � �L4s��M4a

�c� �I4b�1?���m4a ��I4b�1?� � �M4b�1?����m4a

�d� �I2?��m4aM2 �I2?��m4aM2:

(52)

Actually, instead of examining the IR-subtraction terms of
the old method themselves we reconstructed them from the
new programs by dropping finite terms (e.g. �L4s) from
the ‘‘Residual’’ term (e.g. LR4s), and compared them with
the terms in the old programs by the spot-check method. To
obtain I6c1 and I4s, we only need to comment out the
contraction terms (equivalently drop the terms proportional
to Bij) of LR6c1 and LR4s of the new programs. In this way, we
found that the reconstructed IR-subtraction terms from
the new programs are identical with old ones for (a), (b),
and (d).
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However, the old IR-subtraction term (c) I4b�1?���m4a

cannot be constructed by such a simple recipe from the new
programs generated by GENCODEN. Dropping the finite
terms in M4b�1?���m4a is not enough to reproduce
I4b�1?���m4a. Therefore, we reconstructed the subtraction
term I4b�1?���m4a from the scratch using the definitions of
the fourth-order quantities I4b�1?� and ��m4a. Then, the
result is compared with the integrand in the old program of
�Mold

16 .

C. I4b�1?���m4a by the old I-operation

Let us first explain how I4b�1?���m4a is obtained in the
old program. In the old approach, the IR-subtraction term
I4b�1?���m4a originates from the I1237-operation. In addi-
tion to this term, I1237 operation yields the term I4s�M4a.

The IR limit associated with the operator I1237 is given
by

 za � zb � 1�O���; z1; z2; z3; z7 � O���;

z4; z5; z6; zc; zd � O���; �� �2; �! 0:
(53)

In the neighborhood of this limit we have A1 � 1�O���,
A2 � 1�O���, and V � O��2�. As is discussed in the
previous section, the result of the I1237-operation includes
both linear and logarithmic IR divergences. In particular,
the linear divergence is associated with the I137I1237 limit.
If we apply the I137I1237 operation, however, it subtracts
the linear divergence correctly, but not the logarithmic
divergence. Thus, we chose an ad hoc method in which
the piece including linear divergence is separated out from
the result of the I1237-operation and put aside for a while.
The remainder that contains only logarithmic divergence is
named fk. The linear divergent piece is redefined so that it
is defined on the subdiagram f1; 2; 3; 7; a; bg without de-
composing it into two subdiagrams f2; bg and f1; 3; 7; ag,
which occurs in the naive I137I1237 limit. This term is
named fl. The explicit forms of fk and fl in the old
FORTRAN program of �M16 read:

 fk �
Z
�dz�G

1

4U2 L4s�F0�

�

�
E0 � C0 � �m4a�f0� � gSF1 � Y1

V3

�
3�gS � Vt��m4a�f0� � Y0

V4

�
; (54)

 

fl � �
3

2

Z
�dz�G

�m4a�f0�

U2V4 z2�1� A2�
2

� ��1� 6A1 � 3A2
1 � 2A3

1�; (55)

where

 

L4s�F0� � �4A1 � 2A2��1� A1 � A
2
1�

� ��2� A1A2��1� 4A1 � A2
1�;

F1 � B45�2� A6�=U� 2B46�1� 2A5�=U

� B56�2� A4�=U;

Y1 � �z4�B45�1� A6� � B46 � B56A4�=U

� z5�B45�1� A6� � 4B46A5

� B56�1� A4��=U

� z6�B45A6 � B46 � B56�1� A4��=U;

Vt � z137�1� A1� � z2�1� A2�;

E0 � 2A4A5A6 � A4A5 � A4A6 � A5A6;

C0 � �3zczd=US ;

�m4a�f0� � E0 � 1� 2A5;

Y0 � z4��A4 � A5 � A6 � A4A5 � A4A6 � A5A6�

� z5�1� A4A5 � A4A6 � A5A6 � 2A4A5A6�

� z6�A4 � A5 � A6 � A4A5 � A4A6 � A5A6�;

gS � z4A4 � z5A5 � z6A6: (56)

The building blocks U, V, Ai, Bij of the above integrands
are obtained from those for M16 by taking the IR limit
associated with the I1237-operation. Recall that in the IR
limit the subdiagram S consisting of the fermion lines 4, 5,
6 and photon lines c, d, and the reduced diagram G=S
consisting of the fermion lines 1, 2, 3, 7 and the photon
lines a, b decouple from each other. Thus, the building
blocks are actually the same as those obtained by taking the
UV limit associated with the K456 limit. Their explicit
forms are
 

U � USUG=S;

US � z46cdz5 � z4cz6d;

UG=S � z137az2b � z2zb;

V � VS � VG=S ;

VS � z456 � z4A4 � z5A5 � z6A6 � �2
zcd;

VG=S � z1237 � z137A1 � z2A2 � �2
zab;

Ai � 1�
X7

j�1

ziBij=U; i � 1; 
 
 
 7;

B11 � B13 � B17 � B33 � B37 � B37 � z2bUS ;

B45 � z6dUG=S; B46 � �z5UG=S;

B56 � z4cUG=S;

Bij � 0 for i 2 S and j 2 G=S:

(57)

In the above zi1i2


 stands for zi1 � zi2 � 
 
 
 and the elec-
tron mass is taken as a unit of mass scale (i.e., 1) and the
photon mass is �. In the leading order of the I1237 limit
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L4s�F0� tends to 4. The actual form of L4s�F0� in Eq. (56)
was chosen so that the integral fk decouples into known
lower-order quantities. This difference for L4s�F0� is IR
finite. Note that �m4a�f0� is related to the integrand of
��m4a, namely, the UV- and IR-finite part of the mass-
renormalization constant �m4a given later in Eq. (65).

In order to clarify the structure of fk and fl, let us split fk
into the three parts fk1, fk2, fk3,
 

fk1 �
Z
�dz�G

1

4U2 L4s�F0�

�

�
E0 � C0 � gSF1 � Y1

V3 �
3gS�m4a�f0� � Y0

V4

�
;

fk2 �
Z
�dz�G

1

4U2 L4s�F0��m4a�f0�

�
1

V3 �
3z137�1� A1�

V4

�
;

fk3 �
Z
�dz�G

1

4U2 L4s�F0��m4a�f0�
3z2�1� A2�

V4 ; (58)

and fl into the two parts fl1, fl2
 

fl1 �
3

4

Z
�dz�G

�m4a�f0�

U2V4 z2A2�1� A2�

� ��1� 6A1 � 3A2
1 � 2A3

1�;

fl2 � �
3

4

Z
�dz�G

�m4a�f0�

U2V4 z2�1� A2��2� A2�

� ��1� 6A1 � 3A2
1 � 2A3

1�:

(59)

The integrand fk1 was compared with the integrand
I456M16 generated by GENCODEN by the spot-check
method. We confirmed that the integral fk1 minus its K2

limit, fkv, is equal to I4s�M4a, which is listed as (b) of
(52). It turns out that fk2 � fl1 is equal to I4b�1?���m4a,
which is reconstructed from the lower-order quantities in
the next subsection. Thus, the difference between the old
calculation and the reconstructed one is confined in fk3 �
fl2. It is IR finite but contributes a nonzero value to �Mold

16 .

D. I4b�1?���m4a reconstruction from the lower-order
quantities

In order to understand where this difference fk3 � fl2
came from, let us examine IR-divergence structure of
mass-inserted magnetic-moment amplitude M4b�1?� in the
old approach. I4b�1?� is defined from M4b�1?� as follows
[36,38]:
 

M4b�1?� � �1�K2��1� Iall��M4b�1?� �M4b�1?��f��

�K2M4b�1?� � Iall�1�K2�M4b�1?�

� �N0 � Z0 � f; E0 � C0� �M4b�1?��f�

	 �M4b�1?� � ��m2M2?? � BUV
2 M2?� � I4b�1?�:

(60)

The two terms in the second line of the r.h.s. define I4b�1?�:

 

I4b�1?� 	 Iall�1�K2�M4b�1?��N0 � Z0 � f; E0 � C0�

�M4b�1?��f�; (61)

where the function f is introduced in the first term in an
ad hoc manner to subtract out the linear IR divergence
coming from N0 � Z0. The linear IR divergence is con-
fined to the second term M4b�1?��f�, which has the form
 

M4b�1?��f� � �
1

8

Z
�dy�G=S

f

U2
G=SV

3
G=S

;

f � �8y2A2�1� A2���1� 6A1 � 3A2
1 � 2A3

1�:

(62)

The explicit form of the first term of Eq. (61) is

 I allM4b�1?��N0 � Z0 � f; E0 � C0�

� lim
�!0

Z
�dy�G=S

L4s�F0�

U2
G=S

�
1

2V2
G=S

�
y137�1� A1�

V3
G=S

�
;

(63)

where
 

VG=S � y137�1� A1� � y2�1� A2� � �2�ya � yb�;

�dy�G=S � dy1dy2dy3dy7dyadyb��1� y1237 � yab�: (64)

The finite part of the mass-renormalization constant
��m4a is

 ��m4a �
1

4

Z
�dy�S

�m4a�f0�

U2
SVS

; (65)

where �m4a�f0� is expressed in the same form in Eq. (56)
and

 �dy�S � dy4dy5dy6dycdyd��1� y456 � ycd�: (66)

Using the identity

 

1

VmS V
n
G=S
�

��m� n�
��m���n�

Z 1

0
dt
Z 1

0
ds��1� t� s�

�
tm�1sn�1

�tVS � sVG=S�
m�n ; (67)

we can express the product of ��m4a and the first term of
I4b�1?� defined in Eq. (61) in the same Feynman parameter
space as that for the original amplitude M16

 frc
k2 	 ��m4a � IallM4b�1?��N0 � Z0 � f; E0 � C0�

�
Z
�dz�G

L4s�F0��m4a�f0�

4U2

�
1

V3 �
3z137�1� A1�

V4

�
;

(68)

which is identical with fk2. Similarly, the contribution of
the product of ��m4a M4b�1?��f� to M16 is
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frc
l1 	 ��m4aM4b�1?��f�

�
3

4

Z
�dz�G

�m4a�f0�

U2V4 z2A2�1� A2�

� ��1� 6A1 � 3A2
1 � 2A3

1�; (69)

which is identical with fl1.
Therefore we find that the combination, �fk3 � fl2, is

an extra in the old �Mold
16 so that the correction term

 

�Madd
16 	 2�fk3� fl2�

��2�
9

4

Z
�dz�G

�m4a�f0�

U2V4 z2A2�1�A1�
3�1�A2�;

(70)

where the overall factor 2 comes from the time-reversal
diagram, must be added to �Mold

16 . Evaluating it numeri-
cally, we obtain �Madd

16 � 0:029 437 8�98�, which is
smaller than the current uncertainty of value B for M16 in
Table II and cannot be detected by the direct comparison of
value A and value B until the latter is evaluated more
precisely.

The difference between �Mnew
18 and �Mold

18 can be ana-
lyzed in the same manner. It is found that the difference is
numerically not small for M18:
 

�Madd
18 	 2�1�K5��fk3 � fl2�

� �2�
9

4

Z
�dz�G�1�K5�

�

�
�m4b�f0�

U2V4 z2A2�1� A1�
3�1� A2�

�
� �0:215 542�19�; (71)

where Ai,U, and V are defined in the I1237 limit ofM18. Of
course their explicit forms are different from those of M16.
If we add �Madd

18 to �Mold
18 , the value B for M18 in Table II

becomes 16:974�21� and the difference between value A
and value B is reduced to �0:006�21�, which is consistent
with zero within the precision of numerical calculation.

V. CONCLUSION

The results described in this paper are summarized as
follows:

(1) There was an inconsistency between the old inte-
grals �Mold

16 and �Mold
18 and their residual renormal-

ization terms. This inconsistency is resolved in this
paper.

(2) Other 45 integrals of Group V of the old calculation
are in good agreement with the new ones.

(3) Programs generated by GENCODEN have no error for
N � 8. Namely, the automation scheme has cleared
the eighth-order test without difficulty.

The separation of the IR-divergent and finite pieces in a
given amplitude can be made arbitrarily. There is no over-
riding rule that dictates how to carry out such a separation.
We only have to keep a record of what is subtracted as an
IR-subtraction term. All IR-subtraction terms are summed
up in the end and the arbitrariness in the choice of the IR-
divergent part cancel out, leaving a finite contribution as a
part of the residual renormalization.

The important point is that the IR-subtraction term
prepared for the numerical calculation and the one used
to calculate the residual renormalization must be the same.
What we found is that I4b�1?� used in the numerical calcu-
lation of M16 and M18 and I4b�1?� for the residual renor-
malization constant �M4b�1?� had different forms in the
FORTRAN programs of the old calculation. This is the
reason why M16 and M18 had IR-finite but redundant
contributions.

The development of an automatic code generator [14,15]
was crucial in enabling us to discover the existence of extra
IR-subtraction terms in M16 and M18 on short notice.
Adding the correction terms �Madd

16 and �Madd
18 to the old

value, we find the entire contribution of Group V to be

 A�8�1 �Group V� � �2:179 16�343�; (72)

which is in good agreement with the still preliminary value

 A�8�1 �Group V� � �2:219�53�; (73)

obtained by the new code generated by GENCODEN.
Because of the different forms of IR-subtraction terms,

the forms of the residual renormalization are also different
in the old and new calculations. The residual renormaliza-
tion terms in the old IR procedure are given by [16,36,38]

 

A�8�1 �Group V�old � �M�8�old � 5�M�6�old�B2 ��M�4�f4�L�4� � 3�B�4� � 9��B2�
2g �M2f2�L�6� ��B�6�

� �10�L�4� � 6�B�4���B2 � 5��B2�
3g ��M�4

?���m�4�

� �M2? �M2?�I��f��m
�6� � ��m�4��5�B2 � ��m2?�g �M2��m�4��4�L2? ��B2? � B2? �I��;

(74)
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where
 

�M�8�old �
X47

i�01

�Mold
i ;

�M�6�old �
Xh
x�a

�Mold
6x ;

�M�4� � �M4a ��M4b;

�M�4
?� � 2�M4a�1?� ��M4a�2?� � 2�M4b�1?�

��M4b�2?�;

�L�6� �
Xh
x�a

X5

i�1

	x�L6xi;

�L�4� � 2�L4c ��L4x � 2�L4s ��L4l;

�B�6� �
Xh
x�a

	x�B6x;

�B�4� � �B4a � �B4b;

��m�6� �
Xh
x�a

	x��m6x;

��m�4� � ��m4a ���m4b;

	x �
� 1 for x � a; b; c; e; f; h

2 for x � d; g:

(75)

The numerical values of the finite renormalization con-
stants are listed in Tables IVand V, and also in Appendix A.
B2?�I� is obtained from the Iall-operation of the wave
function renormalization constant B2? .

The formula of the residual renormalization for the new
calculation is much simpler than that for the old one. Since
the mass renormalization is completed within the numeri-
cal calculation, the mass-renormalization constant should
not appear in the residual renormalization. The exceptions
are the vertex and wave function renormalization constants
that have self-energy subdiagrams. The mass-inserted ver-
tex (wave function) renormalization constant L2?�B2?� has

no overall UV divergence. As a result, the K-operation
cannot pick up the renormalization terms proportional to
L2?�B2?�. It must be restored in the residual renormaliza-
tion in order to carry out the complete on-shell renormal-
ization. The residual renormalization formula in the new
approach is given by
 

A�8�1 �Group V�new � �M�8�new � 5�M�6�new�B2

� �M�4�f3�L�4� � 3�B�4�

� 9��B2�
3g �M2f�LB�6� � 6��L�4�

� �B�4���B2 � 5��B2�
2g

�M2��m�4��4�L2? � �B2?�; (76)

where

 �LB�6� � �L�6� � �B�6� ��L�4��B2 � ��m�4�B2?�I�;

(77)

 �M�6�new � �M�6�old � �M2? �M2?�I����m�4�

�M2�L�4�: (78)

In Eq. (76) the vertex renormalization constant �L�n� and
the wave function renormalization constant �B�n� appear
in the same weight for each order of the perturbation. It is
because we have already subtracted one �L�n� as an IR-
subtraction term. Calculating the combination �L�n� �
�B�n� is much easier than calculating each of them sepa-
rately. Because of the Ward-Takahashi identity for the
renormalization constants L�n� � B�n� � 0, many cancella-
tions occur between two terms. Thus, we introduced a
combined renormalization constant �LB�6�. Its relation to
the old renormalization constants �L�6� and �B�6� are
given in Eq. (77). More detailed definitions of �LB6x for
each diagram are given in Appendix C 3. The left-hand side
of Eq. (77), �LB�6�, was directly calculated with the pro-
grams made by the automatic code generator for the resid-
ual renormalization constants [39] and obtained as

 �LB�6� �
Xh
x�a

	x�LB6x � 0:100 86�77�: (79)

This result was checked by comparing with the right-hand
side of Eq. (77) calculated using the residual renormaliza-
tion constant for the old calculation. The sixth-order mag-
netic moment �M�6�new was calculated with the programs
generated by GENCODEN and given as

 �M�6�new � 0:426 10�53�: (80)

See Appendix B 2 for the detail of �M�6�new.
As we have shown in the paper, the two results (72) and

(73) of the eighth-order contribution from Group V dia-
grams are obtained by means of the totally independent
calculations. Further theory corrections to the eighth-order

TABLE V. Finite renormalization constants used in Tables I,
II, and III. Fourth-order and second-order quantities are given
here.

�L4c 0.003 387(16) �L4x �0:481 834 54� �
�L4s 0.407 633(20) �L4l 0.124 796(67)
�B4a �0:039 811 15� � �B4b �0:397 283 15� �
��m4a �0:301 485 61� � ��m4b 2.207 77(44)
�M4a 0.218 359(39) �M4b �0:187526 39� �
�M4a�1?� 3.6192(31) �M4a�2?� �3:6003 19� �
�M4b�1?� 4.2486(15) �M4b�2?� 1.6432(15)
�M2 0.5 �M2? 1
�M2? �I� �1 ��m2? �0:75
�B2 0.75 �B2? �I� �0:5
�L2? �0:75 �B2? 1.5
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term of the electron g� 2 is very unlikely. The new
theoretical prediction should be announced when we com-
plete all the tenth-order calculation.
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APPENDIX A: TEST OF GENCODEN BY
LOWER-ORDER ae

Although GENCODEN was developed primarily to deal
with the tenth-order q-type diagrams, it can be readily
applied to the calculation of fourth-, sixth-, and eighth-
order q-type diagrams. Since these lower-order terms are
also known from previous works, this serves for debugging
of GENCODEN.

1. Fourth-order ae
The fourth-order case is the simplest nontrivial example.

The g� 2 receives correction at this order from four types
of vertex diagrams, 4c, 4x, 4s, and 4l shown in Fig. 4(b).
Following the remark in Sec. II A, the sum of g� 2 from
the vertex diagrams 2M4c�s� �M4x�l� is expressed as a
quantity associated with a single self-energy diagram
M4a�4b� in Fig. 4(a) via the Ward-Takahashi identity (16).
(The factor 2 is assigned to the diagram to account for the
presence of the diagram which is related by reversing the
orientation of the lepton line.) GENCODEN creates two
program sets for M4a and M4b within a few seconds on a
generic Linux PC. These programs give the finite ampli-

tudes �M4a�4b� as the sum of the unrenormalized Ward-
Takahashi summed g� 2 amplitudes, also denoted by
M4a�4b�, and necessary UV and/or IR-subtraction terms.
The relation of �M4a�4b� to M4a�4b� is given in
Appendix B 1. It took about 10 minutes each to carry out
their numerical integration by VEGAS [17] with 1� 107

sampling points per iteration for 50 iterations on hp’s
Alpha machine.

The values obtained in this way are

 �M4a � 0:218 78�35�; �M4b � �0:187 73�40�:

(A1)

The contribution from the fourth-order q-type diagrams is
expressed as

 A�4�1 �q-type� � �M4a � �M4b � �B2M2 (A2)

taking the residual renormalization into account. M2 �
1=2 is the second-order correction to g� 2 and �B2 �
3=4 is the finite part of the second-order wave function
renormalization constant B2. Substituting the numerical
values (A1) for the formal expression (A2), we obtain

 A�4�1 �q-type� � �0:343 95�53�; (A3)

which is in good agreement with the analytic value
�0:344 166 
 
 
 [18,19].

2. Sixth-order ae
The sixth-order diagrams can be evaluated in a similar

manner and are found to give a result in good agreement
with the numerically [20] and analytically [21] known
values as follows. Fifty vertex diagrams of the sixth-order
q-type diagrams are reduced to eight self-energy-like dia-
grams shown in Fig. 5 by means of the Ward-Takahashi
identity and the time-reversal symmetry. It takes just 1 min
to create all eight FORTRAN programs for M6x (x �
a; b; . . . ; h) by GENCODEN on hp’s Alpha machine.
Numerical evaluation was carried out on RIKEN’s PC-
cluster system (RSCC). After computation of 2 to 6 wall-

M4a 4c 4x

M4b

(a)

4s

(b)

4l

FIG. 4. Fourth-order q-type diagrams. (a) Self-energy-like diagrams M4a and M4b. (b) Vertex diagrams 4c, 4x, 4s, and 4l. Their
contributions to the magnetic moment are related to M4a � 2M4c �M4x, and M4b � 2M4s �M4l.
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clock hours with 16 Xeon-CPU’s for each diagram to carry
out a VEGAS integration with 1� 108 sampling points per
iteration for 450 iterations, we obtained

 �M�6�new �
Xh
x�a

�Mnew
6x � 0:4260�11�: (A4)

After continuing computation with 1� 109 sampling
points per iteration for 200 iterations for each diagram,
we obtain the updated result �M�6�new given in Eq. (80).
The contribution of q-type diagrams to A�6�1 including the
residual renormalization is given by
 

A�6�1 �q-type� � �M�6�new � 3�M�4��B2

�M2f��B�4� ��L�4� � 2��B2�
2g

� 0:905 26�53�; (A5)

where �B�L��4� is the sum of the finite parts of the fourth-
order wave function (vertex) renormalization constants.
See Appendix C 2 for their definitions. The formula of
the residual renormalization (A5) can be obtained by using
the definitions of the finite quantities �M4a�b�, �M6x, etc.,
in Appendixes B and C. The values of finite quantities such
as �L4c . . . are given in Table V. The various finite pieces
appearing in (A5) are

 �B�4� � �B4a ��B4b � �0:437 094�21�; (A6)

 �L�4� � 2�L4c � �L4x � 2�L4s � �L4l

� 0:465 024�17�; (A7)

 

�M�4� � �M4a � �M4b � 0:030 804 
 
 


�known exactly�: (A8)

Equation (A5) again shows good agreement with the ana-
lytic result 0:904 979 
 
 
 by Laporta and Remiddi [21].

APPENDIX B: DIVERGENCE STRUCTURE OF
THE MAGNETIC MOMENTS

We briefly summarize our notation in Appendices B and
C. The relation between the unrenormalized amplitude M
and the finite amplitude �M of magnetic moment is listed
in this appendix.

A symbol with a prefix � means a finite quantity. A
renormalization constant with a superscript ‘‘UV,’’ AUV, is
the leading UV-divergent term of the on-shell renormal-
ization constant A. A can be L, B, and �m according to a
vertex, wave function, and mass-renormalization constant,
respectively. AUV is identical with Â in Refs. [16,36]. The
subtraction terms proportional to a UV-renormalization
term AUV are generated by the K-operations. A renormal-
ization constant with a superscript ‘‘R,’’ such as LR4s, is the
residual term defined in Eqs. (27) and (29). A of AR must be
either L or �m. BR is also defined accordingly, but there
appears no BR term in the definition of a finite magnetic-
moment amplitude. The subtraction terms involving AR are
generated by the R=I-subtraction operations.

The subscript of M or A stands for the name of a
diagram. A self-energy-like diagram of the second, fourth,
and sixth orders are called 2, 4a, and 4b, and 6a, 6b, 6c,
6d, 6e, 6f, 6g, and 6h, respectively. (See Figs. 4 and 5.)
The 47 independent self-energy-like diagrams of the
eighth-order are named from 01 to 47. (See Fig. 1.) The
fermion lines are always named from 1 to n� 1 from the
left to right, where n is the order of the perturbation theory.

The name of a vertex diagram is determined based on the
Ward-Takahashi related self-energy diagram. When the
vertex diagram is obtained by inserting the external photon
into the fermion line i of a self-energy diagram nx, this is
called nxi. Thus, we have L4xi, i � 1, 2, 3, x � a, b, and

M6a M6b M6c M6d

M6e M6f M6g M6h

FIG. 5. Sixth-order q-type self-energy-like diagrams M6x, x � a; . . . ; h. The time-reversal diagrams of M6d and M6g are not shown
here. The fermion lines of a diagram are named 1 to 5 from left to right. The vertex diagram obtained by inserting an external photon
vertex into the fermion line i of the self-energy diagram 6x is named 6xi.
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L6xi, i � 1; 
 
 
 ; 5, x � a; 
 
 
 ; h for the fourth-, and sixth-
order vertex renormalization constants, respectively. The
vertex renormalization constant of the second order is
named L2, since there is only one vertex diagram of the
second order. In the early article [40], the fourth-order
vertex diagrams are given other names. We follow the
naming system Ref. [40] in this paper. The correspondence
between two names of the fourth-order vertex diagrams is
that 4a1 � 4a3 � 4c, 4a2 � 4x, 4b1 � 4b3 � 4s, and
4b2 � 4l. (See Fig. 4).

When a two-point vertex is inserted into the fermion line
i of a diagram nx, the resulting diagram is called nx�i?�.
Namely, ? indicates the two-point vertex.

The primed quantity, for example L4x�i0�, is the derivative
amplitude obtained by applying �zi

@
@zi

operation on the
integrand, where zi is the Feynman parameter assigned to
the fermion line i. Note that L4x�i0� is equal to L4x, but its
UV-divergent part LUV

4x�i0� is not equal to LUV
4x . Since second-

order quantities such as B2 and �m2 have only one electron
line, it is not really necessary to distinguish different
electron lines. We therefore use somewhat sloppy notations
B2? and B20 instead of B2�1?� and B2�10�.

For L2, which contains electron lines 1 and 2, it is
sometimes necessary to distinguish lines in which insertion
is made. L2??y implies that two two-point vertices are
inserted into the fermion line 1 of L2, while L2?y? means
that one two-point vertex is inserted into the line 1 and
another into the line 2. M4a contains three electron lines 1,
2, 3 and M4a�1??� means that two-point vertex insertion has
been made twice in the electron line 1, and so on.

1. Fourth-order magnetic moments

The fourth-order magnetic moments are the same for
both old and new approaches. The UV-finite amplitude is
also given here,

 

M4a � �M4a � 2LUV
2 M2;

M4a � �M4a;

M4b � �M4b � B
UV
2 M2 � �m2M2? � L

R
2M2;

M4b � �M4b � L
R
2M2:

In the new approach no explicit form of M4? is needed
because the mass renormalization is completed by the
R-subtraction operation. They are, however, listed here,
since they are used in the old approach,

 

M4a�1?� � �M4a�1?� � L
UV
2 M2? � I4a�1?�;

M4a�2?� � �M4a�2?� � I4a�2?�;

M4b�1?� � �M4b�1?� � ��m2M2?? � B
UV
2 M2?� � I4b�1?�;

M4b�2?� � �M4b�2?� � �m
UV
2? M2? � I4b�2?� � L

R
2M2?

�M2?�I�� ~m2? � 2M2?�I�L
R
2 :

2. Sixth-order magnetic moments by GENCODEN

The finite amplitudes of the sixth order are given in the
following. For simplicity, we drop the superscript new
from �Mnew

6x ,

 

M6a � �M6a � 2�m2M4b�1?� � 2BUV
2 M4b � �m2��m2M2?? � BUV

2 M2?� � BUV
2 ��m2M2? � BUV

2 M2� � 2LR4sM2;

M6b � �M6b � �m2M4b�2?� � BUV
2 M4b � �mUV

4b M2? � BUV
4b M2 � �m2�mUV

2? M2? � BUV
2 ��m

UV
20 M2? � BUV

20 M2�

� LR2 �M4b � LR4lM2 �M2?��m4b;

M6c � �M6c � 2LUV
2 M4b � �m

UV
4a M2? � B

UV
4a M2 � 2LUV

2 ��m2M2? � B
UV
2 M2� � LR2 �M4a �M2?��m4a;

M6d � �M6d � L
UV
4s M2 � �m2M4a�1?� � B

UV
2 M4a � L

UV
2 M4b � B

UV
2 LUV

20 M2 � L
UV
2 ��m2M2? � B

UV
2 M2� � LR4cM2;

M6e � �M6e � 2LUV
4s M2 � �m2M4a�2?� � B

UV
2 M4a � 2LUV

20 B
UV
2 M2 � LR4xM2;

M6f � �M6f � 2LUV
4c M2 � 2LUV

2 M4a � 3LUV
2 LUV

2 M2;

M6g � �M6g � L
UV
4c M2 � L

UV
4l M2 � L

UV
2 M4a � 2LUV

2 LUV
2 M2;

M6h � �M6h � 2LUV
4x M2:

3. Eighth-order magnetic moments by GENCODEN

The finite amplitudes of the eighth order are given in the following. For simplicity, we drop the superscript new from
�Mnew

i ,
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M01 � �M01 � 2LUV
2 M6f � 2LUV

4c M4a � 2LUV
6f1M2 � 3�LUV

2 �
2M4a � 6LUV

2 LUV
4c M2 � 4�LUV

2 �
3M2;

M02 � �M02 � �m2M6f�1?� � B
UV
2 M6f � L

UV
2 M6d � L

UV
4s M4a � L

UV
4c M4b � L

UV
6d5M2 � L

UV
2 ��m2M4a�1?� � B

UV
2 M4a�

� BUV
2 LUV

20 M4a � L
UV
4c ��m2M2? � B

UV
2 M2� � B

UV
2 LUV

4c�30�M2 � 2LUV
2 LUV

4s M2 � �L
UV
2 �

2M4b � 2LUV
2 BUV

2 LUV
20 M2

� �LUV
2 �

2��m2M2? � B
UV
2 M2� � L

R
6f1M2;

M03 � �M03 � 2LUV
2 M6d � �m2M6f�3?� � B

UV
2 M6f � 2LUV

6d1M2 � 2LUV
2 ��m2M4a�1?� � B

UV
2 M4a� � �L

UV
2 �

2M4b

� 2LUV
2 LUV

4s M2 � 2BUV
2 LUV

4c�100�M2 � �L
UV
2 �

2��m2M2? � B
UV
2 M2� � 2LUV

2 BUV
2 LUV

20 M2 � L
R
6f3M2;

 

M04 � �M04 � �m2M6d�3?� � B
UV
2 M6d � �m2M6d�1?� � B

UV
2 M6d � L

UV
2 M6a � L

UV
6a1M2

� �m2��m2M4a�1??� � B
UV
2 M4a�1?�� � B

UV
2 ��m2M4a�1?� � B

UV
2 M4a� � 2LUV

2 ��m2M4b�1?� � B
UV
2 M4b�

� BUV
2 �L

UV
4s�30� � L

UV
4s�100��M2 � L

UV
2 �m2��m2M2?? � B

UV
2 M2?� � L

UV
2 BUV

2 ��m2M2? � B
UV
2 M2� � �B

UV
2 �

2LUV
200 M2

� LR6d3M2 � L
R
6d1M2

M05 � �M05 � L
UV
2 M6h � L

UV
4x M4a � L

UV
6f2M2 � L

UV
6h1M2 � 3LUV

2 LUV
4x M2;

M06 � �M06 � L
UV
2 M6g � L

UV
2 M6f � L

UV
4l M4a � L

UV
6f3M2 � L

UV
6g5M2 � 2�LUV

2 �
2M4a � 2LUV

2 LUV
4l M2 � 3LUV

2 LUV
4c M2

� 3�LUV
2 �

3M2;

 

M07 � �M07 � L
UV
2 M6g � L

UV
2 M6f � L

UV
4c M4a � L

UV
6d2M2 � L

UV
6g1M2 � 2�LUV

2 �
2M4a � 4LUV

2 LUV
4c M2 � L

UV
2 LUV

4l M2

� 3�LUV
2 �

3M2;

M08 � �M08 � L
UV
2 M6c � 2LUV

2 M6d � �m
UV
4a M4a�1?� � B

UV
4a M4a � L

UV
6c1M2 � 2�LUV

2 �
2M4b

� LUV
2 ��m

UV
4a M2? � B

UV
4a M2� � 2LUV

2 ��m2M4a�1?� � B
UV
2 M4a� � 2LUV

2 LUV
4s M2 � B

UV
4a L

UV
20 M2

� 2�LUV
2 �

2��m2M2? � B
UV
2 M2� � 2LUV

2 BUV
2 LUV

20 M2 � LR4c�M4a �M4a�1?���m4a;

M09 � �M09 � �m2M6f�2?� � B
UV
2 M6f � L

UV
2 M6e � L

UV
4s M4a � L

UV
6e1M2 � L

UV
6d3M2 � L

UV
2 ��m2M4a�2??� � B

UV
2 M4a�

� BUV
2 LUV

20 M4a � B
UV
2 LUV

4c�20�M2 � B
UV
2 LUV

4c�10�M2 � 3LUV
2 LUV

4s M2 � 3LUV
2 BUV

2 LUV
20 M2 � LR6f2M2;

 

M10 � �M10 � �m2M6d�2?� � B
UV
2 M6d � �m

UV
4b M4a�1?� � B

UV
4b M4a � L

UV
2 M6b � L

UV
6b1M2 � �m2�m

UV
2? M4a�1?�

� BUV
2 ��m

UV
20 M4a�1?� � B

UV
20 M4a� � L

UV
2 ��m2M4b�2?� � B

UV
2 M4b� � B

UV
2 LUV

4s�20�M2 � L
UV
2 ��m

UV
4b M2? � B

UV
4b M2�

� BUV
4b L

UV
20 M2 � L

UV
2 �m2�m

UV
2? M2? � L

UV
2 BUV

2 ��m
UV
20 M2? � B

UV
20 M2� � B

UV
2 BUV

20 L
UV
20 M2 � LR4c��M4b � LR2M2�

� LR4cL
R
2M2 � LR6d2M2 �M4a�1?���m4b;

M11 � �M11 � 2�m2M6d�5?� � 2BUV
2 M6d � 2LUV

4s M4b � �m2��m2M4a�1?3?� � B
UV
2 M4a�1?��

� BUV
2 ��m2M4a�1?� � B

UV
2 M4a� � 2LUV

4s ��m2M2? � B
UV
2 M2� � 2BUV

2 LUV
20 M4b � 2BUV

2 LUV
20 ��m2M2? � B

UV
2 M2�

� 2LR6d5M2;

M12 � �M12 � 2�m2M6a�1?� � 2BUV
2 M6a � �m2M6a�3?� � B

UV
2 M6a � 2�m2��m2M4b�1??� � B

UV
2 M4b�1?��

� 2BUV
2 ��m2M4b�1?� � B

UV
2 M4b� � �m2��m2M4b�1?3?� � B

UV
2 M4b�1?�� � B

UV
2 ��m2M4b�1?� � B

UV
2 M4b�

� ��m2�
2��m2M2??? � B

UV
2 M2??� � 2�m2B

UV
2 ��m2M2?? � B

UV
2 M2?� � �B

UV
2 �

2��m2M2? � B
UV
2 M2� � 2LR6a1M2

� LR6a3M2;
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M13 � �M13 � �m2M6h�1?� � B
UV
2 M6h � L

UV
4x M4b � L

UV
6d4M2 � L

UV
4x ��m2M2? � B

UV
2 M2� � B

UV
2 LUV

4x�10�M2 � L
R
6h1M2;

M14 � �M14 � �m2M6g�5?� � B
UV
2 M6g � L

UV
2 M6d � L

UV
4l M4b � L

UV
6d3M2 � L

UV
2 ��m2M4a�1?� � B

UV
2 M4a�

� LUV
4l ��m2M2? � B

UV
2 M2� � B

UV
2 LUV

4c�10�M2 � �L
UV
2 �

2M4b � L
UV
2 LUV

4s M2 � �L
UV
2 �

2��m2M2? � B
UV
2 M2�

� LUV
2 BUV

2 LUV
20 M2 � L

R
6g5M2;

M15 � �M15 � �m2M6g�1?� � B
UV
2 M6g � L

UV
2 M6d � L

UV
4c M4b � L

UV
6a2M2 � L

UV
2 ��m2M4a�1?� � B

UV
2 M4a�

� LUV
4c ��m2M2? � B

UV
2 M2� � B

UV
2 LUV

4l�10�M2 � �L
UV
2 �

2M4b � L
UV
2 LUV

4s M2 � �L
UV
2 �

2��m2M2? � B
UV
2 M2�

� LUV
2 BUV

2 LUV
20 M2 � LR6g1M2;

 

M16 � �M16 � �m2M6c�1?� � B
UV
2 M6c � �m

UV
4a M4b�1?� � B

UV
4a M4b � 2LUV

2 M6a � �m2��m
UV
4a M2?? � B

UV
4a M2?�

� BUV
2 ��m

UV
4a M2? � B

UV
4a M2� � 4LUV

2 ��m2M4b�1?� � B
UV
2 M4b� � 2LUV

2 �m2��m2M2?? � B
UV
2 M2?�

� 2BUV
2 LUV

2 ��m2M2? � B
UV
2 M2� � LR6c1M2 � LR4s�M4a �M4b�1?���m4a � LR2?��m4aM2;

M17 � �M17 � �m2M6e�1?� � B
UV
2 M6e � �m2M6d�4?� � B

UV
2 M6d � L

UV
4s M4b � L

UV
6a3M2 � �m2��m2M4a�1?2?�

� BUV
2 M4a�1?�� � B

UV
2 ��m2M4a�2?� � B

UV
2 M4a� � L

UV
4s ��m2M2? � B

UV
2 M2� � 2BUV

2 LUV
4s�10�M2 � B

UV
2 LUV

20 M4b

� �m2B
UV
2 LUV

20 M2? � �B
UV
2 �

2�LUV
20 � L

UV
200 �M2 � LR6e1M2 � LR6d4M2;

M18 � �M18 � �m2M6b�1?� � B
UV
2 M6b � �m2M6a�2?� � B

UV
2 M6a � �m

UV
4b M4b�1?� � B

UV
4b M4b � �m2��m2M4b�1?2?�

� BUV
2 M4b�1?�� � B

UV
2 ��m2M4b�2?� � B

UV
2 M4b� � �m2��m

UV
4b M2?? � B

UV
4b M2? � � B

UV
2 ��m

UV
4b M2? � B

UV
4b M2�

� �m2�m
UV
2? M4b�1?� � B

UV
2 ��m

UV
20 M4b�1?� � B

UV
20 M4b� � �m2�m

UV
2? ��m2M2?? � B

UV
2 M2?�

� BUV
2 �mUV

20 ��m2M2?? � B
UV
2 M2?� � B

UV
2 BUV

20 ��m2M2? � B
UV
2 M2� � L

R
6b1M2 � L

R
4s��M4b � L

R
2M2� � L

R
6a2M2

� LR4sL
R
2M2 � �M4b�1?� � L

R
2?M2���m4b;

 

M19 � �M19 � 2LUV
6h2M2;

M20 � �M20 � L
UV
2 M6h � L

UV
6f2M2 � L

UV
6g4M2 � 2LUV

2 LUV
4x M2;

M21 � �M21 � 2LUV
6g2M2;

 

M22 � �M22 � L
UV
2 M6g � L

UV
4c M4a � L

UV
6f1M2 � L

UV
6c2M2 � �L

UV
2 �

2M4a � 3LUV
2 LUV

4c M2 � L
UV
2 LUV

4l M2 � 2�LUV
2 �

3M2;

M23 � �M23 � �m2M6h�2?� � B
UV
2 M6h � L

UV
6e2M2 � L

UV
6d4M2 � B

UV
2 �L

UV
4x�10� � L

UV
4x�20��M2 � LR6h2M2;

M24 � �M24 � �m2M6g�2?� � B
UV
2 M6g � L

UV
4s M4a � L

UV
6b2M2 � L

UV
6d5M2 � B

UV
2 LUV

20 M4a � B
UV
2 LUV

4l20M2 � 2LUV
4s L

UV
2 M2

� BUV
2 LUV

4c�30�M2 � 2LUV
2 BUV

2 LUV
20 M2 � LR6g2M2;

 

M25 � �M25 � 2LUV
2 M6g � 2LUV

6d2M2 � �L
UV
2 �

2M4a � 2LUV
2 LUV

4l M2 � 2LUV
2 LUV

4c M2 � 2�LUV
2 �

3M2;

M26 � �M26 � 2LUV
2 M6c � 2LUV

4c M4b � �m
UV
6f M2? � B

UV
6f M2 � 3�LUV

2 �
2M4b � 2LUV

2 ��m
UV
4a M2? � B

UV
4a M2�

� 2LUV
4c ��m2M2? � B

UV
2 M2� � 3�LUV

2 �
2��m2M2? � B

UV
2 M2� � LR2 �M6f �M2?��m6f;

M27 � �M27 � �m2M6g�4?� � B
UV
2 M6g � L

UV
2 M6e � L

UV
6d1M2 � L

UV
6a2M2 � B

UV
2 LUV

4l�10�M2 � B
UV
2 LUV

4c�100�M2

� 2LUV
2 LUV

4s M2 � L
UV
2 ��m2M4a�2?� � B

UV
2 M4a� � 2LUV

2 BUV
2 LUV

20 M2 � LR6g4M2;
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M28 � �M28 � �m2M6c�2?� � B
UV
2 M6c � L

UV
2 M6b � L

UV
4s M4b � �m

UV
6d M2? � B

UV
6d M2 � L

UV
2 ��m2M4b�2?� � B

UV
2 M4b�

� BUV
2 LUV

20 M4b � �m2�mUV
4a�1?�M2? � BUV

2 ��m
UV
4a�10�M2? � BUV

4a�10�M2� � LUV
2 ��m

UV
4b M2? � BUV

4b M2�

� LUV
4s ��m2M2? � B

UV
2 M2� � L

UV
2 �m2�m

UV
2? M2? � L

UV
2 BUV

2 ��m
UV
20 M2? � B

UV
20 M2�

� BUV
2 LUV

20 ��m2M2? � BUV
2 M2� � LR6c2M2 � LR2L

R
4cM2 � LR2 ��M6d � LR4cM2� �M2?��m6d;

M29 � �M29 � 2�m2M6e�2?� � 2BUV
2 M6e � 2LUV

6a1M2 � �m2��m2M4a�2??� � BUV
2 M4a�2?��

� BUV
2 ��m2M4a�2?� � B

UV
2 M4a� � 2BUV

2 �L
UV
4s�30� � L

UV
4s�100��M2 � 2�BUV

2 �
2LUV

200 M2 � 2LR6e2M2;

M30 � �M30 � 2�m2M6b�2?� � 2BUV
2 M6b � �mUV

6a M2? � BUV
6a M2 � �m2��m2M4b�2??� � BUV

2 M4b�2?��

� BUV
2 ��m2M4b�2?� � B

UV
2 M4b� � 2�m2�m

UV
4b�1?�M2? � 2BUV

2 ��m
UV
4b�10�M2? � B

UV
4b�10�M2� � 2�m2B

UV
2 �mUV

20? M2?

� �BUV
2 �

2��mUV
200 M2? � BUV

200 M2� � 2LR6b2M2 � 2LR2L
R
4sM2 � LR2 ��M6a � 2LR4sM2� �M2?��m6a;

 

M31 � �M31 � 2LUV
6h3M2;

M32 � �M32 � LUV
6g3M2 � LUV

6h2M2;

M33 � �M33 � 2LUV
6g3M2;

 

M34 � �M34 � L
UV
4x M4a � L

UV
6c3M2 � L

UV
6h1M2 � 2LUV

4x L
UV
2 M2;

M35 � �M35 � L
UV
2 M6h � L

UV
6e3M2 � L

UV
6g4M2 � 2LUV

4x L
UV
2 M2;

M36 � �M36 � L
UV
2 M6g � L

UV
4l M4a � L

UV
6b3M2 � L

UV
6g5M2 � �L

UV
2 �

2M4a � 3LUV
2 LUV

4l M2 � L
UV
2 LUV

4c M2 � 2�LUV
2 �

3M2;

 

M37 � �M37 � 2LUV
6g2M2;

M38 � �M38 � 2LUV
4x M4b � �m

UV
6h M2? � B

UV
6h M2 � 2LUV

4x ��m2M2? � B
UV
2 M2� � L

R
2 �M6h �M2?��m6h;

M39 � �M39 � L
UV
2 M6g � L

UV
4c M4a � L

UV
6g1M2 � L

UV
6c2M2 � �L

UV
2 �

2M4a � 3LUV
2 LUV

4c M2 � L
UV
2 LUV

4l M2 � 2�LUV
2 �

3M2;

 

M40 ��M40�L
UV
2 M6c�L

UV
4l M4b�L

UV
4c M4b��m

UV
6g M2? �B

UV
6g M2� 2�LUV

2 �
2M4b�L

UV
2 ��m

UV
4a M2? �B

UV
4a M2�

�LUV
4l ��m2M2? �B

UV
2 M2��L

UV
4c ��m2M2? �B

UV
2 M2�� 2�LUV

2 �
2��m2M2? �B

UV
2 M2��LR2 �M6g�M2?��m6g;

M41 ��M41� 2LUV
2 M6e��m

UV
4a M4a�2?� �B

UV
4a M4a� 2LUV

6c1M2� 2LUV
2 ��m2M4a�2?� �B

UV
2 M4a�� 4LUV

2 LUV
4s M2

� 2BUV
4a L

UV
20 M2� 4LUV

2 BUV
2 LUV

20 M2�LR4x�M4a�M4a�2?���m4a;

M42 ��M42� 2LUV
2 M6b��m

UV
4a M4b�2?� �B

UV
4a M4b��m

UV
6c M2? �B

UV
6c M2� 2LUV

2 ��m2M4b�2?� �B
UV
2 M4b�

� 2LUV
2 ��m

UV
4b M2? �B

UV
4b M2���m

UV
4a �m

UV
2? M2? �B

UV
4a ��m

UV
20 M2? �B

UV
20 M2�� 2LUV

2 �m2�m
UV
2? M2?

� 2LUV
2 BUV

2 ��m
UV
20 M2? �B

UV
20 M2��L

R
4l�M4a��L

R
2 �

2�M4a�L
R
2 ��M6c�L

R
2 �M4a�M2?��m4a�

�M2?���m6c�L
R
2�m

R
4a��M4b�2?���m4a��m

R
2?��m4aM2? ���m4aL

R
2M2? ;

 

M43 � �M43 � �m2M6h�3?� � B
UV
2 M6h � 2LUV

6e2M2 � 2BUV
2 LUV

4x�20�M2 � LR6h3M2;

M44 � �M44 � �m2M6g�3?� � B
UV
2 M6g � L

UV
4s M4a � L

UV
6b2M2 � L

UV
6e1M2 � B

UV
2 LUV

20 M4a � B
UV
2 LUV

4l�20�M2

� BUV
2 LUV

4c�20�M2 � 2LUV
4s L

UV
2 M2 � 2LUV

2 BUV
2 LUV

20 M2 � LR6g3M2;

M45 � �M45 � �m2M6c�3?� � B
UV
2 M6c � 2LUV

4s M4b � �m
UV
6e M2? � B

UV
6e M2 � 2BUV

2 LUV
20 M4b � �m2�m

UV
4a�2?�M2?

� BUV
2 ��m

UV
4a�20�M2? � BUV

4a�20�M2� � 2LUV
4s ��m2M2? � BUV

2 M2� � 2BUV
2 LUV

20 ��m2M2? � BUV
2 M2� � LR6c3M2

� LR2 ��M6e � LR4xM2� �M2?��m6e � LR4xL
R
2M2;
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M46 � �M46 � �m2M6e�3?� � B
UV
2 M6e � �m

UV
4b M4a�2?� � B

UV
4b M4a � 2LUV

6b1M2 � �m2�m
UV
2? M4a�2?�

� BUV
2 ��m

UV
20 M4a�2?� � BUV

20 M4a� � 2BUV
2 LUV

4s�20�M2 � 2BUV
4b L

UV
20 M2 � 2BUV

2 BUV
20 L

UV
20 M2 � LR6e3M2 � LR4xL

R
2M2

� LR4x��M4b � L
R
2M2� �M4a�2?���m4b;

M47 � �M47 � �m2M6b�3?� � BUV
2 M6b � �mUV

4b M4b�2?� � BUV
4b M4b � �mUV

6b M2? � BUV
6b M2 � �m2�mUV

2? M4b�2?�

� BUV
2 ��m

UV
20 M4b�2?� � BUV

20 M4b� � �m2�mUV
4b�2?�M2? � BUV

2 ��m
UV
4b�20�M2? � BUV

4b�20�M2� � �mUV
4b �m

UV
2? M2?

� BUV
4b ��m

UV
20 M2? � BUV

20 M2� � �m2��mUV
2? �

2M2? � BUV
2 �mUV

20 �m
UV
2? M2? � BUV

2 BUV
20 ��m

UV
20 M2? � BUV

20 M2�

�M2?���m6b � LR2 f�m
R
4b � ��m2�mR

2? � B
UV
2 �mR

20 �g� � L
R
2 ��M6b �M2?��m4b � LR2 �M4b � LR4lM2�

�MR
4b�2?���m4b � LR4l��M4b � LR2M2� � LR6b3M2 � ��m4b�mR

2?M2? � LR2 ��m4bM2? � �LR2 �
2��M4b � LR2M2�

� 2LR4lL
R
2M2 � �LR2 �

3M2:

APPENDIX C: DIVERGENCE STRUCTURE OF THE RENORMALIZATION CONSTANTS

1. Second-order renormalization constants

 L2 � LUV
2 � ~L2; LR2 � ~L2 � I2; B2 � BUV

2 � ~B2; BR2 � ~B2 � �I2 ��B2; LR2 � B
R
2 � �B2;

B2? � �2L2? ; L2? � I2? � �L2? ; B2?? � �2�2L2??y � L2?y?�; �m2? � �mUV
2? � I2 � ��m2? :

2. Fourth-order renormalization constants

 

L4x � LUV
4x � I4x � �L4x;

L4c � LUV
4c � I4c � �L4c � L

UV
2

~L2;

B4a � BUV
4a � I4x � �B4a � 2LUV

2
~B2 � 2I4c;

L4l � LUV
4l � I4l � �L

R
2 �

2 � �L4l � ~L2L
UV
2 ;

L4s � LUV
4s � I4s � �L4s � �m2L2? � B

UV
2

~L20 ;

B4b � BUV
4b � �B4b � �m2B2? � B

UV
2

~B20 � L
R
2

~B2 � 2I4s � I4l;

�LB4a � 2LR4c � L
R
4x � B

R
4a � 2�L4c ��L4x � �B4a;

�LB4b � 2LR4s � L
R
4l � B

R
4b � L

R
2 �B2 � 2�L4s � �L4l � �B4b;

�LB�4� � �LB4a ��LB4b � �L�4� ��B�4�:

3. Sixth-order renormalization constants
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L6a1 � LR6a1 � 2�m2L4s�1?� � 2BUV
2

~L4s�10� � �m2��m2L2??y � B
UV
2 L20? � � B

UV
2 ��m2L20? � B

UV
2

~L200 � � L
UV
6a1;

L6a2 � LR6a2 � L
UV
2

~L4s � �m2L4l�1?� � BUV
2

~L4l�10� � LUV
2 ��m2L2? � BUV

2
~L20 � � LUV

6a2;

L6a3 � LR6a3 � 2��m2L4s�1?� � BUV
2

~L4s�10�� � �m2��m2L2?y? � B
UV
2 L20?� � BUV

2 ��m2L20? � BUV
2

~L200 � � LUV
6a3;

L6b1 � LR6b1 � �m2L4s�2?� � B
UV
2

~L4s�20� � �m
UV
4b L2? � B

UV
4b

~L20 � �m2�m
UV
2? L2? � B

UV
2 ��m

UV
20 L2? � B

UV
20

~L20 � � L
UV
6b1;

L6b2 � LR6b2 � �m2L4l�2?� � B
UV
2

~L4l�20� � L
UV
4s

~L2 � B
UV
2 LUV

20
~L2 � L

UV
6b2;

L6b3 � LR6b3 � L
UV
2

~L4l � L
UV
4l

~L2 � �L
UV
2 �

2 ~L2 � L
UV
6b3;

L6c1 � LR6c1 � 2LUV
2

~L4s � �m
UV
4a L2? � B

UV
4a

~L20 � 2LUV
2 ��m2L2? � B

UV
2

~L20 � � L
UV
6c1;

L6c2 � LR6c2 � L
UV
2

~L4l � L
UV
4c

~L2 � �L
UV
2 �

2 ~L2 � L
UV
6c2;

L6c3 � LR6c3 � L
UV
4x

~L2 � L
UV
6c3; L6d1� LR6d1 � �m2L4c�1?� � B

UV
2

~L4c�10� � L
UV
2

~L4s � L
UV
2 ��m2L2? � B

UV
2

~L20 � � L
UV
6d1;

L6d2 � LR6d2 � L
UV
2

~L4c � L
UV
2

~L4l � �L
UV
2 �

2 ~L2 � L
UV
6d2;

L6d3 � LR6d3 � �m2L4c�1?� � B
UV
2

~L4c�10� � L
UV
2

~L4s � L
UV
2 ��m2L2? � B

UV
2

~L20 � � L
UV
6d3;

L6d4 � LR6d4 � �m2L4x�1?� � B
UV
2

~L4x�10� � L
UV
6d4;

L6d5 � LR6d5 � �m2L4c�3?� � B
UV
2

~L4c�30� � L
UV
4s

~L2 � B
UV
2 LUV

20
~L2 � L

UV
6d5;

L6e1 � LR6e1 � �m2L4c�2?� � BUV
2

~L4c�20� � LUV
4s

~L2 � BUV
2 LUV

20
~L2 � LUV

6e1;

L6e2 � LR6e2 � �m2L4x�2?� � BUV
2

~L4x�20� � LUV
6e2;

L6e3 � LR6e3 � L
UV
2

~L4x � L
UV
6e3;

L6f1 � LR6f1 � L
UV
2

~L4c � L
UV
4c

~L2 � �L
UV
2 �

2 ~L2 � L
UV
6f1;

L6f2 � LR6f2 � L
UV
2

~L4x � LUV
6f2;

L6f3 � LR6f3 � 2LUV
2

~L4c � �L
UV
2 �

2 ~L2 � L
UV
6f3;

L6g1 � LR6g1 � L
UV
2

~L4c � L
UV
4c

~L2 � �L
UV
2 �

2 ~L2 � L
UV
6g1;

L6g2 � LR6g2 � L
UV
6g2;

L6g3 � LR6g3 � L
UV
6g3;

L6g4 � LR6g4 � L
UV
2

~L4x � L
UV
6g4;

L6g5 � LR6g5 � L
UV
2

~L4c � L
UV
4l

~L2 � �L
UV
2 �

2 ~L2 � L
UV
6g5;

L6h1 � LR6h1 � L
UV
4x

~L2 � L
UV
6h1;

L6h2 � LR6h2 � L
UV
6h2;

L6h3 � LR6h3 � L
UV
6h3;

 

B6a � BR6a � 2��m2B4b�1?� � B
UV
2

~B4b�10�� � �m2��m2B2?? � B
UV
2 B20?� � B

UV
2 ��m2B20? � B

UV
2

~B200 � � B
UV
6a ;

B6b � BR6b � �m2B4b�2?� � B
UV
2

~B4b�20� � �m
UV
4b B2? � B

UV
4b

~B20 � �m2�m
UV
2? B2? � B

UV
2 ��m

UV
20 B2? � B

UV
20

~B20 � � B
UV
6b ;

B6c � BR6c � 2LUV
2

~B4b � �m
UV
4a B2? � B

UV
4a

~B20 � 2LUV
2 ��m2B2? � B

UV
2

~B20 � � B
UV
6c ;

B6d � BR6d � �m2B4a�1?� � B
UV
2

~B4a�10� � L
UV
2

~B4b � L
UV
4s

~B2 � L
UV
2 ��m2B2? � B

UV
2

~B20 � � B
UV
2 LUV

20
~B2 � B

UV
6d ;

B6e � BR6e � �m2B4a�2?� � B
UV
2

~B4a�20� � 2LUV
4s

~B2 � 2BUV
2 LUV

20
~B2 � B

UV
6e ;

B6f � BR6f � 2LUV
2

~B4a � 2LUV
4c

~B2 � 3�LUV
2 �

2 ~B2 � B
UV
6f ;

B6g � BR6g � L
UV
2

~B4a � L
UV
4c

~B2 � L
UV
4l

~B2 � 2�LUV
2 �

2 ~B2 � B
UV
6g ; B6h � BR6h � 2LUV

4x
~B2 � B

UV
6h :

The residual renormalization constants �LB6x for each diagram appearing in Eq. (77) are defined in the following
equations:
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�LB6a � 2LR6a1 � 2LR6a2 � L
R
6a3 � B

R
6a � 2LR4s�B2;

�LB6b � 2LR6b1 � 2LR6b2 � L
R
6b3 � B

R
6b � L

R
2 �B

R
4b � 2LR4s � L

R
4l� � L

R
4l�B2 � �LR2 �

2�B2;

�LB6c � 2LR6c1 � 2LR6c2 � L
R
6c3 � B

R
6c � L

R
2 �B

R
4a � 2LR4c � L

R
4x�;

�LB6d � LR6d1 � L
R
6d2 � L

R
6d3 � L

R
6d4 � L

R
6d5 � B

R
6d � L

R
4c�B2;

�LB6e � 2LR6e1 � 2LR6e2 � L
R
6e3 � B

R
6e � L

R
4x�B2;

�LB6f � 2LR6f1 � 2LR6f2 � L
R
6f3 � B

R
6f;

�LB6g � LR6g1 � L
R
6g2 � L

R
6g3 � L

R
6g4 � L

R
6g5 � B

R
6g;

�LB6h � 2LR6h1 � 2LR6h2 � L
R
6h3 � B

R
6h;

�LB�6� �
Xh
x�a

	x�LB6x � �L�6� � �B�6� � �L�4��B2 � ��m�4�B2? �I�:
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