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The observed pattern of neutrino mass splittings and mixing angles indicates that their family structure
is significantly different from that of the charged fermions. We investigate the implications of these data
for the fermion mass matrices in grand-unified theories with a type-I seesaw mechanism. We show that,
with simple assumptions, naturalness leads to a strongly hierarchical Majorana mass matrix for heavy
right-handed neutrinos and a partially cascade form for the Dirac neutrino matrix. We consider various
model building scenarios which could alter this conclusion, and discuss their consequences for the
construction of a natural model. We find that including partially lopsided matrices can aid us in generating
a satisfying model.
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I. INTRODUCTION

The measurement of neutrino mass splittings and mixing
angles [1,2] has provided a new window into physics
beyond the standard model. The fact that the hierarchy
between at least one pair of the neutrinos is weak and that
two leptonic mixing angles are large, in contrast to the
strongly hierarchical masses of quarks and charged leptons
and small Cabibbo-Kobayashi-Maskawa (CKM) mixing,
was initially surprising. It leads us to surmise that neutrino
masses arise through a somewhat different mechanism than
the quark and charged lepton masses. Thus, the relation
between the charged fermion and neutrino observables is
not necessarily obvious. In fact, we have such a mechanism
in the form of the type-I seesaw [3], which can naturally
yield neutrino masses in the range indicated by experiment.
Moreover, the physical light neutrino mass matrix is a
product of more fundamental matrices. This fact can po-
tentially explain the differences between the mixing angles
and mass hierarchies of the charged fermion and neutrino
sectors.

The seesaw mechanism arises naturally within a grand-
unified theory (GUT) such as SO(10) [4], where each
generation of standard model fermions is unified into the
16-dimensional spinor representation, together with the
right-handed neutrinos. The breaking of B� L (where B
and L denote baryon and lepton number, respectively),
which is a subgroup of SO(10), automatically gives rise
to Majorana masses for the singlet neutrinos, and then to
the seesaw mechanism. Indeed, the neutrino data have
encouraged GUT model building [5,6].

Although GUTs provide a natural framework for mas-
sive neutrinos and, combined with family symmetries or
textures, have allowed for a number of successful models
of quark masses and mixing, it has proven difficult to
incorporate neutrinos in a completely satisfactory manner.
In this paper, we reconsider neutrino masses and mixings
under the guidance of naturalness. That is, rather than
focusing on a particular theoretical structure and modify-

ing it as necessary to obtain the best fit to the data, we will
try to minimize the dependence on specific model assump-
tions and work up from the experimental data to see where
it naturally leads us. In particular, we will show that the
construction of a natural, unified picture of all standard
model fermion masses and mixing angles imposes non-
trivial constraints on the structure of both sectors.

In this framework, we are interested only in the orders of
magnitude of various parameters and, in pursuing natural
solutions, we seek to avoid unnatural cancellations, i.e.,
that terms of a given order must cancel to produce a term of
lower order. It may be possible to arrange such cancella-
tions in a technically natural way via a judicious choice of
symmetries, but this is by no means trivial. Furthermore, an
exact symmetry is a strong assumption to make, given the
current uncertainty in the neutrino data. We will instead
adopt naturalness as described above, seeking to constrain
the approximate structure of our theory without ad hoc
symmetries. Ideally, this structure can serve as a guide for
developing well-motivated symmetries upon which an ul-
timately satisfying theory can be built.

Of course, one must make some assumptions based on
previous successes to make progress and, in this capacity,
we will focus on the SO(10) models with small represen-
tations [7,8]. This scenario will serve as a concrete ex-
ample; however, much of the analysis could be adapted to
SO(10) models with large representations and/or type-II
seesaw mechanisms, as well as to other unifying groups.

This paper is organized as follows: We start by introduc-
ing our theoretical framework in Sec. II and reviewing the
experimental data in Sec. III. In Sec. IV we derive natural
constraints on the neutrino mass matrices. Since the fer-
mion mass matrices are related by the GUT symmetry, we
study the implications of quark mixing in Sec. V. In Sec. VI
we show how mass matrices consistent with our constraints
can be generated via family symmetries, and we investi-
gate how well they can fit the charged fermion masses. In
SO(10) models with small representations, the neutrino
Dirac mass matrix can receive additional contributions

PHYSICAL REVIEW D 77, 053005 (2008)

1550-7998=2008=77(5)=053005(15) 053005-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.053005


via couplings to a second up-type Higgs doublet, present in
the B� L breaking Higgs field. We consider this possibil-
ity in Sec. VII, supplemented by the appendix. The remain-
ing sections are devoted to two cases which generalize
beyond our initial assumptions. These involve models
wherein otherwise negligible leptonic rotations play an
important role in neutrino mixing, either due to a lopsided
structure in some mass matrices (Sec. VIII), or to a par-
ticular form for the effective neutrino matrix (Sec. IX). We
conclude in Sec. X.

II. GENERAL STUCTURE OF THEORY

The standard model fermions are found in three copies
of the spinor representation 16i.

1 We will make use of the
small representations 10H, 45H, 16H, 160H, 16H, and poten-
tially 160H to break the GUT symmetry and to generate
fermion masses. Several authors have used this framework
to build interesting models [7,8].

The SO(10) symmetry is broken to the standard model
by GUT scale vacuum expectation values (vevs), one in the
SU(5) singlet direction of 16H and 16H, denoted v, and
h45Hi along the B� L direction. The electroweak symme-
try is broken when weak doublets in 10H acquire vevs. It is
also possible that the doublets in 160H and 160H acquire
weak scale vevs, in which case the light Higgs doublets
are a mixture of weak doublets from the vector and spinor
representations [9]. We will assume for now that 160H does
not acquire a weak vev.

Charged fermion masses are generated via several op-
erators: the renormalizable operator 16i16j10H, which
contributes to all Dirac mass matrices for the standard
model fermions; the higher-dimensional operator
16i16j10H45H, which differentiates the quark mass matri-
ces from the lepton matrices due to their differing charges
under B� L; and 16i16j16H160H, which contributes only
to down quark and charged lepton mass matrices. The
operator 16i16j10H is symmetric in generation space while
16i16j10H45H is antisymmetric (16i and 16j are contracted
as a 120, for h45i / B� L this is the only contraction that
contributes to the mass matrices). The operator
16i16j16H160H may be symmetric or asymmetric, depend-
ing on how the fields are contracted.

With this set of operators, the Dirac neutrino matrix MD
receives contributions from the operators 16i16j10H and
16i16j10H45H, and we expect it to be somewhat similar to
the up quark matrix, i.e., to have a similarly strong hier-
archy of mass eigenstates from the first to the third gen-
eration. For the up quarks this is approximately 5 orders of
magnitude. Although the neutrino hierarchy can be some-
what weaker due to factors of 3 coming from the B� L
direction vev of the 45H, one would still expect roughly a

10�4 ratio between the lightest and heaviest Dirac matrix
eigenvalues.

We define the orientation of MD as �iMij
DN

j, where N is
the standard model singlet. Then we can parametrize the
Dirac matrix as

 MD � LDDDR
y
D: (1)

Here and throughout the paper the matrices M are dimen-
sionless and the largest eigenvalue is normalized to 1.
Since we are primarily concerned with interfamily rela-
tions this causes no problems, but one should bear in mind
that there is an overall scale associated with all mass
matrices. In the above case, the dimensionful Dirac mass
operator is u�MDN, where u is the mass of the largest
eigenvalue. Similarly, throughout the paper L and R will
signify unitary matrices defined by the diagonalization
equations

 LyMMyL � RyMyMR � D2 � diag ��2; �2; 1�; (2)

where �; �; 1 are the normalized eigenvalues of M.
In general, LD and RD are arbitrary unitary matrices and

DD is a diagonal matrix of the eigenvalues of MD; how-
ever, we expect the eigenvalues to be strongly hierarchical.
This hierarchy will be naturally generated if we posit the
forms

 DD � diag ��; �; 1�;

LD �

1 �0
���
�
�

q
�0

����
�
p

�0
���
�
�

q
1 �0

���
�
p

�0
����
�
p

�0
���
�
p

1

0
BBB@

1
CCCA;

RD �

1 �
���
�
�

q
�

����
�
p

�
���
�
�

q
1 �

���
�
p

�
����
�
p

�
���
�
p

1

0
BBB@

1
CCCA:

(3)

We expect �� �� 1. Based on the quark hierarchy we
may estimate their approximate size as �� 10�4 and ��
10�2, but most of the analysis does not depend on this
assumption.
LD and RD are unitary matrices and the parametrizations

above should be read as giving the orders of magnitude
only of the various entries. The parameters �, �, � and
their primed counterparts are generally expected to be less
than or equal to order one. If they were significantly larger,
various entries would need to cancel to preserve the
smaller eigenvalues. Thus �; �; �� 1 is the minimal re-
quirement for naturalness in the absence of an exact sym-
metry relating the Yukawa couplings. This is known as a
geometrical hierarchy pattern [10]. It corresponds to the
following form for MD:

1The subscripts i, j will be used to indicate generations while
Higgs fields will be denoted with a subscript H.

J. SAYRE AND S. WIESENFELDT PHYSICAL REVIEW D 77, 053005 (2008)

053005-2



 MD �

� �
�������
��
p ����

�
p�������

��
p

� �
���
�
p����

�
p ���

�
p

1

0
B@

1
CA: (4)

The central feature of such a matrix is that the off-diagonal
entries play a dominant or codominant role in determining
the two smaller eigenvalues. A geometric hierarchy can be
easily obtained with a U(1) symmetry via the Froggatt-
Nielsen mechanism [11].

On the other hand,�, �, and �may be arbitrarily smaller
without endangering the eigenvalue hierarchy. In this case
the diagonal entries in MD become dominant and must be
correspondingly close to the eigenvalues. We will refer to
this possibility as a subgeometric hierarchy. With three
generations it is, of course, possible to have a mixed case
which is partially geometric and partially subgeometric.

There is one exception to these naturalness considera-
tions, which occurs if MD is highly asymmetric, i.e., if
�MD�ji and �MD�ij are of different orders for some i and j.
However, if it arises only from 16i16j10H and
16i16j10H45H, we would not expect this; these operators
give symmetric and antisymmetric contributions, respec-
tively, which would have to be arranged to cancel in a
seemingly unnatural way. Thus we generally expect LD
and RD to have similar values for their parameters, i.e.,
���0, �� �0 and �� �0.

To implement the type-I seesaw, we need a matrix for
the heavy neutrinos: NiMij

RN
j. Such a coupling may arise

from 1
m �MR�ij16i16j16H16H when 16H acquires its GUT

scale vev v. This nonrenormalizable operator is suppressed
by some mass m, which is by default the Planck scale but
which in practice may be somewhat less, depending on the
origin of the effective operator. The seesaw formula then
gives

 M� ’ �MDM
�1
R �MD�

T: (5)

As discussed above, MD, M� and MR are dimensionless.
The massive parameter which sets the scale for the neu-
trinos is u2m=v2. For u� 100 GeV, v� 1016 GeV, and
m�mPl � 1018 GeV, this comes out to be 0.1 eV, consis-
tent with the range indicated by experiment.

We stress that the discussion above depends very little
on the assumption of small representations or the vevs used
to do symmetry breaking. One may, for example, use h45Hi
proportional to the hypercharge generator or use a 54H in
place of the 45H to accomplish the breaking from SU(5) to
the standard model [12]. Alternatively, we could have used
the large representation approach with 10H, 120H, and
126H, which many authors have used for model building
[13]. In any case, we still expect a hierarchy in the quark
and charged lepton mass matrices. Because of SO(10)
relations, this hierarchy should manifest itself in the
Dirac neutrino matrix as well and the same naturalness
considerations apply.

III. EXPERIMENTAL CONSTRAINTS

The detection of neutrino oscillation is successfully
explained by massive neutrinos with nontrivial mixing.
We know two mass squared splittings among the neutrinos
and two mixing angles of the leptonic mixing matrix, with
a limit on the third for the physical light neutrinos [2],

 tan 2�12 � 0:45	 0:05;

�m2
sol � �8:0	 0:3� 
 10�5 eV2;

sin22�23 � 1:02	 0:04;

�m2
atm � �2:5	 0:2� 
 10�3 eV2;

sin22�13 � 0	 0:05:

(6)

Additionally, cosmological considerations place a limit on
the total mass of the neutrinos [14], along with limits from
tritium beta decay and neutrinoless double beta decay on
the electron neutrino [1,2,15]. These experimental results
constrain the total mass of the light neutrinos to be less than
or of the order of 1 eV. Our discussion does not depend on
the exact number since the masses are degenerate in this
limit. The bound will only become important to our analy-
sis if it approaches the atmospheric mass splitting.

The mixing is characterized by the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix, a unitary matrix pa-
rametrized by three angles and three phases,

 VPMNS � LyeL� �
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

0
B@

1
CA
 diag �ei�1=2; ei�2=2; 1�: (7)

For concreteness, we will assume the tribimaximal so-
lution which sets the mixing angles �12 � 30�, �13 � 0�,
�23 � 45� [16],

 VPMNS �

��
2
3

q ��
1
3

q
0

�
��
1
6

q ��
1
3

q ��
1
2

q
��
1
6

q
�

��
1
3

q ��
1
2

q

0
BBBB@

1
CCCCA; (8)

neglecting phases. This is in some sense an extreme solu-
tion consistent with the data. Given the several seemingly
disparate factors which influence the angles, it seems
highly unlikely that any model will predict exactly zero
for �13, or exactly maximal atmospheric mixing, unless
carefully designed to do so [6]. Therefore it may well be
that experiments eventually favor a less striking set of
angles. Furthermore, in a detailed model one would also
need to carefully consider renormalization, which can have
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a significant effect on the mixing angles and mass splittings
[17].2 We do not address these effects in further detail in
this paper because they make little difference in our analy-
sis. We are only looking at relative orders of magnitude of
masses and mixing angles. Because of its simple structure,
we will use the tribimaximal solution as an experimental
input. The critical facts we need are the existence of two
large neutrino mixing angles and a relatively weak neutrino
mass hierarchy, both of which will remain true despite
renormalization effects.

We will assume for now that the tribimaximal structure
is generated essentially in the neutrino sector; given the

charged lepton hierarchy, we usually expect relatively
small rotations in Le compared to the large PMNS entries.
Since we are only concerned with orders of magnitude, we
will (for now) neglect the charged lepton component. As
with the geometric hierarchy discussed in Sec. II, there is
one exception to this rule associated with a highly asym-
metric structure, this time in the charged lepton matrix.
Such a lopsided matrix can introduce large rotations, as
shown in the Albright-Barr model [7]. This case will be
discussed further in Sec. VIII.

The neutrino mass matrix will be diagonalized by the
tribimaximal rotations if it has the form

 M� � VPMNSD�V
T
PMNS /

�
m1 �

1
2m2

�
� 1

2 �m1 �m2�
1
2 �m1 �m2�

� 1
2 �m1 �m2�

1
2

�
1
2m1 �m2 �

3
2m3

�
� 1

2

�
1
2m1 �m2 �

3
2m3

�
1
2 �m1 �m2� � 1

2

�
1
2m1 �m2 �

3
2m3

�
1
2

�
1
2m1 �m2 �

3
2m3

�

0
BBBBBBB@

1
CCCCCCCA
; (9)

i.e., L� � R� � VPMNS. The m’s are the physical neutrino
masses with an arbitrary phase for m1 and m2. Since we
know the two mass squared differences, we may rewrite
these in terms of a single mass,

 m1 � ei	1 jm1j; m2 � ei	2

��������������������������
jm1j

2 � �2
sol

q
;

m3 �
������������������������������������������
jm1j

2 ��2
sol 	 �2

atm

q
;

(10)

where we have introduced the notation � �
����������
�m2
p

. The	
in the definition ofm3 represents the choice of normal (� )
or inverted (� ) hierarchy. We take the phase factors ei	1;2

to be 	1 so that there are just a few choices of relative
positive or negative to make. Since we are only concerned
with orders of magnitude and this will give the extrema,
this should not limit the analysis. Then it is simple to scan
through the allowed range of m1. By doing this, one can
observe the patterns of relative order in the neutrino entries
which are consistent with experiment. The potentially
interesting possibilities are

(1)

 M� �


 
 


 1 1

 1 1

0
@

1
A;

corresponding to m1 � m2 ’ �sol, normal
hierarchy.

(2)

 M� �

0 
 


 1 1

 1 1

0
@

1
A;

corresponding to 2m1 ’ m2 ’
2��
3
p �sol, 	2 �	1 �

�, normal hierarchy.
(3)

 M� �

1 0 0
0 1 1
0 1 1

0
@

1
A;

corresponding to �sol��atm� & m1 ’ m2 &

�atm�
���
2
p

�atm�, 	2 �	1 � 0, normal (inverted)
hierarchy.

(4)

 M� �

1 0 0
0 1 0
0 0 1

0
@

1
A;

corresponding to degenerate masses, 	2 � 0, 	1 �
0.

(5)

 M� �

1 0 0
0 0 1
0 1 0

0
@

1
A;

corresponding to degenerate masses,	2 � �,	1 �
�.

(6)

 M� �

1 1 1
1 1 1
1 1 1

0
@

1
A;

corresponding to degenerate masses,	2 �	1 � �.
Here 
 � �sol

�atm
’ 0:2 and 0 should be read as at least a few

orders of magnitude smaller than 1. Any other possibilities
should be roughly an interpolation between those listed
and we do not expect them to lead to significant deviations
from the results following.

2For example, a bimaximal mixing scenario (�12, �23 � 45�,
�13 � 0) at the GUT scale can produce weak scale mixing angles
consistent with the data quoted above [17].
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The cases with nondegenerate masses, namely, the first
through third above, violate the geometrical hierarchy
naturalness limit discussed in Sec. II. In each case the
democratic 2-3 block generically leads to two large eigen-
values of order 1 and one large mixing angle. Then the
couplings of the first generation give a naive estimate for
the third eigenvalue of 
, 
2, and 1 for the first, second, and
third cases, respectively. This is not compatible with the
eigenvalue ranges listed above, so some unexpected can-
cellations would have to take place. Moreover, these cases
are more compatible with a small �12 due to the smallness
of all off-diagonal first generation entries. The fourth and
fifth cases naturally lead to degenerate eigenvalues as listed
but imply unnatural precision to account for the large
mixing angles.

In short, hierarchical neutrino masses are unexpected in
conjunction with large mixing angles, and large mixing
angles naturally proceed from large off-diagonal entries in
the effective mass matrix. Thus, case 6 above is the most
natural simple assumption to account for the experimental
data; it is known as a democratic mass matrix [18].

We can also consider evidence from neutrinoless double
beta decay experiments. A positive signal would confirm
the Majorana nature of neutrinos and lend credence to
seesaw models. The experimental status is controversial:
After the Heidelberg-Moscow collaboration set the limit
jmeej � j�M��11j< 0:35h eV, where h denotes the uncer-
tainty of the nuclear matrix element [2,15], a subset of the
collaboration claimed evidence for a signal [19].
Depending on the value of h, this signal points at quaside-
generate neutrino masses in the range 0.1–0.9 eV [2]. This
result clearly requires confirmation from current and future
experiments. If confirmed, the hierarchical scenarios
would be ruled out, consistent with our conclusions from
naturalness. However, since this claim is still controversial,
we will not rule out the hierarchical scenarios in our
analysis.

We note that for an inverted hierarchy with m2 ’
3

2
��
2
p �atm, we could have

 M� �

1 1 1
1 0 1
1 1 0

0
@

1
A; 1 1 1

1 1 0
1 0 1

0
@

1
A; (11)

depending on the phases 	1;2. These should be thought of
as special subcases of case 6. As will be shown in the next
section, these possibilities will only add additional model-
ing constraints compared to case 6 without additional
explanatory power, so they are not particularly interesting
in this context. Bearing these caveats in mind we shall,
however, consider some cases besides 6 because they may
relax other naturalness constraints.

IV. MODELING

Now we will do a little rearranging of the seesaw for-
mula in terms of the eigenvalues and unitary matrix de-
composition of MD:

 RyDM
�1
R RD � D�1

D LyDM�L

DD

�1
D : (12)

Applying this to the sixth and henceforth canonical case
above, we get

 RyDM
�1
R RD �

1
�2

1
��

1
�

1
��

1
�2

1
�

1
�

1
� 1

0
BB@

1
CCA; (13)

where we have kept only the leading terms. The salient
point is that, with the assumption �0; �0; �0 � 1, the LD
rotations (and similarly the charged lepton rotations) can-
not change the orders of the entries. From this we see the
apparent double hierarchy forMR: its eigenvalues naturally
scale as �2; �2; 1 compared to �; �; 1 for MD.

Most of the other cases are similar and retain at least a 1
�2

ratio between the first and third eigenvalues. For the cases
where M� has entries less than order one, the unitary
rotations can contribute significantly, in particular, they
can ‘‘fill in’’ the zero entries, but they cannot make any
entries larger than order unity in LyDM�L


D.

There are two cases which may differ importantly from
the others. Case 1 in Sec. III is interesting since it yields

 RyDM
�1
R RD

�



�2

1
�� �
��

0 �
��

1
� �
��

0 �
��

1
�� �
��

0 �
��

1
�2

1
�

1
� �
��

0 �
��

1
� 1

0
BB@

1
CCA:
(14)

Similarly, for the second case we get

 RyDM
�1
R RD

�

1
�3=2 �
��0

�
���

�0��
�
p ��0� 1

�� �
��
0 �
��

1
� �
��

0 �
��

1
�� �
��

0 �
��

1
�2

1
�

1
� �
��

0 �
��

1
� 1

0
BB@

1
CCA:

(15)

In these cases we see that we have mitigated the largest
ratio of entries from 1

�2 to a smaller value, although said

ratio remains significantly larger than 1
� .

Let us now consider the effects of the matrix RD on the
canonical case. We will show that, under the current as-
sumptions, one can put additional constraints on �, � and
�. To begin, we parametrize the inverse heavy neutrino
matrix
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 M�1
R �

A B C
B D E
C E F

0
@

1
A (16)

and evaluate both Eq. (12) and

 M�1
R � RDD�1

D LyDM�LDD
�1
D RTD; (17)

which is just another rearrangement of the seesaw formula.
Keeping only potentially leading terms, we find
 

A ’
1

�2 ;

B ’
�

�3=2�1=2
�

1

��
;

C ’
�

�3=2
�

�

��1=2
�
��

�3=2
�

1

�
;

D ’
�2

��
�

2�

�1=2�3=2
�

2��

�1=2
�

1

�2 ;

E ’
��

��1=2
�
�� ��

�1=2�
�

�

�1=2�1=2
�
���1=2

�1=2
�

�

�3=2
�

1

�
;

F ’
�2

�
�

2��

�1=2�1=2
�

2�

�1=2
�
�2

�
�

�

�1=2
� 1: (18)

Now, with a little consideration, one can see that each entry
should only be as big as the rightmost term. This is because
Eq. (12) must still be satisfied looking only at the order of
the terms. For example, we can look at the equation for the
(12) entry of Eq. (13) in terms of A through F and�, �, and
� via Eqs. (3) and (16). This comes out to be
 

A�
����
�
�

r
� B� C��

���
�
p
���

����
�
p � �D�

����
�
�

r

� E���� ��
����
�
p
� F��

�������
��
p

�
1

��
: (19)

B appears in this equation with a coefficient of order 1, thus
any solution to the set of conditions in Eqs. (18) with B>
1
�� will apparently not satisfy Eq. (19).3 This is a natural-
ness condition. One can, of course, numerically satisfy
both equations but it requires a cancellation between two
terms to at least an order of magnitude. If we want to avoid
the need for a symmetry precisely relating various parame-
ters, the only natural solution is to set B� 1

�� .4

Applying the same analysis to the rest of Eqs. (18), we
come to the conclusion that

 M�1
R �D

�1
D LyDM�LDD

�1
D ; (20)

or that the hierarchy of M�1
R could be even stronger,

regardless of RD. Then we must impose constraints on
the mixing parameters in Eqs. (18) so that the parameters
B� F do not become too large:

 � &

����
�
�

r
; � &

����
�
p

; � &
���
�
p
: (21)

For �� 10�4 and �� 10�2, this corresponds to �;� &

10�1 and � & 10�2.
If we take the minimum required suppression and apply

it to �0, �0, and �0 as well, we get the cascade hierarchy
pattern [10,20] for the Dirac matrix,

 MD �

� � �
� � �
� � 1

0
@

1
A: (22)

For any hierarchical texture of RyDM
�1
R RD we will find that

M�1
R generally retains the same hierarchy. Intuitively, this

is because RD will tend to smear out any hierarchy inM�1
R ;

the larger entries will be rotated into the smaller. The
hierarchy would only be sharpened if there were a very
precise relation between RD and M�1

R , which we have no
reason to expect. So in general, if RyDM

�1
R RD has a hier-

archy of entries, M�1
R should have at least as strong a

hierarchy. Conversely, to maintain a strong hierarchy in
RyDM

�1
R RD, the unitary rotations cannot be too far from

diagonal, a fact reflected in the constraints on �, � and �.
For the other possible textures of M� with one or two

suppressed entries, we mostly find equal or stronger con-
straints on �, �, and �. For example, if the (23) and (32)
entries of M� are small so that the corresponding entries in
D�1
D LyDM�L


DD

�1
D are much less than 1

� , then we also
require E� 1

� . This in turn imposes stronger constraints
on the mixing parameters. This is the situation for cases 3–
5 as well as the special subcases of 6 mentioned in Sec. III.

It is interesting that the constraints on �, �, and �
remain valid even if we take the first case of the list,

 M� �


 
 


 1 1

 1 1

0
@

1
A; RyDM

�1
R RD �



�2



��



�



��

1
�2

1
�



�

1
� 1

0
BB@

1
CCA:
(23)

This is because we retain the strong hierarchy along the
first column and row, as well as in the (23) block, whose
entries remain less than or equal in order to the first
generation entries.

The one exceptional case is the other form noted before,
case 2. This leads one to the conclusion

3Here the important number is actually the ratio B=F�
1=����. Using the conventions above we find F� 1, but there
is an overall numerical factor which we omit because it can be
absorbed into the dimensionful vevs.

4Technically, it could be smaller since Eq. (12) depends on
experimental numbers. Thus in Eq. (19), it may cancel the
theoretical parameter term �=��3=2

���
�
p
� without fine-tuning as

long as it is consistent with the experimentally allowed range. At
any rate, it would only make the hierarchy stronger since A� 1

�2

regardless.
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 M�1
R

�

1
�3=2 �
��0

�
���

�0��
�
p ��0� 1

���
��
0
���
�
�

q
� 1
��
��

0
���
�
�

q
�

1
���
��

0
���
�
�

q
� 1

�2
1
�

1
��
��

0
���
�
�

q
� 1

� 1

0
BBBB@

1
CCCCA;

(24)

and the naturalness conditions

 � &

����
�
p���
�
p


� 1; � &

����
�
p



� 0:1; � �

���
�
p
� 0:1:

(25)

So in this case we are not as constrained as the cascade
pattern but still more constrained than the geometric pat-
tern; only the constraint on � remains the same. This
makes sense since, in this case, we have a relatively

weak hierarchy in the first row and column compared to
the canonical case. Therefore, we find weaker constraints
on the rotation parameters for the first generation.

In general then, we are led to both a double (or at least
enhanced) hierarchy for MR and a cascade (or subgeo-
metrical) pattern for MD in a simple type-I scenario.
Other authors have come to similar conclusions following
from the assumption of hierarchical Yukawa matrices
[21,22].

V. CKM CONSTRAINTS

The Dirac mass matrices of quarks and leptons are
related by SO(10) and possibly family symmetries. Thus,
we should also consider the size of the unitary rotations in
the up and down quark mass matrices, which are measur-
able through the CKM matrix, VCKM � LyuLd. The experi-
mental CKM values are [1]

 VCKM �
1 0:226	 0:002 �4:3	 0:3� 
 10�3

0:23	 0:01 1 �4:2	 0:06� 
 10�2

�7:4	 0:8� 
 10�3 3:5
 10�2 1

0
B@

1
CA: (26)

If we suppose for the moment a geometric pattern for both the up and down quark matrices, then the predicted CKM matrix
is

 VCKM ’

1
�����
md
ms

q
�

�����
mu
mc

q
�

���������
mums
mtmb

q �����
md
mb

q
�

�����
mu
mt

q
�

���������
mums
mcmb

q
�

�����
md
ms

q
�

�����
mu
mc

q
�

���������
mcmd
mtmb

q
1

�����
ms
mb

q
�

�����
mc
mt

q
�

���������
mumd
mcmb

q
�

�����
md
mb

q
�

�����
mu
mt

q
�

���������
mcmd
mtms

q
�

�����
ms
mb

q
�

�����
mc
mt

q
�

���������
mumd
mtms

q
1

0
BBBB@

1
CCCCA

’
1 0:23� 0:06� 4
 10�4 0:03� 0:003� 0:008

�0:23� 0:06� 0:001 1 0:14� 0:04� 0:002
�0:03� 0:003� 0:01 �0:14� 0:04� 7
 10�4 1

0
B@

1
CA: (27)

A few features are striking. One is that the geometric ratio�����
md
ms

q
�

�����
mu
mc

q
nicely reproduces the experimental value for

the first-second generation mixing [23]. The dominant
term comes from the down quark mixing, while the con-
tribution from the up quark mixing is significantly too
small to account for the mixing by itself. Secondly, the
down quark contribution to the first-third mixing is too
large by roughly an order of magnitude. Lastly, the down
quark contribution to the second-third generation mixing is
also too large by roughly a factor of 3. So the geometric
hierachy does a good job for the Cabibbo angle but gives
too much mixing with the third generation.

This result is consistent with a partially cascade struc-
ture in Md and Mu.5 The relatively large Cabibbo angle

indicates that the down quark matrix should be close to
geometrical in the 1-2 block. However, it will fit the data
better if it is cascadelike in the third generation. If the same
were true of MD, we would be consistent with the second
case from Sec. III. On the other hand, since 16i16j16H16H
only contributes to the down quark and charged lepton
matrices, the neutrino matrix could remain completely
cascadelike without conflict.

VI. IMPLEMENTING THE CASCADE HIERARCHY

Since we argue that a cascade texture is theoretically
desirable, we will investigate how it can be generated. We
will make use of the Froggatt-Nielsen mechanism [11] and
consider a global U�1� 
 Z2 
 Z02 symmetry. We introduce
three SO(10) singlets 	i. The flavor symmetry is broken
spontaneously at a high scale m by vevs of the singlet
fields, which we expect to be all of the same order, h	i.
The symmetry breaking is assumed to be transmitted to
quarks and leptons through interactions with heavy parti-
cles so that the Yukawa couplings are constructed out of

5Since the largest terms come from the down quark sector, the
CKM values are also consistent with a geometric hierarchy in
Mu. Given SO(10) relations and possible family symmetries, the
simplest assumption is that Mu has a similar hierarchy structure
to Md.
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powers of � � h	i=m with a texture dictated by the family
symmetry.

We assign the following charges:

Field 161 162 163 10H 	1 	2 	3

U(1) 2 1 0 0 �1 0 0
Z2 � � � � � � �

Z02 � � � � � � �

Then the operator Mij
1016i16j10H originates from

�ij16i16j10H, where � represents the higher-dimensional
couplings,

 � �

1
m4 �	1�

4 1
m4 �	1�

3	3
1
m4 �	1�

2	2	3
1
m4 �	1�

3	3
1
m2 �	1�

2 1
m2 	1	2

1
m4 �	1�

2	2	3
1
m2 	1	2 1

0
B@

1
CA;
(28)

so that

 M10 �
�4 �4 �4

�4 �2 �2

�4 �2 1

0
B@

1
CA: (29)

This is the cascade form of Eq. (21) with � � �4 and � �
�2. The same pattern can easily be reproduced in the other
operators which contribute to fermion masses. Note that in
the absence of the Z2 symmetries we would have generated
a geometric hierarchy.

We must also consider whether a cascade hierarchy can
naturally accommodate the fermion masses in a unified
theory. Restricting ourselves to two generations, the opera-
tors discussed in Sec. II contribute to the (normalized)
mass matrices as follows:

 Mu �
�0 �� 

��  1

� �
;

MD �
�0 �� 3

�� 3 1

� �
;

Md �
�0 � �0 �� � �

�� � � 1

� �
;

Me �
�0 � �0 �� 3� �

�� 3� � 1

� �
:

(30)

Here, the terms � and �0 parametrize the operator
16i16j10H. The parameter  derives from 16i16j10H45H,
while � and �0 characterize 16i16j16H160H. Looking at the
determinants, we calculate the mass ratios:

 

mc

mt
’ j�0 � �2 � 2j;

� ’ j�0 � �2 � 92j;
ms

mb
’ j�0 � �0 � 2 � ��� ��2j;

m�

m�
’ j�0 � �0 � 92 � ��� ��2j:

(31)

As expected,  accounts for the difference of down quark
and charged fermion masses,

 82 �
m�

m�
�
ms

mb
’

�
4
 10�2 �

8
 10�2 �
(32)

where we used �m�=m��GUT ’ 0:06 and �ms=mb�GUT ’

0:02. Since we wish to minimize off-diagonal terms in a
cascadelike matrix, we will use the smaller value for ,6

  ’ 7
 10�2: (33)

Then we obtain

 � �
mc

mt
� 82 ’ 7
 10�2; (34)

with �mc=mt�GUT ’ 0:03.
In order to have a cascade form forMD, we require �0 �

�	 3� �. Since 3 ’ 0:2, this implies �0 � 0:1, inde-
pendent of �. This value of �0 can be consistent with the
value of � in Eq. (34), but it needs to cancel significantly
with �2 to ensure a suitably small value for mc=mt.
Conversely, mc=mt implies �0 & 10�2, which leads to a
geometric hierarchy in MD. Since we have been trying to
avoid requiring the cancellation of theoretical parameters,
this simple cascade ansatz is problematic.

One particularly attractive way out of this dilemma is to
consider the possibility that MD, but not Mu, receives
additional contributions, e.g., via particular higher-
dimensional operators. If such an operator gave a contri-
bution to the (22) element ofMD of order �� 0:1, �0 could
be made sufficiently small. We consider such a scenario in
the following section.

VII. NEW CONTRIBUTIONS TO MD

In Sec. IV we saw that the observed pattern of neutrino
masses and mixings leads us to an enhanced hierarchy for
MR, compared to MD. One should note, however, that
while MD is related to the observed quark and charged
lepton hierarchies by SO(10) and any family symmetries, it
is not directly observed. In particular, one may include
another operator, 16i16j16H160H. As noted above, the weak
doublet in 160H can acquire a weak scale vev u0 such that
this operator potentially contributes to the up quark and
neutrino masses. However, it can be constructed to con-
tribute only to the Dirac neutrino matrix. In this case we
expect u0 < u, since u is required to generate a large top
quark mass and the sum of the squares of weak scale vevs
must equal �246 GeV�2.

A simple possibility for generating this operator is to
integrate out SO(10) singlets, S, at some scale above the
relevant GUT scale vevs. For this purpose we can propose
the operators

6The larger value,  ’ 0:1, leads to � ’ 0:1.
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�M ij16i16HSj � �M0ij16i160HSj �ms�MS�ijSiSj: (35)

We assume at least three singlets to guarantee that all three
right-handed neutrinos become heavy. As usual, we define
ms to have units of mass so that MS is dimensionless with
entries of order 1 or smaller, and similarly we normalize �M
and �M0 in Eq. (38). In the following analysis we assume
that all the S singlets are integrated out to generate an
effective Majorana mass for the N’s. To compute this via a
straightforward seesaw mechanism, we will work in the
basis where MS is diagonal and impose the conditions

 �MS�ii >
v
ms

(36)

for all i.
The mass matrix for the electrically neutral particles

reads7

 � N S
� � 0 1

2uMD
1
2u
0 �M0

1
2uM

T
D 0 1

2v
�M

1
2 u
0 �M0T 1

2v
�MT msMS

0
B@

1
CA �

N
S

0
@

1
A: (37)

As derived in the appendix, the light neutrino mass matrix
is then given by
 

M� ’ MD� �M�1�TMS
�M�1MT

D

�
x
2
� �M0 �M�1MT

D �MD� �M0 �M�1�T�;

x �
u0v
ums

� 1: (38)

The mass of the heaviest neutrino is of order u2ms=v2. It is
crucial that, in the final formula, MD appears in all terms,
i.e., terms quadratic in �M0 �M�1 have not appeared.

Let us study the effect of the new contributions. We
parametrize the various matrices as follows:

 M�1
R � � �M�1�TMS

�M�1 �

A B C
B D E
C E F

0
@

1
A;

�M0 �M�1 �

a b c
b0 d e
c0 e0 f

0
@

1
A

(39)

(note that the matrix �M0 �M�1 is generally not symmetric),
and
 

M�1
D M��M�1

D �
T � M�1

R �
x
2
�M�1

D
�M0 �M�1

� � �M0 �M�1�T�M�1
D �

T�

�

A0 B0 C0

B0 D0 E0

C0 E0 F0

0
BB@

1
CCA: (40)

The last matrix, with primed capital letters, is the total
effective matrix which takes the place of M�1

R in Sec. IV.
The unprimed capital letters parametrize the familiar
heavy neutrino matrix and the lower case letters parame-
trize the new terms. Before proceeding to consider the
effects of these new terms, we note that MR can easily
acquire a double hierarchy if it is generated by integrating
out heavy singlets, as described above. If �M has a hierarchy
comparable to MD and MS is roughly democratic, a double
hierarchy occurs naturally.

We can write the total effective parameters in terms of
these old and new components and perform the same
analysis on the total effective matrix (A0 � F0) as we did
on the simple type-I parameters (A� F) in Sec. IV. Then
we obtain the following set of equations:

 

A0 ’ A�
�
a
�
� b0

�0�������
��
p � c0

�0����
�
p

�
x

B0 ’ B�
1

2

�
a
��������
��
p �

b
�
�
b0

�
� c0

�0���
�
p � d

�0�������
��
p � e0

�0����
�
p

�
x

C0 ’ C�
1

2

�
a
�����
�
p � b0

����
�
p � c0 �

c
�
� e

�0�������
��
p � f

�0����
�
p

�
x

D0 ’ D�
�
b
��������
��
p �

d
�
� e0

�0���
�
p

�
x

E0 ’ E�
1

2

�
b
�����
�
p � c

��������
��
p � d

����
�
p �

e
�
� e0 � f

�0���
�
p

�
x

F0 ’ F�
�
c
�����
�
p � e

����
�
p � f

�
x: (41)

In these equations we have kept only the leading terms. In
doing so, we make use of the important fact that the
constraints on �, �, and � still apply. They follow from
consideration of the experimental data and the geometric
constraints on MD only.8

Although these equations still appear somewhat compli-
cated, the requirement that we fit the same hierarchy of
orders as imposed in Eqs. (18) can only be satisfied in a few
ways. In general, the new terms give us new parameters
which could play a role in a precision fit to the data, but
they will not affect the conclusions of this paper unless
they dominate over the old terms. Let us consider the
canonical case, which implies

 

A0 B0 C0

B0 D0 E0

C0 E0 F0

0
@

1
A /

1
�2

1
��

1
�

1
��

1
�2

1
�

1
�

1
� 1

0
BB@

1
CCA: (42)

Examining Eq. (41), this puts some initial constraints on
our new parameters. For example,

7Barr calls this scenario a type-III seesaw mechanism [24];
however, it can also be understood as a product of two type-I
mechanisms.

8This would not be the case if there were new terms in the
effective total matrix which did not involve MD.
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bx
�
� B0 �

F0

��
: (43)

These constraints may be summarized in matrix form:

 

a b c
b0 d e
c0 e0 f

0
@

1
A &

1
�

1
� 1

1
�

1
� 1

1
�

1
� 1

0
BB@

1
CCAF0x : (44)

Taking these restrictions into account, we conclude that to
satisfy A0

F0 �
1
�2 we must have

 A� F0
1

�2 or a� F0
1

�x
: (45)

The latter case is initially appealing because one can
apparently trade the strong double hierarchy constraint
on MR for a weaker standard hierarchy in �M0 �M�1 if the
term involving a dominates.

This turns out not to be feasible. Recall that �M and �M0

have all entries of order 1 or less. Thus, if a � F0 1
�x , there

exists some i and some n � 1 for which

 

�M 0
1i �

1

n
and �M�1

i1 �
nF0

�x
(46)

[cf. Eq. (39)]. Then the assumption that the a term domi-
nates over A gives us the inequality

 

1

�2 �
ax
�F0
�
A
F0
�

1

F0
�� �M�1�TMS

�M�1�11

�

�
n
�x

�
2
�MS�iiF0; (47)

from which we obtain �MS�iiF
0 � x2

n2 . Applying the seesaw
constraint on MS and inserting the definition of x gives us

 

v
ms
F0 � �MS�iiF

0 �
u02v2

n2u2m2
s
: (48)

This requires F0 to be too small, that is,

 1 & �� �M�1�TMS
�M�1�33 � F � F0 �

u02v

n2u2ms
: (49)

Since v� ms and u0 & u, this condition cannot be satis-
fied. Thus the additional contributions cannot dominate
over the type-I contributions or change the need for a
double hierarchy.

One can instead look at case 1 from Sec. III. If the new
terms dominate in the largest ratio, which is still A0=F0, this
implies �M�1

i1 � 
 nF0
�x . Proceeding as in the canonical case

above, one finds 
�MS�iiF
0 � x2

n2 . Since we require F0 � 1
this is only possible if

 x2 � �MS�ii
n2 �
v
ms

n2; (50)

or equivalently,

 
 �
u02v

n2u2ms
� 1: (51)

This is a very marginal case since we are relying on v�
ms to use the seesaw formula as a valid approximation and

� 0:2.

If we proceed nonetheless, then we impose the condi-
tions on B0:

 



��
�
B0

F0
�
B
F0
�

1

F0
X
k

�M�1
k1

�M�1
k2 ; (52)

which implies the constraint �M�1
i2 � x=�n��MS�ii�. Now

we turn toD0 � 1
�2 . By similar reasoning as in the canonical

case it can be shown that D must dominate to satisfy D0 of
the appropriate magnitude, due to the suppression of the
new terms by x. Then

 

1

�2
�
D0

F0
�
D
F0
�
�MS�jj

F0
� �M�1

j2 �
2; (53)

for some j � i, which gives us the condition

 

�M �1
j2 �

1

�

��������������
F0

�MS�jj

s
: (54)

This in turn implies

 

�M �1
j1 �



�

��������������
F0

�MS�jj

s
; (55)

so as not to violate the bound on b. We find then that the
new contributions can technically dominate in the (11)
entry but the type-I terms remain comparable and dominate
in other entries, still exhibiting a strong hierarchy com-
pared to MD.

The related case 2, with �M��11 � 
, is, not surpris-
ingly, similar. One finds that the new term a can dominate

if 

���
�
�

q
� u02v

n2u2ms
, which provides somewhat more room for

consistency with the seesaw approximation. The con-
straints on the matrices are

 

�M �1
i1 ’


nF0

x
�������
��
p ; �M�1

i2 �
x

n
�������
��
p

�MS�ii
;

�M�1
j2 ’

1

�

��������������
F0

�MS�jj

s
; �M�1

j1 �


�

��������������
F0

�MS�jj

s
:

(56)

In both cases the new terms can dominate in some
entries, but the type-I terms remain important and retain
a strong, albeit not quite double, hierarchy. We note that
this is due largely to the structure of the theory: if MR is a
dimension-five operator generated by integrating out sin-
glets, then a hierarchy in �M similar to that in MD naturally
leads to a doubled hierarchy in MR. Because of the sup-
pression of the new terms by v=ms,MR will always play an
important role.
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It is interesting that even with the 16i16j16H160H opera-
tor only contributing to the neutrino sector, we still derive
the cascade constraints. Although this operator only con-
tributes to the Dirac neutrino matrix, the constraints apply
to the operators which generate the up quark matrix. This
follows from the precise relations between the higher
dimensional operators induced by their common origin.
These relations result in MD appearing in all terms of the
formula forM�. As a consequence of the persistent cascade
constraints, we cannot use the new terms to solve the mass
splitting problems discussed in Sec. VI.

If one treats 16i16j16H160H and 16i16j16H16H as inde-
pendent, it is possible to relax said constraints. That is, in
the discussion above both operators depend on the cou-
pling �Mij16i16HSj and are therefore related. If we allow
them to vary arbitrarily, then the modified seesaw formula
in Eq. (38) would have additional terms which did not
involve MD. In effect, we would be adding new terms to
the Dirac neutrino matrix which could strongly alter its
hierarchy compared to the quarks and charged leptons. If
this resulted in a relatively weak Dirac neutrino hierarchy,
MR would have a correspondingly weakened hierarchy and
the mixing parameter constraints would also weaken.
However, as shown above, this is not necessarily the case
when one begins with a more complete theory.

In general, if one can weaken the Dirac neutrino hier-
archy without upsetting the charged fermion hierarchies,
the requirement of a double hierarchy in MR and a cascade
hierarchy in MD becomes less restrictive, since they are
specified relative to the eigenvalue hierarchy of MD. One
possibility for doing so may be to introduce a vectorlike
fourth generation of down quarks and leptons at the GUT
scale. This can relate MD to the down quark hierarchy such
that the hierarchy of MR is similar to that of the up quarks
[25].

VIII. LOPSIDED MODELS

Thus far, we have not allowed for any cancellations
between terms in our equations, in keeping with our aim
to eliminate unnatural models. There are, however, two
scenarios where one must be more careful. These are cases
where unitary rotations play a very significant role either
due to large rotations or small entries in the neutrino
matrix.

In this section we will consider the first type of these
cases, lopsided models, wherein the operator
16i16j16H160H is constructed so as to contribute in a highly
asymmetrical way to the down quark and charged lepton
mass matrices [7].9 These lopsided matrices can yield a
natural hierarchy while violating the geometric pattern
limit discussed above. Lopsidedness results in large off-

diagonal terms in the unitary rotations on one side of the
matrix but not both.

To illustrate these features we will restrict ourselves to
two generations first. The following table summarizes the
three natural cases we have discussed for a generic matrix
M with eigenvalues � and 1, which is diagonalized by the
unitary rotation matrices L and R.

Hierarchy M L R

Geometric
�

���
�
p���

�
p

1

� �
1

���
�
p���

�
p

1

� �
1

���
�
p���

�
p

1

� �

Cascade
� �
� 1

� �
1 �
� 1

� �
1 �
� 1

� �

Lopsided
� �
1 1

� �
1 �
� 1

� �
1 1
1 1

� �

For both the geometric and cascade cases L and R are
similar to each other. As expected, the off-diagonal entries
of L and R for the cascade case are smaller than in the
geometric case.

The lopsided case, being highly asymmetric, leads to
very different rotation matrices on the left and right. We
see that to generate large mixing on one side, i.e., Rwith all
entries of the same order, we are led to L being closer to
diagonal than in the geometric case. Rather, it is similar to
the cascade rotation matrices. So in this simple case, to
preserve naturalness, there is a trade off between the left
and right sides. If one side’s unitary rotation violates the
geometric naturalness bound, the other’s is concomitantly
constrained to be closer to unity.

To take potentially large mixing in the charged lepton
sector into account, we have to reevaluate our seesaw
formula. In Eq. (12), we neglected the rotations from the
charged lepton sector, parametrized by Le [cf. Eq. (7)]. To
include them we rewrite the formula as

 RyDM
�1
R RD � D�1

D V0M0�VT0D
�1
D ; (57)

where

 M0� � VPMNSD�VTPMNS � LyeM�Le; V0 � LyDLe:

(58)

M0� is the light neutrino mass matrix in the basis where the
charged leptons are diagonal. It can have the same forms as
discussed in Sec. III for M�. With the substitutions M� !
M0� and LD ! V0, the equations used above are unaltered.

The crucial difference is that the assumed form of LD in
Eq. (3) does not necessarily apply to V0 in the lopsided
case. Since V0 contains off-diagonal entries of order one,
we may arrange for terms of equal order to cancel each
other in V0M

0
�V

T
0 . This is not fine-tuning because we are, in

effect, canceling an experimental term with a theoretical
one, rather than canceling two theoretical parameters
against each other. To put it another way, we are simply
using a theoretical term to generate an experimental pa-
rameter of the same order. The result is that we may be able

9We will not discuss the origin of these lopsided matrices,
which, e.g., can be due to family symmetries [7].
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to have a form for RyDM
�1
R RD which does not have such a

strong hierarchy, and which in turn may not imply the
restrictive cascade form for MD. In such a scenario, some
or all of the large mixing in VPMNS comes from charged
lepton unitary rotations.

To examine the lopsided case further we must see what
can be said about the matrix V0. Again, we can look at the
CKM matrix for possible constraints. It can tell us about
the potential lopsidedness in the down quark and charged
lepton mass matrices. The operator we are using to gen-
erate lopsidedness contributes to Me as the transpose of its
contribution to Md, as is familiar from SU(5) models.10

Hence, large rotations in Le would coincide with large
rotations in Rd and vice versa. We now see that the experi-
mental values are consistent with either a cascade structure
or a lopsided structure for the down quark mass matrix in
the third generation couplings.

One might hope that the relatively large 1-2 mixing,
which is consistent with a geometric hierarchy in the
down quark matrix (cf. Sec. V), would constrain the 1-2
mixing in Rd. This, however, turns out not to be the case.
We can construct a matrix with all the desired features and
generically large right-handed mixing, e.g.,

 Md �

md
mb

���������
mdms
p

mb

md
mb���������

mdms
p

mb

ms
mb

ms
mb

1 1 1

0
BB@

1
CCA;

Ld �

1
�����
md
ms

q ���������
mdms
p

mb�����
md
ms

q
1 ms

mb���������
mdms
p

mb

ms
mb

1

0
BBBB@

1
CCCCA;

Rd �
1 1 1
1 1 1
1 1 1

0
@

1
A:

(59)

Thus, although the CKM matrix is highly suggestive of
either a partially cascade or lopsided form for the down
quark mass matrix, it is difficult to constrain the form of Rd
and its counterpart Le in the latter case.

On the other hand, we note that since VPMNS has a small
value for the (13) entry, naturalness requires that at least
one entry in the column Li1e be correspondingly small. This
suggests that we can rule out the extreme lopsided case
shown above.

Lopsidedness also modifies the eigenvalue fitting we did
in Sec. VI. Let us consider the case where 16i16j16H160H is
lopsided and assume that it contributes to only one off-
diagonal entry in Md and Me in a significant way. Then the
mass matrices in Eq. (30) are modified to

 Md �
�0 � �0 �� 

�� � � 1

� �
;

Me �
�0 � �0 �� 3� �
�� 3 1

� �
;

(60)

with the corresponding eigenvalues

 

ms

mb
�

								�
0 ��0 �2��2������

1��2

								;
m�

m�
�

								�
0 ��0 � 92��2����� 3�

1��2

								:
(61)

This yields

 

m�

m�
�
ms

mb
�

2�4� ��

1� �2 !
��1

� 4
 10�2; (62)

which is only a slight improvement over the symmetric
case, a cascade structure inMD is still inconsistent with the
charged fermion hierarchies. Thus, in the absence of addi-
tional contributions to the mass matrices, it seems we must
rely on large, lopsided mixing between the second and
third generations to alleviate the need for a cascade stru-
cure in the 2-3 block of MD.

IX. SMALL ENTRIES AND MIXING

Aside from lopsided matrices, there is another scenario
in which V0 can play an important role. We saw in Sec. IV
that the entries of the first row and column of RyDM

�1
R RD

are smaller in the cases 1 and 2. If we allow cancellations
between these entries of order 
 and the mixing parameter

�0
���
�
�

q
, we might expect some qualitatively different results.

In this more general case, we use �0, �0 and �0 to parame-
trize V0 rather than LD. Including the effects of Le, we no
longer have the symmetry constraints ��; �; �� �
��0; �0; �0�.

We consider case 1:

 RyDM
�1
R RD

�



�2

1
��

�

��0

���
�
�

q �
1
�

�

��0

���
�
�

q �
1
��

�

��0

���
�
�

q �
1
�2

1
�

1
�

�

��0

���
�
�

q �
1
� 1

0
BBBBBBB@

1
CCCCCCCA
:

Here, although the unitary rotations remain relatively close

to unity, the rotation parameter �0
���
�
�

q
may be large enough

to cancel the experimental term 
. Such cancellation is
only possible if �0 � 1.11 Under geometrical constraints,

10This is simply due to the fact that 16H breaks SO(10) to
SU(5), so 16i16j16H160H is basically an SU(5) Yukawa operator
for down quarks and charged fermions, suppressed by v=M.

11Since �0 includes contributions from Le, its coefficient
���������
�=�

p
should be

����������������
me=m�

q
if the charged lepton ratio is larger. However,

since
����������������
me=m�

q
� 0:1�

���������
�=�

p
under our assumptions, we keep

our familiar notation.
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the (11) entry will be 

�2 , while the (12) entry could be

much smaller than 

�� . One can proceed to analyze the

mixing parameters in RD as in Sec. IV. Because of the
relatively large (11) entry, one finds that the constraints

 �&

����
�
�

r �
1�

�0




����
�
�

r �
; �&

���
�
p

�
1�

�0




����
�
�

r �
; �&

���
�
p

(63)

are required to preserve the small (12) and (13) entries.
Since this requires �� �0 � 1, the charged lepton rota-
tions would have to be significantly larger than those from
the Dirac neutrino matrix, at least for the 1-2 mixing. This
would suggest an approximately geometric structure in the
charged lepton matrix and a Dirac neutrino matrix with
very small first generation mixing. Thus, the Dirac neutrino
matrix would have a more restricted form than the cascade
hierarchy derived for the simpler case without cancella-
tions. Unless some additional information prompts us to
favor these textures for M�, MD and Me, there is no
compelling reason to further pursue this route.

In the second case, where �M��11 � 0, we find that the
constraints are the same as those listed in Eq. (25), i.e., the
same as we found for this case without allowing for can-
cellations. These results hold because, regardless of how

small 
��0
���
�
�

q
may be, we retain the same relative hier-

archy between the first generation entries and the same
hierarchy in the 2-3 block, cf. Eq. (15).

We conclude that these potential cancellations have little
effect on our previous considerations.

X. OUTLOOK

Barring cancellations or additional flavor symmetries,
the observed pattern of neutrino mass splittings and mixing
angles leads us to two related propositions for simple
model building in the general context of a grand-unified
theory with type-I seesaw mechanism. The first is a double
hierarchy, with respect to the hierarchy of the Dirac matrix,
MD, in the effective heavy neutrino matrix MR. The sec-
ond, contingent upon the first, is a cascade structure inMD,
or a texture which is even closer to diagonal. These con-
clusions follow only from the structure of the type-I seesaw
formula, together with the observation that the experimen-
tal neutrino data most naturally arise from an approxi-
mately democratic effective light neutrino matrix. If the
neutrino masses obey a normal hierarchy, i.e., m1 & m2�������������

�m2
sol

q
� m3 �

��������������
�m2

atm

p
, it is possible to relax these con-

straints, but it remains true that MR should have an en-
hanced hierarchy and MD should have a subgeometrical
structure. Moreover, in this case some approximate sym-
metry must exist to generate a second large mixing angle
and a hierarchy consistent with experiment.

These conclusions are rather general and not restricted
to the specific model with small representations outlined in

Sec. II. They hold for hierarchical, symmetric matrices, up
to factors of order one. In light of the quark and charged
lepton mass hierarchies, it is natural for MD to be hier-
archical. In particular, this matrix is closely related to the
up quark matrix in many GUT models. Family symmetries
will also tend to engender such relations. In Sec. VII we
showed that even adding an operator which ostensibly only
contributes to the Dirac neutrino matrix does not neces-
sarily relax our conclusions.

Can we implement these textures in a complete model?
We discussed a scenario with a U�1� 
 Z2 
 Z2 flavor
symmetry, where we generated a cascade structure for
the Dirac matrices through the Froggatt-Nielsen mecha-
nism. A double hierarchy in MR is natural if it is an
effective operator generated by integrating out singlets
coupled to 16i16H, where this coupling has an eigenvalue
hierarchy similar to that in MD (cf. Ref. [21]). However,
this structure led to problems in the quark sector. We have
seen that the relatively large Cabibbo angle implies that the
down quark matrix is not purely cascadelike, although a
cascade structure in the third generation is supported. This
does not necessarily conflict with a fully cascade pattern in
MD, but it requires a somewhat more complicated picture
than the simple model described above. Furthermore, in
our specific model, we rely on the antisymmetric operator
16i16j10H45H to differentiate the down quark and charged
lepton matrices. This implies that its contributions cannot
be too small. Since it also contributes to the up quark and
neutrino matrices, it becomes difficult to reconcile a cas-
cade structure in these matrices with the strong up quark
hierarchy in a natural way.

Lopsided models may provide us a way out of these
potential difficulties. Compared with a cascade pattern,
they are equally compatible with the CKM matrix. For
the purposes of mass fitting, lopsidedness slightly relaxes
the need for large off-diagonal contributions from
16i16j10H45H. More importantly, a lopsided charged lep-
ton matrix introduces large rotations which contribute to
the PMNS matrix. If these are primarily responsible for one
or both of the large mixing angles, it is possible to reduce
the pull towards a double hierarchy in MR. This in turn can
relax the constraints that lead us to a cascade structure for
MD and so for Mu. Exactly how much lopsidedness can
obviate the need for a double hierarchy remains an open
question. The atmospheric mass splitting remains small
compared to the quark mass splittings, irrespective of the
origin of the large mixing angles. This will tend to require
an enhanced hierarchy in at least part of MR. Additionally,
while it is technically possible that most or all of the PMNS
structure comes from charged lepton rotations, we must
ask how much can be done in a natural way. For example,
as discussed at the end of Sec. VIII, a small value for �13

precludes generically large mixing from lopsidedness in all
generations.

This brings us to the nature and origin of �13 in general,
which we have not addressed in detail in this paper. We
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chose to leave this an open question in light of the current
uncertainty in the size of �13: only an upper bound is
known. While it is clear that the solar and atmospheric
mixing angles are large compared with those in the quark
sector, �13 may or may not be comparatively small.
Actually, the experimental upper limit, approximately
10�, is of the same order as the Cabibbo angle. This is
large enough that its smallness compared to the other
neutrino angles may be explained by normal fluctuations
of order one parameters without violating our sense of
naturalness [6]. However, if �13 is significantly closer to
zero we should seek some more robust explanation. For the
forms of M� listed in Sec. III, this would require a sym-
metry closely relating various matrix elements. Another
possibility arises for partially lopsided matrices: if one
large mixing angle arises from the charged lepton sector
and the other from M� then it is natural to preserve a small
third angle. Clearly, it is important to determine the order
of �13.

In summary, a combination of partially lopsided and
partially cascade matrices, in conjunction with an en-
hanced hierarchy inMR, seems to be the most natural route
to explain the generic features of the quark and lepton data
in a grand-unified model. The details of a complete model
remain to be worked out, but our conclusions follow from a
fairly general framework. It will be interesting to see if a
workable model can be obtained with relatively simple
family symmetries and what consequences there might
be for experimental predictions.
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APPENDIX: DERIVATION OF EXPANDED SEESAW
FORMULA

In this appendix, we derive the extended seesaw for-
mula, given in Eq. (38). As mentioned in Sec. VII, it is
crucial that terms quadratic in �M0 �M�1 do not appear. The

formula was originally derived in Ref. [24] through a
slightly different calculation.

As displayed in Eq. (35), we propose the operators

 WS � �Mij16i16HSj � �M0ij16i160HSj �ms�MS�ijSiSj:

We integrate out the singlet fields, S, by taking a partial
derivative and setting it equal to zero,

 

@WS

@Sj
� 0:

Si � �
1

2ms
� �Mij16i16H � �M0ij16i160H��M�1

S �jk:

(A1)

Plugging this into our initial equation yields

 Weff
S � �

1

4ms
16i�� �MM�1

S
�MT�ij16H16H

� � �M0M�1
S

�MT�ij160H160H

� 2� �M0M�1
S

�MT�ij16H160H�16j: (A2)

Now we let the Higgs fields acquire their GUT and weak
scale vevs and we include the Dirac term �MDN, where �
and N are the left- and right-handed neutrinos, respec-
tively. Suppressing the generation indices, we obtain
 

WN � �
1

4ms
�v2N� �MM�1

S
�MT�N � u02�� �M0M�1

S
�MT��

� 2u0v�� �M0M�1
S

�MT�N� � u�MDN: (A3)

We extremize with respect to N and find

 

@WN

@N
� 0:

N �
�
ums

v2 MD� �M�1�TMS
�M�1 �

u0

v
�M0 �M�1

�
�:

(A4)

Inserting this into the last equation and performing a little
algebra gives the amended seesaw formula
 

Weff
� ’

�
MD� �M�1�TMS

�M�1MT
D �

1

2

u0v
ums
� �M0 �M�1MT

D

�MD� �M0 �M�1�T�



u2ms

v2 : (A5)
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