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Electroweak Sudakov logarithms at high energy, of the form ��=sin2�W�nlogms=M2
Z;W , are summed

using effective theory methods. The corrections are computed to processes involving two external
particles in the standard model. The results include nonzero particle masses, such as the t-quark mass,
electroweak mixing effects which lead to unequal W and Z masses, and radiative Higgs corrections
proportional to the Yukawa couplings. We show that the matching at the scale MW;Z has a term at most
linear in logs=�2 to all orders. The effective theory formalism is compared with, and extends, previous
work based on infrared evolution equations.
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I. INTRODUCTION

The Large Hadron Collider (LHC) has a center-of-mass
energy of

���
s
p
� 14 TeV, and will be able to measure

collisions with a partonic center-of-mass energy of several
TeV, more than an order of magnitude larger than the
masses of the electroweak gauge bosons. Radiative correc-
tions to scattering processes depend on the ratio of
mass scales, and radiative corrections at high energy
depend on logarithms of the form logs=M2

W;Z. In high
energy exclusive processes, radiative corrections are en-
hanced by two powers of a large logarithm for each order
in perturbation theory, and the logarithms are often re-
ferred to as Sudakov (double) logarithms. Electroweak
Sudakov corrections are not small at LHC energies, since
� log2�s=M2

W;Z�=�4� sin2�W� � 0:15 at
���
s
p
�4 TeV. These

Sudakov corrections lead to a breakdown of fixed order
perturbation theory, and need to be summed to all orders.

Electroweak corrections at high energy have double
logarithms, even for processes which are conventionally
called inclusive, such as the total e�e� cross section at
large angles, because the colliding particles are not elec-
troweak gauge singlets [1]. There are no electroweak sin-
glet fields in the standard model. A composite particle such
as the proton, while a color singlet, is not an electroweak
singlet.

There is an extensive literature on electroweak Sudakov
effects [2–15]. The computations use infrared evolution
equations [3], based on an analysis of the infrared structure
of the perturbation theory amplitude and a factorization
theorem for the Sudakov form factor [16]. These summa-
tions have been checked against one-loop [8–10] and two-
loop [11–15] computations.

The Sudakov logarithm log�s=M2
W;Z� can be thought of

as an infrared logarithm in the electroweak theory, since it
diverges as MW;Z ! 0. By using an effective field theory
(EFT), these infrared logarithms in the original theory can
be converted to ultraviolet logarithms in the effective
theory, and summed using standard renormalization group
techniques. The effective theory needed is soft-collinear
effective theory (SCET) [17,18], which has been used to

study high energy processes in QCD [19], and to perform
Sudakov resummations arising from radiative gluon
corrections.

This paper studies high energy electroweak Sudakov
corrections using SCET, and expands on our previous
work [20]. In Ref. [20], we showed how to compute
log s=M2

W;Z corrections to the Sudakov form factor for
massless fermions using EFT methods. In this paper, the
results are generalized to massive fermions such as the top
quark, and include radiative corrections due to Higgs ex-
change. The corrections are computed without assuming
that the Higgs and electroweak gauge bosons are degener-
ate in mass, as in previous calculations. A new feature of
EFT matching, the existence of single logarithmic match-
ing corrections [20], is discussed in detail, and proven to be
true to all orders in perturbation theory. This paper dis-
cusses the Sudakov form factor computation in detail. The
Sudakov form factor is not of direct relevance to LHC
processes, but it allows us to illustrate the EFT method
for operators involving two external particles. The compu-
tations of the Sudakov form factor given in this paper can
be used to compute electroweak corrections to processes
relevant for the LHC, such as dijet production, t�t produc-
tion, or squark pair production, which involve operators
with four external particles. The results are given in a
future publication [21], and can be obtained from the
computations given in this paper by summing over all pairs
of external particles with the appropriate group-theoretic
factors.

The outline of the calculation is given in Sec. II. The
SCET formalism and the full theory we use for our calcu-
lations are described in Sec. III. Known results on the
exponentiation of the Sudakov form factor, and a compari-
son of the infrared evolution equation formalism with the
SCET approach, is given in Sec. IV. Section V discusses
the calculation of Sudakov corrections for massive gauge
bosons and massless external particles. Section VI gives
the proof that there is at most a single logarithm found in
the matching condition to all orders in perturbation theory,
and consistency conditions on the matching coefficients
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and anomalous dimensions are given in Sec. VII. The
extension to massive external particles is given in
Sec. VIII for all possible hierarchies of mass scales, in-
cluding cases in which particle masses are not widely
separated, so that multiple scales have to be integrated
out simultaneously. Massive scalar exchange graphs, rele-
vant for Higgs exchange, are computed in Sec. IX.
Applications of the formalism to electroweak Sudakov
corrections in the standard model are given in Sec. X for
light quarks, the top quark, and leptons.

Notation.—We use a��� � ����=�4��, and ai��� �
�i���=�4�� where i � s, 2, 1 for the QCD, SU�2�, and
U�1� couplings in the standard model. Hypercharge is
normalized so that Q � T3 � Y. Logarithms are denoted
by LA � logA2=�2, for A � Q, M, m1, m2. CF and TF are
the Casimir and index for the external particles. We use the
subscript F for both fermions and scalars, to avoid rewrit-
ing the same expression twice.

II. OUTLINE OF CALCULATION

The physical quantity we study is the Sudakov form
factor in the Euclidean region, defined as the amplitude
FE�Q

2� � hp2jOjp1i for the scattering of on-shell particles
p2
i � m2

i by an operator O, with Q2 � ��p2 � p1�
2 > 0.

The timelike Sudakov form factor is given by analytic
continuation, F�s��FE��s� i0��, so that log�Q2=�2�!
log�s=�2�� i�.

We will compute FE�Q2� for fermion scattering by O �
� �� , �  , � ��� , scalars scattering by O � �y�,
i��yD���D��y��, and fermion to scalar (or vice
versa) scattering by O � � �. All operators are taken to
be gauge singlets so the incoming and outgoing particles
have the same gauge quantum numbers, but not necessarily
the same mass.

The form factor, FE�Q2�, is computed using a sequence
of effective theories. For the high energy process consid-
ered is this paper, there are several widely separated scales
and we must switch to the relevant theory as we move
between scales. At scales higher than Q2, the theory is the
original gauge theory, referred to as the full theory in EFT
terminology. The precise theory, and the SCET formalism
used are given in Sec. III.

As we move to scales below Q2, we transition to an
effective field theory (SCET) where degrees of freedom
with off shellness on the order ofQ2 are integrated out. The
full and EFT have the same infrared (IR) physics but
different ultraviolet (UV) behavior and to ensure that the
operators in the respective theories have the same on-shell
matrix elements, we must introduce a matching coefficient,
exp�C���	. For later convenience, the matching coefficient
is written as an exponential. If the full theory is matched
onto SCET at �Q then the matching coefficient is chosen
so that

 hp2jO��Q�jp1i � exp�C��Q�	hp2j
~O��Q�jp1i; (1)

where ~O��� is the EFT operator corresponding to the full-
theory operator O���. The matching coefficient expC��Q�

is independent of infrared physics, and can be computed if
perturbation theory is valid at �Q. In general, a single

operator O can match onto a set of operators ~Oi in the
EFT with the same quantum numbers. This occurs, for
example, for four-fermion operators in the analysis of
high energy parton scattering, and can be included by
treating all the equations below as matrix equations, as is
familiar from the well-known analysis of operator mixing.
The matching coefficient C��Q� contains log�2

Q=Q
2

terms, and there are no large logarithms if �Q is chosen
to be of order Q. We will choose �Q � Q, though any
value of order Q is acceptable. Any physical observable is
independent of the choice for �Q. It is conventional to
choose c���, the coefficient of O in the full theory, to equal
unity at � � Q. With this choice, which gives the usual
normalization for FE�Q2�, c�Q� � expC�Q� is the coeffi-
cient of ~O in SCET at � � Q. The evolution of c���
between scales is given by the renormalization group
equation

 �
dc���
d�

� ����c���; (2)

where ���� is the anomalous dimension of ~O in the EFT.
We must repeat this sequence of matching and renor-

malization group evolution as various energy scales are
crossed, and more and more degrees of freedom are inte-
grated out. An advantage of the EFT approach is that it
divides the full multiscale computation into several simpler
pieces, each of which depends on a single scale. This
allows one to easily identify which quantities are universal,
and which ones depend on the specific process. In an EFT
calculation, the IR divergences in the theory above a
matching scale must match with the UV divergences in
the theory below the matching scale. We have checked this
explicitly for all the computations in this paper. In most of
the tables, we have given only the finite parts of the graphs.

III. SCET FORMALISM

SCET is an effective theory that describes energetic
particles, with energy of order Q, where Q is some large
scale which characterizes the scattering process. SCET
contains all the modes of the full theory with invariant
mass much smaller than Q2. The SCET fields and
Lagrangian depend on two null four-vectors n and �n,
with n � �1;n� and �n � �1;�n�, where n is a unit vector,
so that �n 
 n � 2. In the Sudakov problem, one works in the
Breit frame, with n chosen to be along the p2 direction, so
that �n is along the p1 direction. The momentum transfer q
has no time component, q0 � 0, so that the particle is
backscattered. The light-cone components of a four-vector
p are defined by p� � n 
 p, p� � �n 
 p. In our problem,
p�1 � p1? � p�2 � p2? � 0, and Q2 � p�1 p

�
2 . A fer-
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mion moving in a direction close to n is described by the
n-collinear SCET field 	n;p�x�, where p is a label momen-
tum, and has components �n 
 p and p? [17,18]. It describes
particles (on- or off-shell) with energy 2E � �n 
 p, and
p2 � Q2. The SCET power counting is p� �Q, p� �
Q
2, p? �Q
, where 
� 1 is the power counting pa-
rameter used for the EFT expansion. The total momentum
of the field 	n;p�x� is p� k, where k is the residual mo-
mentum of orderQ
2 contained in the Fourier transform of
x. Note that the label momentum p only contributes to the
minus and ? components of the total momentum.

The gauge field is represented by several distinct fields
in the effective theory: n-collinear fields An;p�x� and
�n-collinear fields A �n;p�x� with labels, and ultrasoft fields
A�x�with no label, analogous to the soft and ultrasoft fields
introduced in NRQCD [22]. The n-collinear field contains
gluons with momentum near the n-direction, and momen-
tum scaling �n 
 p�Q, n 
 p�Q
2, p? �Q
, and the
�n-collinear fields contain gluons moving near the
�n-direction, with momentum scaling n 
 p�Q, �n 
 p�
Q
2, p? �Q
. The ultrasoft field contains gluons with
all momentum components scaling as Q
2.

The EFT fermion field satisfies the constraint

 

n6 �n6
4
	n;p � 	n;p; (3)

where

 Pn �
n6 �n6
4
; P �n �

�n6 n6
4
; Pn � P �n � 1 (4)

are projection operators. The leading order fermion
Lagrangian is [18]

 

�	 n;p
�n6
2

�
in 
D�

p2
?

�n 
 p

�
	n;p � 
 
 
 ; (5)

where iD � i@� gA is the ultrasoft covariant derivative,
and 
 
 
 denotes terms involving the collinear gauge field.
The fermion propagator is

 

n6 �n6 
 p

2p2
: (6)

The effective theory knows about the large momentum
scale Q through the labels �n 
 p2 and n 
 p1 on the fields
	n;p2

and 	 �n;p1
for the outgoing and incoming particles. As

a result, SCET anomalous dimensions can depend on Q.
However, there are no modes in SCET which couple �n 
 p2

to n 
 p1, so that SCET does not contain modes with off-
shellness of order Q2, which are present in the full theory.

We will also need to introduce SCET fields to describe
energetic scalar particles, such as the Higgs boson. We will
use �n;p as the n-collinear field for a scalar particle moving
in a direction close to n, analogous to 	n;p for fermions.
The field �n;p is normalized the same way as the full-
theory field �, and produces scalar particles with ampli-

tude unity. The scalar kinetic energy term becomes

 D��
yD��! �yn;p�� �n 
 p��in 
D� � p2

?	�n;p (7)

in the effective theory. It is also convenient to use a
redefined scalar field,

 �n;p �
��������������
� �n 
 p�

q
�n;p; (8)

in terms of which the kinetic term becomes

 L � �yn;p

�
in 
D�

p2
?

�n 
 p

�
�n;p (9)

and has the same normalization as the fermion Lagrangian
equation (5). The rescaled scalar propagator is now

 

1

p2 !
�n 
 p

p2 : (10)

�n;p produces scalar particles moving in the n-direction

with amplitude
��������������
� �n 
 p�

p
.

The theory we consider is a SU�2� spontaneously broken
gauge theory, with a Higgs in the fundamental representa-
tion, where all gauge bosons have a common mass,M. This
is the theory used in many previous computations [4–
7,15], and allows us to compare with previous results. It
is convenient, as in Ref. [15], to write the group theory
factors using CF, CA, TF, and nF, where 2nF is defined to
be the number of weak doublet Weyl fermions.1 We will
consider this theory with fermionic and scalar matter fields
in arbitrary gauge representations, with the fermions as-
sumed to be vectorlike. These fields are the external par-
ticles in the operators O. We will also need to consider
graphs which are analogous to Higgs exchange graphs in
the standard model. For this purpose, we will add a gauge
singlet scalar field �, which couples to the fermions and
scalars via gauge-invariant interactions,

 Lint � �h ;i� � i i � h�;i��
y
i �i; (11)

h ;i is dimensionless, and h�;i has dimensions of mass. We
will assume that h�;i is independent of Q for power count-
ing purposes. In our toy example, � is a gauge singlet field,
and does not break the gauge symmetry. The fermion
masses are independent of the Yukawa couplings of �.
The toy example Higgs field is a doublet, and breaks the
gauge symmetry, but does not couple to the matter fields. In
the standard model, the Higgs field breaks the gauge
symmetry, and also has Yukawa couplings which generate
fermion masses.

The computations are extended to the SU�3� �
SU�2�L �U�1�Y standard model in Sec. X, including
Higgs exchange corrections and unequal gauge boson

1This convention for nF is used in Ref. [15]. Note that the
results only hold for CA � 2, since for an SU�N� group with N >
2, a fundamental Higgs does not break the gauge symmetry
completely.
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masses. Our results are given to leading order in the EFT
power counting, i.e. we neglect power corrections of the
form m2

i =Q
2, and M2=Q2, while retaining all logarithmic

corrections logm2
i =Q

2 and logM2=Q2. The gauge boson
exchange graphs can be obtained from those of the toy
model. In the standard model, the Higgs field breaks the
gauge symmetry, and also has Yukawa couplings to the
chiral fermions. At one-loop, we can obtain the Higgs
exchange corrections from the �-exchange graphs in our
toy example. Graphs with Higgs bosons coupling to both
the fermions and the gauge bosons start at two-loops (see
Fig. 1).

IV. EXPONENTIATION

We start by summarizing some known properties of the
Sudakov form factor [23] for the vector current. We will
see later how the same expressions can be rederived using
renormalization group methods in SCET. The Euclidean
form factor FE�Q2� has the expansion (L � log�Q2=M2�)

 FE � 1� ��k12L2 � k11L� k10� � �
2�k24L4 � k23L3

� k22L2 � k21L� k20� � �
3�k36L6 � 
 
 
� � 
 
 
 ;

(12)

with the �n term having powers of L up to L2n. In the
literature, the highest power of L is called the LLF term, the
next power is called the NLLF term, etc. We have included
the subscript F (for the form factor) to distinguish it from
the renormalization group counting described below.

The series for logFE�Q
2� takes a simpler form,

 logFE � ��~k12L2 � ~k11L� ~k10� � �2�~k23L3 � ~k22L2

� ~k21L� ~k20� � �3�~k34L4 � 
 
 
� � 
 
 
 ;

(13)

with the �n term having powers of L up to Ln�1, and the
expansion begins at order �. Note that Eq. (13) implies
nontrivial relations among the coefficients knm in Eq. (12).
At order n, there are 2n� 1 coefficients knm, 0 
 m 
 2n
in Eq. (12), but only n� 2 coefficients ~knm, 0
m
n�1
in Eq. (13).

The right-hand side (rhs) of Eq. (13) can be written in
terms of the LL series Lf0��L� � ~k12�L2 � ~k23�2L3 �


 
 
 , the NLL series f1��L� � ~k11�L� ~k22�
2L2 � 
 
 
 ,

the NNLL series �f2��L� � ~k10�� ~k21�2L� 
 
 
 etc. as

 logFE � Lf0��L� � f1��L� � �f2��L� � 
 
 
 : (14)

f0 and f1 begin at order �, and the remaining fn begin at
order one.

In this paper, LL, NLL, etc. (with no subscripts) will
refer to the counting for logFE. This is also the counting
appropriate for a renormalization group improved compu-
tation, and is different from the conventional counting
discussed above. If one looks at the order �2 terms, for
example, the conventional counting is that the L4 term is
LLF, the L3 term is NLLF, the L2 term is N2LLF, the L term
is N3LLF, and the L0 term is N4LLF. Using our counting,
the terms are given by exponentiating logFE to LL, NLL,
N2LL, N2LL, and N3LL, respectively. At higher orders, the
mismatch in powers of N between the two counting meth-
ods increases.

For precision electroweak studies, the first few orders
are sufficient. Typical loop corrections are suppressed by
�=�4��. There can be large coefficients in the perturbation
expansion. For example, there are large coefficients in the
cusp anomalous dimension [see Eqs. (50) and (54)]. In this
paper we have computed corrections to the Sudakov form
factor; for dijet production and processes involving four-
particle operators, the anomalous dimensions are at least
twice as large as for the Sudakov problem. For these
reasons, we use the estimate � instead of �=�4�� for the
size of loop corrections. For QCD, �� 0:1, and for elec-
troweak corrections, �! �em=sin2�W � 0:03.
log s=M2

Z � 8 for s� 4 TeV, so �L� 1 for QCD and
�0:2 for electroweak corrections. The NLL series is of
order 10% for QCD corrections, and a few percent for
electroweak corrections. The NNLL series is of order a
percent for QCD, and sub-percent for electroweak
corrections.

A. Infrared evolution equations

An expression for the Sudakov form factor in the limit
M=Q� 1 with on-shell massless fermions, p2

2 � p2
1 � 0,

obtained using the evolution equations is [15,23–25]
 

logFE�Q2� � logF0�a�M��

�
Z Q2

M2

d�2

�2

�
��a���� � 	�a�M��

�
Z �2

M2

d�02

�02
��a��0��

�
(15)

in terms of functions F0, � , 	, and � of the coupling
constant, which have the expansions

 F0�a� � 1� F�1�0 a� F�2�0 a2 � 
 
 
 ;

��a� � ��1�a� ��2�a2 � 
 
 
 ;

��a� � � �1�a� � �2�a2 � 
 
 
 ;

	�a� � 	�1�a� 	�2�a2 � 
 
 
 :

(16)

The superscript gives the loop order of the Feynman graphs

FIG. 1. Graphs in the standard model involving both Yukawa
and gauge couplings which have no analog in the toy example.
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which contribute. � is known as the cusp anomalous
dimension.

The gauge coupling constant g satisfies the renormal-
ization group evolution equation

 �
dg
d�
� 
g�g�

� �b0
g3

16�2 � b1
g5

�16�2�2
� b2

g7

�16�2�3
� 
 
 
 ;

(17)

or equivalently,

 �
da
d�
� 
a�a� � �2a�b0a� b1a

2 � b2a
3 � 
 
 
�: (18)

The one-loop coefficient is

 b0 �
11

3
CA �

4

3
TFnF �

1

3
TFns; (19)

where ns is the number of complex scalars, and 2nF is the
number of fermion weak doublets, in the convention of
Ref. [15].

After combining Eqs. (15)–(18) and expanding to order
a�M�3, the form factor takes the following form:

 

logFE�Q
2� �

�
F�1�0 � ��

�1� � 	�1��L�
1

2
��1�L2

�
a�M� �

�
�

1

2
�F�1�0 �

2 � F�2�0 � ��
�2� � 	�2��L�

1

2
���2� � b0�

�1��L2

�
1

6
�b0��1��L3

�
a�M�2 �

�
1

3
�F�1�0 �

3 � F�1�0 F�2�0 � F
�3�
0 � ��

�3� � 	�3��L�
1

2
���3� � b1� �1� � 2b0� �2��L2

�
1

6
��b1��1� � 2b0�b0�

�1� � ��2���L3 �
1

12
b2

0��1�L4

�
a�M�3 � 
 
 
 : (20)

A comparison of this expansion with Eq. (14) shows that f0

is determined by ��1� and b0, f1 by ��1;2�, � �1�, 	�1�, b0;1, and
f2 by F�1�0 , ��1;2;3�, � �1;2�, 	�2�, b0;1;2. In general fn is
determined by 	�n� and terms up to F�n�1�

0 , ��n�1�, � �n�, bn.
The expression, Eq. (15), is not unique. The identity

 

1

2

Z z2

y2

d�2

�2

@G�a����
@a���


a�a���� � G�a�z�� �G�a�y��

(21)

can be used to show that Eq. (15) is invariant under the
transformation,

 ��a��0�� ! ��a��0�� �
@G�a��0��

@a

a�a��

0��;

��a���� ! ��a���� � 2G�a����;

	�a�M�� ! 	�a�M�� � 2G�a�M��:

(22)

As a result, �, � , and 	 are not uniquely determined from
FE�Q2� by Eq. (15).

B. Renormalization group evolution equations

The corresponding expression for FE�Q2� in the EFT
formalism, as will be derived in Sec. V, is

 logFE�Q
2� � C�a�Q�� �D0�a�M�� �D1�a�M�� log

Q2

M2

�
Z Q

M

d�
�

�
A�a���� log

�2

Q2 � B�a����
�
;

(23)

where expC�a�Q�� is the multiplicative matching coeffi-
cient at Q2, ���� � A�a���� log��2=Q2� � B�a���� is the
SCET anomalous dimension between Q and M, and

expD�a�M��, D�a�M���D0�a�M���D1�a�M��logQ2=M2

is the multiplicative matching coefficient atM. The match-
ing coefficient C and the SCETanomalous dimension � are
independent of physics at the low scale M, and so do not
depend on the gauge boson and Higgs masses. The new
feature of the massive gauge boson calculation is the
existence of a single-log term, D1�a�M�� in the matching
at M. That there are no higher powers of logQ2=M2 in the
matching is proved to hold to all orders in Sec. VI. A, B, C,
D0;1 have loop expansions analogous to Eq. (16). The
NnLL series for logFE requires A�n�1�, B�n�, D�n�1�

0 , and
C�n�1�. D�n�1 contributes only to the �nL term in fn.

The identity equation (21) and

 

Z Q2

M2

d�2

�2

Z �2

M2

d�0 2

�0 2
��a��0�� �

Z Q2

M2

d�2

�2 ��a���� log
Q2

�2

(24)

can be used to show that Eq. (23) is unchanged by the
redefinitions
 

A�a���� ! A�a���� �
@ ~G�a����

@a

a�a����;

B�a���� ! B�a���� �
@ ~H�a����

@a

a�a���� � 2 ~G�a����;

C�a�Q�� ! C�a�Q�� � ~H�a�Q��;

D0�a�M�� ! D0�a�M�� � ~H�a�M��;

D1�a�M�� ! D1�a�M�� � ~G�a�M��: (25)

Transformations such as these can arise from a change of
scheme in the computation of the SCET matching coeffi-
cients and anomalous dimensions.

ELECTROWEAK CORRECTIONS IN HIGH ENERGY . . . PHYSICAL REVIEW D 77, 053004 (2008)

053004-5



We can now demonstrate the equivalence of the Sudakov form factor in Eq. (23) and the form factor given in Eq. (15).
By taking G�a� � �	�a�=2 in Eq. (22), ~H�a� � �C�a� and ~G�a� � �D1�a� in Eq. (25), brings Eq. (15) with Eq. (23) to a
common form, and gives the identifications:
 

1

2
A�a���� �

1

2

@D1�a����
@a


a�a���� � ��a���� �
1

2

@	�a����
@a


a�a����;

�
1

2
B�a���� �

1

2

@C�a����
@a


a�a���� �D1�a��� � ��a���� � 	�a����;

C�a�M�� �D0�a�M�� � logF0�a�M��:

(26)

The left-hand side of Eq. (26) is invariant under Eq. (25), and the rhs under Eq. (22). The computations of the SCET
anomalous dimension and the cusp anomalous dimension in the literature use the same scheme, so that � � A=2, and

 

1

2
A�a� � ��a�; D1�a� � 	�a�; �

1

2
B�a� �

1

2

@C�a�
@a


a�a� � ��a�; C�a� �D0�a� � logF0�a�: (27)

The expansion of logFE�Q2� to order a�M�3 using the SCET form is
 

logFE�Q2� �

�
C�1� �D�1�0 �

�
�

1

2
B�1� �D�1�1

�
L�

1

4
A�1�L2

�
a�M� �

�
C�2� �D�2�0 �

�
�

1

2
B�2� � b0C�1� �D

�2�
1

�
L

�
1

4
�A�2� � b0B

�1��L2 �
1

12
�b0A

�1��L3

�
a�M�2 �

�
C�3� �D�3�0 �

�
�

1

2
B�3� � b1C

�1� � 2b0C
�2� �D�3�1

�
L

�
1

4
�A�3� � b1B�1� � 2b0�B�2� � 2b0C�1���L2 �

1

12
�b1A�1� � 2b2

0B
�1� � 2b0A�2��L3 �

1

24
b2

0A
�1�L4

�
a�M�3:

(28)

V. MASSLESS EXTERNAL PARTICLES

In this section we calculate the form factor logFE�Q
2�

for the case Q2 � M2 � m2
1, m2

2. At scales �>Q we use
the full theory, and the renormalization group evolution of
c��� is given by

 �
dc���

d�
� �F�a����c���; (29)

where �F�a� � ��1�F a� �
�2�
F a

2 � 
 
 
 is the full-theory
anomalous dimension for O. The one-loop values ��1�F
are given in Table I. The general form for FE given in
Sec. IV is for the vector current, where �F � 0, and c��>
Q� is chosen to be unity. It also holds for the other opera-
tors with c�� � Q� � 1 in the full theory.

The full theory is matched onto SCET at a scale � of
order Q. The effective theory has modes with off-shellness

of order Q integrated out, so the matching coefficient
depends on logQ2=�2, and these logarithms are not large
if ��Q.

The operator O in the full theory matches to the operator
~O in SCET:

 

� � ! expC���� �	n;p2
Wn	� �W

y
�n 	 �n;p1

	;

�y�! expC�����yn;p2
Wn	�W

y
�n��n;p1

	;

i�yD
$�
�! expC�����yn;p2

Wn	�iD1 � iD2�
�

� �Wy�n��n;p1
	;

� �! expC���� �	n;p2
Wn	�W

y
�n��n;p1

	; (30)

where iD1�P �g�n 
A �n;q�
�n
2 , iD2�P y�g� �n 
An;�q�

n
2 ,

and P are the SCET label operators introduced in Bauer
et al. [18]. Collinear gauge invariance requires that, in the

TABLE I. One-loop corrections to the Sudakov form factor. �F is the full-theory anomalous dimension, C is the matching coefficient
at ��Q, �1 is the SCET anomalous dimension, and D is the matching coefficient at ��M. ��1�F , C�1�, ��1�1 , and D�1� are the
coefficients of a � �=�4�� in the one-loop corrections, and LQ � logQ2=�2, LM � logM2=�2.

O ��1�F =CF C�1����=CF ��1�F ���=CF D�1����=CF
�  �6 �L2

Q �
�2

6 � 2 4LQ � 6 �L2
M � 2LMLQ � 3LM � 9

2�
5�2

6
� �� 0 �L2

Q � 3LQ � �2

6 � 8 4LQ � 6 �L2
M � 2LMLQ � 3LM � 9

2�
5�2

6
� ��� 2 �L2

Q � 4LQ � �2

6 � 8 4LQ � 6 �L2
M � 2LMLQ � 3LM � 9

2�
5�2

6

�y� �6 �L2
Q � LQ � �2

6 � 2 4LQ � 8 �L2
M � 2LMLQ � 4LM � 7

2�
5�2

6

i��yD���D��y�� 0 �L2
Q � 4LQ � �2

6 � 8 4LQ � 8 �L2
M � 2LMLQ � 4LM � 7

2�
5�2

6
� �;�y �3 �L2

Q � 2LQ � �2

6 � 4 4LQ � 7 �L2
M � 2LMLQ � 7

2LM � 4� 5�2

6
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matching of gauge-invariant operators at leading order in
the power counting, the fields occur in the combination
Wyn 	n;p, Wyn�n;p, where Wn is a Wilson line containing
n-collinear gauge fields obtained by integrating over a path
in the �n-direction [18].
C��� depends on the operator being matched [i.e. the

C’s in Eq. (30) have different values, and C can depend on
�] and, for convenience, we have written the multiplicative
matching coefficient as expC��� rather than C���. As is
well known, the matching coefficient can be computed as
the finite part of the full-theory matrix element, evaluated
on shell, with all infrared scales such as the gauge boson
mass set to zero (see e.g. [26–28]). The full-theory graphs
to be evaluated at one-loop are those in Fig. 2, and when
combined with the wave function and tree-level graphs,
give the value of the full-theory matrix element hp2jOjp1i.
The graphs for the EFT vertex correction are shown in
Fig. 3, and when combined with the tree-level and wave
function graphs, give the EFT matrix element hp2j

~Ojp1i.
The gauge boson and fermion masses are infrared scales
and can be set to zero in the matching computation thus
leading to scaleless integrals for the one-loop EFT and
wave function graphs. Since these scaleless integrals are
set to zero in dimensional regularization, the EFT matrix
element is equal to its tree-level value. The full theory and
EFT operators O and ~O are normalized to have the same
tree-level value, so exp�C���	 � hp2jOjp1i=hp2jOjp1itree,
i.e. the matching condition is given by the on-shell full-
theory matrix element normalized to its tree-level value
(see e.g. Ref. [27] for more details).

The computation of the SCET one-loop graphs for O �
� �� is identical to that for DIS [26]. Particle masses,

such as the gauge boson mass, are all much smaller thanQ,
and only contribute M2=Q2 power corrections at the scale
Q, which are being neglected. The one-loop values ofC���
for the other cases are computed similarly, and are given in
Table I, where C��� � C�1�����=�4�� defines the one-
loop correction C�1�. There are no large logarithms in this
matching correction if the matching scale� is chosen to be
of order Q. We will choose the matching at the high scale
to be at � � Q, and C�� � Q� is given by the third
column in Table I with LQ ! 0.

The renormalization group evolution of c��� in the
effective theory is given by the anomalous dimension of
~O in SCET. The anomalous dimension �1 is used to evolve
c��� from � � Q down to the low scale � � M. The one-
loop anomalous dimension is given by the ultraviolet
counterterms for the SCET graphs in Fig. 3 (after zero-
bin subtraction, see Ref. [29]). As noted earlier, anomalous
dimensions in SCET can depend on Q. Ultraviolet diver-
gences do not depend on the infrared properties of the
theory, such as a gauge boson mass, so the anomalous
dimension for O � � �� is identical to the DIS result
[26]. The same argument as that given in Ref. [26] for deep
inelastic scattering shows that �1��� is linear in log�2=Q2

to all orders [26,30], so � is written as

 �1��� � A������ log
�2

Q2 � B������; (31)

which defines A and B. The anomalous dimension has the
expansion �1��

�1�
1 a��

�2�
1 a

2�


 , A�A�1�a�A�2�a2�




 , B�B�1�a�B�2�a2�


 . The computations for the
other cases are similar, and the results are given in
Table I. Note that the anomalous dimension depends only
on the external fields for the operators, and is equal for the
three different fermion operators, and for the two different
scalar operators. The reason is that the EFT anomalous
dimension depends on the IR divergence of the full-theory
graph, and the IR divergence is independent of the vertex
factors. The anomalous dimension for � � is the average of
the anomalous dimensions for the fermionic and scalar
operators.

The next step in the EFT computation is the matching
condition at the low scale ��M. At this scale, the mas-
sive gauge boson is integrated out, and one matches to an
effective theory which is SCET without the massive gauge

p1

p2

(a)

p1

p2

(b)

FIG. 2. Graphs contributing to the matching condition
C���Q��. The solid line can be either a fermion or scalar. The
second graph only exists for the scalar case O � i��yD���
D��y��.

p1

p2

(a)

p1

p2

(b)

p1

p2

(c)

FIG. 3. SCET graphs for the matrix element of ~O. The dotted lines are SCET propagators, and represent either fermions or scalars.
The upper graphs are the n-collinear and �n-collinear graphs, and the lower graph is the ultrasoft graph. There are also wave function

graphs. For i�yD
$�
�, graphs (a) and (b) also have a contribution where the gauge boson field at � arises from the covariant derivative.
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boson. In our toy example, this effective theory contains no
gauge particles, and is a free theory. There is no need to
introduce any propagating gauge modes belowM [31]. The
matching at ��M is given by evaluating the graphs in
Fig. 3, and the wave function graphs. The gauge boson
mass can no longer be set to zero, since it is of the same
order as the matching scale, and the one-loop SCET graphs
are nonzero. The matching computation is discussed in
detail here for the fermion vector current. The other cases
are treated similarly.

One matches the operator c���� �	n;p2
Wn	���W

y
�n 	 �n;p1

	 in
SCET with gauge particles (the theory above M) onto the
operator �expD���	c��� �	n;p2

��	 �n;p1
in SCET without

gauge particles (the theory below M). The n-collinear
graph in Fig. 3 gives

 In ��ig
2�2�CFc���

Z ddk

�2��d
1

k2�M2

�n6
2
n�
n6
2

�
�n 
 �p2� k�

�p2� k�2
��

1

� �n 
 k
�n�

��2ig2CF�
��2�

Z ddk

�2��d

�
�n 
 �p2� k�

��p2� k�2� i0�	�� �n 
 k� i0�	�k2�M2� i0�	
:

(32)

This integral is divergent, even in 4� 2� dimensions with
an off-shellness, unlike the previously studied examples
where the gauge boson was massless. A related divergence
was encountered by Beneke and Feldman in their study of
the B! �‘� form factor. Beneke and Feldman used an
analytic regulator [32,33] to evaluate their integrals, and
we use an extension of their method. A similar procedure
was used by Jantzen et al. [7] in their study of two-loop
electroweak Sudakov corrections. The pi propagator de-
nominator �pi � k�2 in the full theory is analytically con-
tinued to

 

1

�pi � k�
2 !

���2
i �
�i

��pi � k�
2	1��i

; (33)

where �i and �i are new parameters. The �p2 � k�
2 de-

nominator in Eq. (32) arises from the collinear p2 propa-
gator, and so gets modified as in Eq. (33). The � �n 
 k
propagator in Eq. (32) arises from the �p1 � k�2 propagator
when k becomes n-collinear. In this limit

 

1

�p1 � k�2
!

���2
1�
�1

��n 
 p1��� �n 
 k�	1��1
: (34)

We will therefore analytically continue the � �n 
 k propa-
gator in Eq. (32), which arises from the Wn Wilson line in
O using

 

1

� �n 
 k
!

����1 �
�1

�� �n 
 k�1��1
; (35)

where ��1 � �2
1=p

�
1 . We will see below that it is important

that ��1 is related to �2
1 in this way. Note that under boosts,

��1 transforms like the minus component of a four-vector.
With this choice, Eq. (32) gives
 

In � �2
�

4�
CFc�����

�
�2

M2

�
�
�
�2

2

M2

�
�2
�
��1
p�2

�
�1 ���� �2�

��1� �2�

�
��2� �� �2����2 � �1�

��2� �� �1�
: (36)

The regulated value of In is given by setting �i � ri� and
taking the limit �! 0 first, followed by �! 0 [32,33],
 

In �
�

4�
CFc�����

�
2

r1 � r2

1

��
�

2

r1 � r2

1

�
log

�2

M2

�
2r2

r1 � r2

1

�2 �
1

�

�
2�

2r1

r1 � r2
log
��1
p�2

�
2r2

r1 � r2
log

�2
2

�2

�
� 2� 2 log

�2

M2 �
2r2

r1 � r2

� log
�2

M2 log
�2

2

�2 �
2r1

r1 � r2
log

�2

M2 log
��1
p�2

�
r2

r1 � r2
log2 �

2

M2 �
r2�

2

2�r1 � r2�
�

r1�
2

3�r1 � r2�

�
; (37)

which is a boost invariant expression, since ��1 =p
�
2 is boost

invariant. Equation (37) is valid away from the symmetric
point r1 � r2.

The �n-collinear graph is given by Eq. (37) with the
replacements �1 $ �2, �2 ! �1, ��1 ! ��2 , p�2 ! p�1 ,
with ��2 � �2

2=p
�
2 ,

 

I �n � �2
�

4�
CFc�����

�
�2

M2

�
�
�
�2

1

M2

�
�1
�
��2
p�1

�
�2 ���� �1�

��1� �1�

�
��2� �� �1����1 � �2�

��2� �� �2�
: (38)

The parameters ��2 and ��1 play the same role as �� in the
rapidity regularization method of Ref. [29].

The ultrasoft graph in Fig. 3 is regulated by the same
method. The p2 propagator �p2 � k�2 is multipole ex-
panded in the effective theory, and becomes �p�2 k

�,
where p�2 is a label momentum. Using Eq. (33) for the
fermion propagators, we see that after multipole expan-
sion, they are regulated in the same way as the Wilson line
propagators. The ultrasoft graph gives
 

Ius � �ig2CFc�����
Z ddk

�2��d
1

k2 �M2 n
�

�
����2 �

�2

�n 
 �p2 � k�	
1��2

��
����1 �

�1

� �n 
 �p1 � k�	
1��1

�n�; (39)

and vanishes on shell, since p�2 � p�1 � 0.
The total SCET contribution is given by the sum of the

n-collinear, �n-collinear, and ultrasoft graphs, as well as the
wave function renormalization correction. The collinear
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correction to the particle propagator is the same as in the
full theory [18], and the ultrasoft correction vanishes, so
the wave function corrections are the same as in the full
theory. The fermion graph, Fig. 4, gives

 CF
�

4�
ip6
�

1

�UV
�

1

2
� ln

M2

�2

�
; (40)

and so contributes a wave function correction

 �z � CF
�

4�

�
1

�UV
�

1

2
� LM

�
: (41)

Our normalization convention is such that the on-shell
matrix element gets a contribution��z=2 for each external
particle. The wave function corrections for the various
cases we need are tabulated in Table II. In the table, we
have distinguished between UV and IR divergences by the
subscript on the 1=� terms. The scalar operators require the
scalar propagator correction, Fig. 5, which gives
 

ip2 �s
4�

CF

�
�

2

�UV
�

3

2
� 2 ln

M2

�2

�

� iM2 �s
4�

CF

�
�

3

�UV
� 1� 3 ln

M2

�2

�
: (42)

The first term gives the wave function correction, and the
second is the mass shift of the scalar proportional to the
gauge boson mass. The scalar mass shift is canceled by the
bare mass term in the scalar Lagrangian, which is adjusted

to keep the physical scalar massless. This cancellation is an
example of fine-tuning required to have light scalars.

The total on-shell amplitude In � I �n � Is � 2��z=2� is
 

�
4�
CFc����

�
�

2

�2 �
1

�
�3� 2LQ� � 2LMLQ

� L2
M � 3LM �

9

2
�

5�2

6

�
: (43)

The total amplitude equation (43) is independent of �, r1,
and r2 introduced by the analytic regulator, and depends
only on � of dimensional regularization. The cancellation
of the � and � dependence is discussed in more detail in
Appendix A. In evaluating Eq. (43), we have used ��1 �
�2

1=p
�
1 , ��2 � �2

2=p
�
2 , and Q2 � p�1 p

�
2 . The 1=� and 1=�2

poles are ultraviolet divergences, and are canceled by the
renormalization counterterms in the effective theory. The
IR divergences in the EFT are regulated by the gauge boson
mass, so the 1=� divergences in Eq. (43) are UV divergen-
ces. The 1=� term multiplied by �2 gives the SCET
anomalous dimension listed in Table I, and is a nontrivial
check on the analytic regulator computation. The SCET
anomalous dimension was computed in Ref. [26] using an
off-shell regulator, and the analytic regulator gives the
same result. While the total anomalous dimension is the
same, the contribution of individual diagrams to the
anomalous dimension depends on the regulator. For ex-
ample, in Ref. [26], the ultrasoft graph had a 1=� diver-
gence which contributed to the anomalous dimension,
whereas the ultrasoft graph vanishes on-shell when eval-
uated using the analytic regulator method. Contributions
can be moved between the collinear and ultrasoft diagrams,
depending on the choice of regulator.

The EFT below the matching scale ��M is SCET
without gauge particles; thus there are no one-loop dia-
grams to consider in the theory below M. The finite part of
Eq. (43) gives the multiplicative matching coefficient
expD��� at the low scale � of order M. The coefficient
of ~O in the effective theory after integrating out the gauge
bosons is given by c��� 0�� � �expD���	c��� 0��,
where c��� 0�� are the coefficients before and after
integrating out the gauge bosons, respectively. The coeffi-
cientD��� has the usual expansionD � D�1�a�D�2�a2 �

 
 
 , and at one-loop order is

 D�1� � CF

�
�L2

M � 2LMLQ � 3LM �
9

2
�

5�2

6

�
(44)

TABLE II. One-loop gauge boson contribution to on-shell
wave function renormalization. The gauge boson mass is M
and the particle (fermion or scalar) mass is m. hF;S are given
in Appendix B.

Field m M

 0 0 1
�UV
� 1

�IR

 0 � 0 1
�UV
� 1

2� LM
 � 0 0 1

�UV
� 2

�IR
� 4� 3Lm

 � 0 � 0 1
�UV
� 1

2� LM � hF�m2=M2�

� 0 0 � 2
�UV
� 2

�IR

� 0 � 0 � 2
�UV
� 3

2� 2LM
� � 0 0 � 2

�UV
� 2

�IR

� � 0 � 0 � 2
�UV
� 3

2� 2LM � hS�m2=M2�

hv 1 0 � 2
�UV
� 2

�IR

hv 1 � 0 � 2
�UV
� 2LM

k

pp

k+p

k

pp

FIG. 5. One-loop correction to the scalar propagator.

k

pp

k+p

FIG. 4. One-loop correction to the fermion propagator.
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for the fermion vector current. The other cases are com-
puted similarly, and are given in Table I. The matching at
M is independent of the vertex structure, and depends only
on whether the particles are fermions or scalars. The � �
matching is the average of the results for two fermions and
two scalars. This is a new feature of the effective theory,
which follows because the graphs factorize into contribu-
tions from the individual particles. The matching atQ from
the full theory does not have this property.

Note that D��� is a function of both LM and LQ, and is
linear in LQ. The matching condition depends on both
scales Q and M. The dependence of the matching on the
high scale Q is a new feature of SCET with massive gauge
bosons, and has not occurred in previous computations in
SCET, or other EFTs. We noted earlier that SCET graphs
know about the scale Q through the labels �n 
 p2 and n 
 p1

since Q2 � � �n 
 p2��n 
 p1�. Nevertheless, in previous
computations such as DIS, the matching condition at the
jet scale M2

J � Q2 depended on logM2
J=�

2, and there was
no logQ2=�2 dependence. It is easy to see why there must
in general be LQ terms in the matching condition in our
case. If D is the matching condition at �, and �h;l are the
anomalous dimension in the theories above and below �,

 �
dD
d�
� �l��� � �h���: (45)

In our example, �l � 0 since the theory below M is a free
theory. Since �h has the form Eq. (31) with a LQ term, such
terms must also be present in D. Let us contrast this with
DIS. For moments MN of the deep inelastic scattering
structure function with N � 1, the jet scale is M2

J �
Q2=N. The theory above the jet scale has an anomalous
dimension �h which depends on LQ, and the theory below
the jet scale has Altarelli-Parisi evolution with anomalous
dimension �l which depends on logN. The two anomalous
dimensions are related in such a way that �l � �h /
logQ2=N, the logarithm of the jet scale. The matching D
also depends only on the jet scale Q2=N, and there are no
large logarithms in D if � is chosen to be of order the jet
scale [26].

The LQ term in Eq. (44) is multiplied by LM, and so there
is no LQ term in D if the matching scale is chosen to be
exactly equal toM. This is accidental, and does not happen
at higher orders. One can show explicitly that at two-loops,
there is a nonzero LQ contribution to D even if � � M. In
the standard model, it is convenient to integrate the weak
gauge bosons out at a single scale � � MZ, and one has
one-loop terms in the matching condition of the form
�logQ2=M2

Z��logM2
W=M

2
Z�.

Renormalization group improved perturbation theory is
used to sum logarithms in an EFT. This would not be
possible if there were arbitrary powers of LQ in the match-
ing condition. We will prove in Sec. VI that to all orders in
perturbation theory, the matching condition D is linear in
LQ. Thus renormalization group summation can be used to

obtain all logarithms except the first, so that in the Sudakov
problem at order�n, the 2n� 1 terms �nL2n; . . . ; �nL2 can
be obtained by renormalization group evolution, but not
the single log term �nL, which gets a matching contribu-
tion from D. The general form for D��� is

 D��� � D0�a���; LM� �D1�a���; LM�LQ; (46)

which defines D0;1. At one-loop, Eq. (44) gives

 D�1�0 � CF

�
�L2

M � 3LM �
9

2
�

5�2

6

�
;

D�1�1 � 2CFLM:

(47)

Choosing � � M gives the matching coefficient

 D�� � M� � D0�a�M�; 0� �D1�a�M�; 0� log
Q2

M2 : (48)

In our example,D1�a�M�; 0� � 0, so there is no logQ2=M2

term in the one-loop matching coefficient. One expects that
D1�a�M�; 0� � 0 at higher orders, so there can be a single
large logarithm in the matching coefficient.

The final step in the computation is to compute the on-
shell matrix element of ~O in the theory belowM. Since the
gauge bosons have been integrated out, this theory is a free
theory, and the matrix element is trivial, being given by its
free field value. The Sudakov form factor is defined as the
ratio of the scattering amplitude to its value in the free
theory, so the low energy matrix element contribution to
the Sudakov form factor is unity.

The contributions to the Sudkakov form factor are:
(1) The coefficient c��� in the full theory just above the

matching scale � � Q, which is chosen to be unity.
(2) The multiplicative matching coefficient expC���

for the matching between the full theory and
SCET at the scale � � Q.

(3) The integral of the SCET anomalous dimension
between � � Q and � � M.

(4) The multiplicative matching coefficient expD���
for the matching at the scale � � Q between
SCET, and SCET with the gauge bosons integrated
out.

(5) The low energy matrix element, which gives unity,
using the conventional normalization for the form
factor.

Combining these contributions gives Eq. (23) for the
Sudakov form factor given earlier. The terms are repre-
sented schematically as

 

C �1 D
Q ! M

(49)

The expression Eq. (23) for the Sudakov form factor,
with the one-loop coefficients given in Table I, can be
compared with known fixed order results in the case of
the fermion vector current by expanding this in a power
series expansion in ��M� as shown in Eq. (28). The result
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correctly reproduces the known �L, �2L4, and �2L3 terms
(L � logQ2=M2).

Comparison with the two-loop results of Refs. [7,15]
allows us to extract values for the two-loop cusp anoma-
lous dimension,

 A�2� �
�
�

268

9
�

4

3
�2

�
CFCA �

80

9
CFTFnf

�
32

9
CFTFns: (50)

The non-log part of the anomalous dimension is
 

B�2� � �4�2 � 3� 48��3��C2
F �

�
�

961

27
�

11�2

3

� 52��3�
�
CFCA �

�
260

27
�

4�2

3

�
CFTFnF

�

�
167

27
�
�2

3

�
CFTFns: (51)

The log part of the matching at M for equal Higgs and
gauge boson masses is

 D�2�1 �

�
112

27
�

4

9
�2

�
CFTFnf �

�
�

782

27
�

20

3
��3�

� 5
���
3
p
��

26���
3
p Cl2

�
�
3

��
CF; (52)

where the Clausen function is

 Cl 2�x� �
X1

1

sinnx

n2 : (53)

The anomalous dimension for Q>�>M is indepen-
dent of infrared physics, such as spontaneous symmetry
breaking and the gauge boson mass, and so can be written
in terms of group invariants such as CF and CA. The
expressions for A�2� and B�2� hold in a gauge theory with
fermion and scalar fields in arbitrary representations.

The matching D�2�1 depends on the gauge boson masses,
and is only valid in a SU�2� gauge theory with scalars in the
fundamental representation. The expression Eq. (52) has a
CFTFnF term from fermion loop corrections to the gauge
boson propagator, and a CF term. The CF term arises from
scalar loop corrections to the gauge boson propagator, as
well as graphs such as Fig. 6 which arise due to sponta-
neous symmetry breaking. The group theory invariant for
Fig. 6 depends on the pattern of symmetry breaking, and
cannot be written in terms of SU�2� �U�1� invariants.
Jantzen and Smirnov [15] have therefore explicitly used
the group theory factors for a broken SU�2� theory in
evaluating these contributions, and we follow their con-
vention here. Furthermore, Ref. [15] computed the two-
loop graphs only for MH � MW , and so Eq. (52) is only
valid for equal Higgs and gauge boson masses.

The three-loop cusp anomalous dimension is known in a
theory without scalar fields [34]:

 

��3� � CF

��
�

245

3
�

268

27
�2 �

44

3
��3� �

22

45
�4

�
C2
A

�

�
836

27
�

80

27
�2 �

112

3
��3�

�
CATFnf

�

�
110

3
� 32��3�

�
CFTFnf �

32

27
�TFnf�2

�
; (54)

so A�3� � 2��3� is known, neglecting scalar contributions.
These missing scalar contributions are expected to make
small corrections to ��3�. The scalar term contributes 7% to
the two-loop cusp anomalous dimension A�2�.

Our one-loop computation combined with the known
two-loop cusp anomalous dimension sums the LL and NLL
series for the Sudakov form factor. The NNLL series
requires A�3� which is known excluding Higgs contribu-
tions, B�2� which is known [Eq. (51)], D�2�1 which is known
forMH � M, and C�1�,D�1�0 which are known (Table I). For
electroweak applications, the LL and NLL are more than
adequate for precision studies.

VI. PROOF THAT D IS LINEAR IN LQ

The general functional form of the n-collinear graphs is
expF�a���; LM;L2; L��, where LM � logM2=�2, L2 �
log�2

2=�
2, and L� � log��1 =p

�
2 . Using ��1 � �2

1=p
�
1

and Q2 � p�1 p
�
2 , this can be rewritten as

expF�a���; LM;L2; L1 � LQ�, where LQ � logQ2=�2.
Similarly, the �n-collinear graphs have the functional form
expG�a���; LM; L1; L2 � LQ�. The sum of all the collinear
graphs is the product exp�F�G�, because the n and
�n-collinear graphs factor. These graphs give the matching
coefficient expD, since the ultrasoft graphs vanish on
shell, so that D has the additive form

 D�a���; LM; LQ� � F�a���; LM; L2;L1 � LQ�

�G�a���; LM; L1;L2 � LQ�: (55)

The L1, L2 dependence cancels, since D is independent of
�1;2.2

Equation (55) implies that D�a���;LM; LQ� is linear in
LQ. The proof is as follows: Differentiating Eq. (55) with
respect to L1 and LQ, with respect to L2 and LQ, and with

FIG. 6. A graph whose group-theoretic factor cannot be writ-
ten in terms of invariants such as CF and CA.

2There are also wave function contributions to D. These are
independent of Q.
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respect to L1 and L2 gives

 0 � @1@1F� @2@1G; 0 � @1@2F� @2@2G;

0 � @2@1F� @2@1G;
(56)

where @1;2 is the derivative with respect to L1;2. The second
derivative of D with respect to LQ is

 

@D

@L2
Q
� @1@1F� @2@2G � �@2@1G� @1@2F

� �@1@2�F�G� � �@1@2D � 0; (57)

using Eq. (56) and the commutation of partial derivatives,
@3@2 � @2@3. Thus D can be at most linear in LQ.
Equation (55) is D before the addition of renormalization
counterterms. The finite part shows that the matching
correction is linear in LQ, justifying the form Eq. (46)
used earlier. The infinite part shows that the SCET anoma-
lous dimension is linear in LQ, and so gives another proof
of this known result [26,30].

VII. CONSISTENCY CONDITIONS

There are consistency conditions on matching coeffi-
cients and anomalous dimensions which follow from the
structure of the effective theory. Consider the matching of
an operator between a high energy theory and a low energy
theory at some scale �. The operator coefficients are
ch;l���, with anomalous dimensions �h;l��� in the two
theories, �dch;l=d� � �h;lch;l. Assume that there is a
multiplicative matching coefficient X��� between the
two theories, so that cl��� � X���ch���. The matching
scale � is arbitrary, so one gets the constraint

 �
d

d�
log cl � �

d

d�
logX��

d

d�
log ch; (58)

which gives the relation

 �l � �h � �
d

d�
logX; (59)

between the matching coefficient and the anomalous di-
mensions in the two theories. In the Sudakov problem,
applying Eq. (59) to the matching between the full theory
and SCET gives

 �� �F � �
d

d�
C; (60)

and applying it to the matching when the gauge boson is
integrated out gives

 0� � � �
d

d�
D; (61)

since the theory below M is a free theory, and so has zero
anomalous dimension.

The anomalous dimension in the full theory and SCET
have the form �F�a���� and � � �A�a����LQ � B�a����,

respectively, where we have used the result that � is linear
in LQ to all orders [26]. The matching coefficient C at the
high scale Q is independent of the low energy scales such
as M, and has the form C�a���; LQ�. The matching coef-
ficient D at ��M can depend on both Q and M, since the
SCET field labels depend onQ. As a result,D has the form
D�a���; LM; LQ�. Any dependence on Q2=M2 can be con-
verted into dependence on LM and LQ using Q2=M2 �

exp�LQ � LM�.
Equation (60) gives

 A�a����LQ � B�a���� � �F�a���� � 2
@C
@LQ

�
@C
@a


a�a�:

(62)

Writing C as an expansion in LQ,

 C�a���; LQ� �
X1
n�0

Cn�a����LnQ; (63)

gives the consistency conditions
 

�F�a� � B�a� � 2C1�a� �
@C0

@a

a�a�;

A�a� � 4C2�a� �
@C1

@a

a�a�;

2nCn�a� �
@Cn�1

@a

a�a�; n � 3;

(64)

which determine Cn, n > 0 in terms of C0, A, B, and �F,
and are satisfied by the one-loop values in Table I. The
matching coefficient at � � Q is C0�a�Q��.

Equation (61), applied to the matching at M, gives

 A�a����LQ�B�a�����
@D
@a

a�a��2

@D
@LQ
�2

@D
@LM

: (65)

Using Eq. (46), and equating powers of LQ gives

 � B�a���� �
@D0

@a

a�a� � 2D1 � 2

@D0

@LM
;

A�a���� �
@D1

@a

a�a� � 2

@D1

@LM
:

(66)

Writing Di, i � 0, 1 as an expansion in LM,

 Di�a���;LM� �
X1
n�0

Di;n�a����LnM; (67)

gives the consistency conditions
 

�B �
@D0;0

@a

a � 2D1;0 � 2D0;1;

2nD0;n �
@D0;n�1

@a

a � 2D1;n�1; n � 2;

A �
@D1;0

@a

a � 2D1;1;

2nD1;n�a� �
@D1;n�1

@a

a; n � 2;

(68)

which determine Di;n, n > 0 in terms ofDi;0, A, and B, and
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are satisfied by the one-loop values in Table I. The match-
ing coefficient at � � M is D0;0�a�M�� �D1;0�a�M���
logQ2=M2.

VIII. MASSIVE PARTICLES

The calculations so far have been performed for external
particles with masses m1;2 much smaller than the gauge
boson mass. In this section, we extend the results to mas-
sive external particles. For fermions, we will assume that
the theory is vectorlike, so that the fermion mass arises
from a gauge-invariant mass term �m �  . The standard
model, a chiral gauge theory, where masses arise from
Higgs couplings due to spontaneous symmetry breaking,
is discussed in Sec. X.

A. Q� m2 �M� m1

Consider first the case where one particle has mass m2,
with Q� m2 � M, and the other particle has mass m1

much smaller than M. For definiteness, the outgoing par-
ticle is taken to be heavier than M, and the incoming one
lighter than M, but the results are symmetric under 1$ 2.
The Sudakov form factor can be computed using a se-
quence of effective field theories.

One first matches from the full theory to SCET with a
massive particle at ��Q and uses the same set of opera-
tors listed in Eq. (30) except 	n;p2

is now a n-collinear
SCET field with mass m2 as in Refs. [35,36]. This match-
ing is independent of scales much smaller than Q, such as
m1, m2, and M, and thus remains the same as in Table I.
The second step is to run the operator in the effective
theory from Q to m2. The anomalous dimension � is also
independent of low mass scales and again gives the same
result as the massless case. At the scale m2, one switches
from SCET to a new effective theory in which the massive
particle is described by a heavy quark effective theory
(HQET) field hv2

, with a velocity v2, with v2
2 � 1 [37].

The other (massless) particle is still described by a SCET
field. The fermion vector current, for example, is now
given by �hv2

��Wy�n 	 �n;p1
, instead of Eq. (30), and similarly

for the other operators. The HQET field, hv2
, does not

transform under collinear gauge transformations; there-
fore, there is no factor analogous to the Wy�n Wilson line
that goes along with the 	 �n field. hv still couples to ultra-
soft gluons. One can make an additional field redefinition
which eliminates the ultrasoft gluon coupling to hv and
introduces a Wilson line in the v2 direction [38]. Both
methods give the same on-shell matrix elements.

The matching condition at m2 is given by the difference
between the vertex graphs in Figs. 3 and 7, and the wave
function graphs, evaluated at � � m2, i.e. between graphs
where 	n;p2

and hv2
are used for particle 2. Note that there

are three vertex graphs in the theory above m2, and only
two graphs in the theory below m2, because there is no
collinear Wilson line associated with hv2

. The graphs in the

theory above m2 are evaluated with the gauge boson mass
set to zero (since m2 � M) at the on-shell point p2

2 � m2
2.

The graphs in the effective theory are evaluated with M !
0 at the on-shell point k2 
 v2 � 0, where k2 is the residual
momentum of particle 2. Figures 3(b) and 7(a) are equal,
since the �n collinear interactions do not depend on whether
the other field at the vertex is �hv or �	n;p2

. They cancel in the
matching computation. The ultrasoft graphs [Figs. 3(c) and
7(b)], the 	 �n;p1

wave function graph, and the HQET wave
function graph all vanish on shell, so the matching com-
putation is given by Fig. 3(a) and the on-shell wave func-
tion graph for 	n;p2

. The vertex graph [Fig. 3(a)] does not
need an analytic regulator, and gives (for O � � �� )

 In � aCF�
�
�

1

�2 �
1

�

�
2� log

m2
2

�2

�
�

1

2
log2 m

2
2

�2

� 2 log
m2

2

�2 �
�2

12
� 4

�
: (69)

The wave function correction for a massive fermion is

 �z � aCF

�
1

�UV
�

2

�IR
� 4� 3 log

m2
2

�2

�
: (70)

Combining Eqs. (69) and (70) gives the multiplicative
matching condition expR, R � R�1�a� 
 
 
 , at � of order
m2,

 R � aCF

�
1

2
L2
m2
�

1

2
Lm2
�
�2

12
� 2

�
; (71)

where Lm2
� logm2

2=�
2. The other cases are evaluated in a

similar manner, and the results are summarized in
Table III. The wave function correction for a massive
scalar, which is needed for the last three rows, is

 �z � aCF

�
�

2

�UV
�

2

�IR

�
: (72)

The remaining steps are the evaluation of the anomalous
dimension in the region M<�<m2, and the matching
condition exp S at the scale M. These can be computed by
evaluating the graphs in Fig. 7 and the wave function
corrections, at the on-shell point k2 � 0, p2

1 � 0, and keep-
ing the gauge boson mass nonzero. The graphs need to be
regulated using an analytic regulator. The 	 �n;p1

is regulated

p1

p2

(a)

p1

p2

(b)

FIG. 7. SCET graphs for the matrix element of ~O. The dotted
lines are SCET propagators, and represent either fermions or
scalars. The double lines are HQET propagators.
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as in Eq. (33) for the collinear propagator. The Wilson line
in Fig. 7(a) is regulated using Eq. (34), as is the massless
particle propagator in Fig. 7(b). The new feature is the
HQET propagator for particle 2, which is regulated using

 

1

k2 
 v2
!
���2H�

�2

�k2 
 v2	
1��2

: (73)

Taking the HQET limit of the particle 2 propagator,

 

���2
2�
�2

��m2v2 � k2�
2 �m2

2	
1��2

!
���2

2�
�2

�2m2k2 
 v2	
1��2

; (74)

and comparing Eq. (73) with Eq. (33), we see that �2H �
�2

2=�2m2�. Figure 7(a) is given by the �n-collinear graph
evaluated earlier, Eq. (38). Figure 7(b) is

 � aCF�
�
�
2�H
M

�
�2
�
��1
M

�
�1
�
�2

M2

�
�

�
���2=2� �1=2����� �1=2� �2=2�

��1� �2�
: (75)

The �n-collinear wave function graph is Eq. (40), and the
HQET propagator correction, Fig. 8, is

 aCF

�
2M�� �k2 
 v2�

�
�

2

�
� 2 log

M2

�2

��
: (76)

Equation (76) gives a contribution to the heavy quark
residual mass term, �m � �2aCFM�, and a wave func-
tion contribution listed in Table II. The shift in the heavy
quark mass is nonanalytic in the gauge boson mass
squared. Such nonanalytic contributions occur in mass
corrections to particles with k 
 v propagators [39,40].
They arise from loop integrals which diverge as an odd
power of k. Such integrals are finite, but nonanalytic, in
dimensional regularization.

Adding Eqs. (38) and (75), expanding in �i, and sub-
tracting the wave function corrections due to the heavy
fermion, Eq. (76), and the collinear fermion, Eq. (40),
gives

 

� aCF

�
1

�2 �
1

�

�
5

2
� 2 log

�m2

Q2

�
�

5

2
log

�2

M2 �
9

4
�

5�2

12

�
1

2
log2 �

2

M2 � 2 log
�2

M2 log
�m2

Q2

�
: (77)

To obtain Eq. (77) we have used �2H � �2
2=�2m2�, ��1 �

�2
1=p

�
1 , ��2 � �2

2=p
�
2 , and Q2 � m2p

�
1 . The 1=� coeffi-

cient multiplied by �2 gives the anomalous dimension

 �2 � aCF��5� 2Lm2
� 4LQ�; (78)

and the finite part gives the matching correction,

 S � aCF

�
�

5

2
LM �

9

4
�

5�2

12
�

1

2
L2
M � LM�Lm2

� 2LQ�
�
:

(79)

The other cases are computed similarly, and are given in
Table III.

The terms which contribute to the final result are sum-
marized schematically as

 

C �1 R �2 S
Q ! m2 ! M

(80)

B. Q� m2 � m1 �M

The second case we consider is where both particles
have mass between Q and M. For definiteness, we choose
m2 >m1. The Sudakov form factor can be computed using
a sequence of matching and running steps. The matching
expC at Q, the anomalous dimension �1 between Q and
m2, the matching expR at m2, and the anomalous dimen-
sion �2 betweenm2 andm1 are all independent of the lower
scales m1 and M, and have the same values as in Tables I
and III.

The new feature is the matching condition expT at the
lower particle mass m1. The graphs in the theory above m1

are shown in Fig. 7. In the theory belowm1, the SCET field
	 �n;p1

for particle 1 is replaced by the HQET field hv1
. The

TABLE III. One-loop results for Q>m2 >M>m1. R is the matching coefficient at ��m2, �2 is the anomalous dimension
between m2 and M, and S is the matching coefficient at ��M. The results only depend on whether the light particle is a fermion or
scalar.

O R�1�=CF ��1�2 =CF S�1�=CF
� 2� 1

1
2 L

2
m2
� 1

2Lm2
� �2

12 � 2 �5� 2Lm2
� 4LQ � 5

2LM �
9
4�

5�2

12 �
1
2L

2
M � LM�Lm2

� 2LQ�

�y2�1; i��
y
2D

��1 �D
��y2�1�

1
2 L

2
m2
� Lm2

� �2

12 � 2 �6� 2Lm2
� 4LQ �3LM � 7

4�
5�2

12 �
1
2L

2
M � LM�Lm2

� 2LQ�
� 2�1

1
2 L

2
m2
� 1

2Lm2
� �2

12 � 2 �6� 2Lm2
� 4LQ �3LM � 7

4�
5�2

12 �
1
2L

2
M � LM�Lm2

� 2LQ�

�y2 1
1
2 L

2
m2
� Lm2

� �2

12 � 2 �5� 2Lm2
� 4LQ � 5

2LM �
9
4�

5�2

12 �
1
2L

2
M � LM�Lm2

� 2LQ�

k

pp

k+p

FIG. 8. HQET propagator correction

p1

p2

FIG. 9. Vertex correction in the theory below m1;2.
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fermion vector current, for example, is now given by
�hv2
��hv1

instead of �hv2
��Wy�n 	 �n;p1

. The vertex correction
in the theory belowm1 is shown in Fig. 9. There is only one
vertex graph instead of two, because there is no collinear
Wilson line W associated with the HQET field hv1

. The
matching condition is given by computing the difference of
graphs [Fig. 7 and 9] on shell, and setting all scales less
than m1 to zero. The only nonzero contribution is from
Fig. 7(a) and the �n-collinear wave function renormalization
graph. These are the same graphs that contribute to the
matching condition at m2, so T is given by R with
m2 ! m1,3 and is tabulated in Table IV.

The remaining quantities needed are the anomalous
dimension �3 between m1 and M, and the matching con-
dition expU at M. These can be computed from the graph
in Fig. 9 evaluated on shell, but now with the gauge boson
mass M included. The graph gives

 awr�w�
�
�

2

�
� 2 log

M2

�2

�
; (81)

where w � v2 
 v1 and

 r�w� �
log�w�

���������������
w2 � 1
p

����������������
w2 � 1
p (82)

is the factor which occurs in the velocity-dependent
anomalous dimension in HQET [37]. Including the heavy
quark wave function correction, Eq. (76), gives the anoma-
lous dimensions and matching coefficient listed in
Table IV. In the high energy limit Q2 � 2m1m2w,

 wr�w� � log�2w�: (83)

The terms which contribute to the final result are

 

C �1 R �2 T �3 U
Q ! m2 ! m1 ! M

(84)

C. Q� m2 � m1 �M

The third case we consider is where the two particles are
degenerate, with m2 � m1 � m, and Q� m� M. This
can be computed using the results already derived. The
matching expC at Q and the running �1 between Q and m
is the same as in Table I. The matching at m is given by

switching both particles from SCET to HQET simulta-
neously. This is just the sum of the matching coefficients
at m2 and m1 computed previously, so the matching con-
dition is exp�R� T	, with m1 � m2 � m, where R and T
are given in Tables III and IV, respectively. The anomalous
dimension between m and M, and the matching at M are
given by �3 and U in Table IV.

The terms which contribute to the final result are

 

C �1 R� T �3 U
Q ! m2 � m1 ! M

(85)

D. Q� m2 �M� m1

It is also useful to derive results where the particle
masses and gauge boson masses are not widely separated
from each other. In this case, it is more important to include
the full m=M dependence, rather than sum high order
� logm=M terms, which are no longer very large. In the
standard model, this situation arises for the W, Z, and t,
which have masses which are not sufficiently widely sepa-
rated that electroweak logarithms need to be summed. If
two (or more) particle masses are not widely separated, one
can make a transition to a new EFT by integrating out both
particles at a common scale�, rather than integrating them
out sequentially. The results for the various cases are
summarized in this and the following subsections. The
difference from previous results is that one has to include
all the relevant masses in the particle propagators. For
example, for the case studied in this subsection, m2 �M,
one also includes m2 in the denominator of Eq. (32). The
integrals now depend on a dimensionless parameter, the
ratio of particle masses m2

2=M
2.

If Q� m2 �M� m1, then the matching at Q and the
running between Q and m2 �M, remain unchanged, and
are given by C and �1 in Table I. At the scale � of order
m2 �M, one integrates out the gauge boson, and switches
to a theory in which particle 2 is described by a HQET
field. In this matching, the n-collinear graph, Eq. (32), with
the analytic regulator is now

 In � �ig2�2�CFc���
Z ddk

�2��d
1

k2 �M2

�n6
2
n�
n6
2

�
���2

2�
�2 �n 
 �p2 � k�

��p2 � k�2 �m2
2	

1��2
��

����1 �
�1

�� �n 
 k	1��1
�n�; (86)

TABLE IV. One-loop results for Q>m2 >m1 >M. T is the matching at m1, �3 is the anomalous dimension between m1 and M,
and U is the matching at M. T only depends on whether the light particle is a scalar or a fermion.

O T�1�=CF ��1�3 =CF U�1�=CF
� 2� 1

1
2L

2
m2
� 1

2Lm2
� �2

12 � 2 4�wr�w� � 1	 2�wr�w� � 1	LM
�y2�1; i��

y
2D

��1 �D��y2�1�
1
2L

2
m2
� Lm2

� �2

12 � 2 4�wr�w� � 1	 2�wr�w� � 1	LM
� 2�1

1
2L

2
m2
� Lm2

� �2

12 � 2 4�wr�w� � 1	 2�wr�w� � 1	LM
�y2 1

1
2L

2
m2
� 1

2Lm2
� �2

12 � 2 4�wr�w� � 1	 2�wr�w� � 1	LM

3T depends on whether the particle being integrated out is a
fermion or a scalar.
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and is evaluated at the on-shell point p2
2 � m2

2. The
�n-collinear and ultrasoft integrals remain unchanged. We
saw in Sec. VIII A that the � and � dependence canceled
between all the diagrams for the massless case. The can-
cellation must still hold when In is evaluated with m2 � 0,
so that aCFfF�z� � In�m2� � In�m2 � 0�, z � m2

2=M
2 has

a finite limit independent of the analytic regulator, as can
be verified by explicit computation. The result for fF�z� is
given in Eq. (B1). The wave function renormalization is
also modified, and the shift hF�z� is given in Eq. (B2). The
matching condition D is given by D�m2� � D�m2 � 0� �
aCF�fF�z� � hF�z�=2� if the particle integrated out is a
heavy fermion, where the massless value D�m2 � 0� is
given in Table I. Similarly, if the particle integrated out is
a heavy scalar, the matching D is D�m2� � D�m2 � 0� �
aCF�fS�z� � hS�z�=2� where the scalar functions are given
in Eqs. (B4) and (B5).

The theory belowm2 �M is a theory in which particle 2
is described using a HQET field, and particle 1 by an
SCET, with the massive gauge boson integrated out. In
our toy example, this is a free theory.

Schematically, the terms are (z � m2
2=M

2)

 

C �1 D� aCF�f�z� � h�z�=2�
Q ! m2 �M

(87)

E. Q� m2 �M�m1

IfQ� m2 � M�m1, the matching and running down
to M�m1 remains the same as in Sec. VIII A. In the
theory at M�m1, particle 2 is described by an HQET
field, and particle 1 by a �n collinear field. The matching
condition at M�m1 would be given by S if m1 ! 0. By
the same arguments as above, the effect of m1 is to modify
the �n-collinear integral by a finite amount, so the matching
is now S� aCF�f�z� � h�z�=2�, with z � m2

1=M
2, where

f, h are the fermion or scalar values, Eqs. (B1) and (B2) or
Eqs. (B4) and (B5), depending on the type of particle 1.

Schematically, the terms are (z � m2
1=M

2)

 

C �1 R �2 S� aCF�f�z� � h�z�=2�
Q ! m2 ! m1 �M

(88)

F. Q� m1 �m2 �M

The situation is similar to Q� m1 � m2 � M consid-
ered in Sec. VIII C. The evolution down to m1 �m2 is the
same as for mi � 0. The n and �n collinear graphs at the
scalem1 �m2 are independent of each other, so the match-
ing is given by R�m2� � T�m1� given in Tables III and IV.
Below m1 �m2, the computation reduces to that in
Sec. VIII C.

Schematically, the terms are

 

C �1 R� T �3 U
Q ! m1 �m2 ! M

(89)

G. Q� m1 �m2 �M

The evolution to ��m1 �m2 �M is the same as for
the massless case. The matching at � involves massive
collinear propagators, each of which modifies the massless
matching condition, so the matching is given by

 

D�m1;m2� �D�m1 �m2 � 0� � aCF�f2�z2�

� h2�z2�=2� � aCF�f1�z1� � h1�z1�=2�; (90)

where zi � m2
i =M

2, and f1;2, h1;2 are chosen to be fF;S and
hF;S depending on whether the corresponding particle is a
fermion or scalar. The massless value D�m1 � m2 � 0� is
given in Table I.

Schematically, the terms are (zi � m2
i =M

2)

 

C �1 D�aCF�f�z1��h�z1�=2��aCF�f�z2��h�z2�=2�
Q ! m1�m2�M

(91)

IX. SCALAR CORRECTIONS

In this section, we compute the scalar exchange correc-
tions to the Sudakov form factor. The graphs are the same
as those for gauge exchange, with the gauge boson re-
placed by the scalar �, with massM�. As for gauge bosons,
one needs to include both collinear and ultrasoft fields for
� to represent collinear and ultrasoft � particles. In the
gauge boson results, we removed an overall factor of a �
g2=�16�2�. In the �-exchange graphs, we remove a factor
of h1h2=�16�2�, where h1;2 are the Yukawa couplings at
the two vertices. Note that the coupling of � to scalars h�;i
has dimensions of mass, so the factor removed for opera-
tors such as �y� is dimensionful. Unlike for gauge inter-
actions, the wave function and vertex corrections can have
different coupling constants.

Collinear gauge bosons and matter fields in the operator
O occur in the combination Wyn 	n;p or Wyn�n;p. They arise
from full-theory graphs in which the gauge fields couple to
the other particle, which moves in the �n-direction. The
intermediate propagators are off shell by orderQ2, and can
be shrunk to a point, as shown in Fig. 10. Single gauge
boson emission gives the vertex g �n�=�� �n 
 k�. At higher
orders, multiple gauge boson emission from the �n particle
line combined with the non-Abelian multigluon interaction
give the Wilson line operator Wn. Multigluon emission is
related to single gluon emission by gauge invariance, and
this relation holds even in the presence of loop corrections.
The Wilson line structure of the vertex Wn is required by
collinear gauge invariance [18].

One has a similar construction for multiple n-collinear �
fields emitted from the �n particle. At the level of single �
emission, the � vertex is h ;�=�� �n 
 k� instead of the
gauge vertex g �n�=�� �n 
 k�. This is all we require for our
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computation. It would be interesting to work out the struc-
ture of the scalar vertex at higher orders, including radia-
tive corrections. Multiscalar emission is not related to the
single scalar vertex by gauge invariance.

Most of the scalar corrections vanish. In SCET, the
fermion Yukawa vertex vanishes, because Eq. (3) implies
that

 

�	 n;p	n;p � �	n;p
�n6 n6
4

n6 �n6
4
	n;p � 0 (92)

using n6 n6 � n2 � 0. The triscalar couplings ��y� have
dimensions of mass, and � exchange corrections to the
scalar operators are suppressed by powers of h�=Q, which
is subleading in the EFT power counting given our as-
sumption that h� does not grow withQ. The easiest way to
see this is to use the rescaled fields �n;p, which have a
propagator of the same form as that for fermions. The
Yukawa coupling becomes

 h���
y� � h���yn;p�n;p �

h�
�n 
 p

��yn;p�n;p; (93)

which is order 1=Q since �n 
 p is order Q, and gives an
explicit 1=Q suppression to the graph at each triscalar
vertex.

One interesting point is the decoupling of scalars below
m1 andm2, so that particles 1 and 2 can be treated as HQET
fields. If one directly matches from the full theory onto
HQET, then h � �  ! h � �hvhv, which is nonzero. If
instead, one first goes through SCET, then h � �  !
h � �	n;p	n;p � 0, so we have an apparent contradiction.
However, the two results are not in disagreement. The
scalar HQET vertex graph (Fig. 9 with the gauge boson
replaced by a scalar) is equal to �1=w times the corre-
sponding gauge graphs, rescaled by the ratio of the Yukawa
couplings to the gauge couplings. In the Sudakov limit,
w�Q2=�m1m2�, and 1=w is a power suppression which
can be neglected, so both ways of matching agree, since
power corrections are neglected.

The only scalar graphs which remain are the matching at
Q, which are full-theory graphs, and scalar contributions to
wave function renormalization in the effective theories.
The wave function contributions are summarized in
Table V, where L� � logM2

�=�
2. The full-theory wave

function renormalization vanishes for both fermions and
scalars, so the entire matching correction at Q given in
Eq. (94) arises from the vertex correction. The EFT match-

ing and running can be computed from the scalar wave
function graphs in Table V. The EFT matrix elements are
given by taking�1=2 times the entries in the table for each
particle, multiplying by h2=�16�2�, and then adding the
contributions from the two particles. The finite part gives
the matching correction, and (� 2) times the coefficient of
the 1=�UV term gives the anomalous dimension. Since only
wave function graphs contribute, there are no LQ terms
which can only arise from vertex graphs.

The computation of scalar contributions to the anoma-
lous dimension and matching for the various cases consid-
ered in Sec. VIII parallels the gauge boson discussion. The
matching coefficients for m1;2 � 0 are given by a formula
analogous to Eq. (90), with the gauge boson functions fF;S
and hF;S replaced by the corresponding �-exchange func-
tions fF;S ! 0, since there are no vertex corrections in the
effective theory, and hF;S ! ~hF;S.

We have divided the scalar exchange contributions into
vertex and wave function pieces, rather than giving the
total contribution as in the gauge case. The reason is that
the standard model is a chiral gauge theory, and the
Yukawa couplings connect one matter representation to
another. Thus, vertex corrections can mix left-handed cur-
rents with right-handed currents, whereas wave function
corrections do not mix different SU�2� �U�1� representa-
tions. Keeping the two contributions separate allows us to
compute Higgs radiative corrections in the standard model
using the results given in this section.

The matching corrections C atQ can be computed as for
the gauge boson case. The matching corrections for exter-
nal scalar particles due to scalar � exchange are power
suppressed, and vanish to leading order. For fermions, the
� exchange corrections give

TABLE V. One-loop scalar exchange contribution to on-shell
wave function renormalization. The exchanged scalar mass is
M�, L� � logM2

�=�
2, and the particle (fermion or scalar) mass

is m. ~hF;S are given in Appendix B. An overall factor of
h1h2=�16�2� is omitted.

Field m M�

 m � 0 M� � 0 1
2�UV
� 1

2�IR

 m � 0 M� � 0 1
2�UV
� 1

4�
1
2L�

 m � 0 M� � 0 1
2�UV
� 2

�IR
� 7

2�
3
2 Lm

 m � 0 M� � 0 1
2�UV
� 1

4�
1
2L� �

~hF�m
2=M2

��

� m � 0 M� � 0 0
� m � 0 M� � 0 1

2M2
�

� m � 0 M� � 0 1
m2 ��

1
2�IR
� 1� 1

2 Lm	

� m � 0 M� � 0 1
2M2

�
� 1

M2
�

~hS�m
2=M2

��

hv M� � 0 2
�UV
� 2

�IR

hv M� � 0 2
�UV
� 2L�

FIG. 10. Graphs in which n-collinear gauge bosons couple to
the �n-collinear line generate the Wilson line Wn.
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�  ! exp�aY��2� LQ�	� �	n;p2
Wn	�W

y
�n 	 �n;p1

	

� �� ! exp
�
aY

�
1

2
�

1

2
LQ

��
� �	n;p2

Wn	�
��Wy�n 	 �n;p1

	

� ��� ! exp�aY	
�
� �	n;p2

Wn	����W
y
�n 	 �n;p1

	

�
i
2
�n� �n� � n� �n��� �	n;p2

Wn	�W
y
�n 	 �n;p1

	

�

aY �
h ;1h ;2

16�2 ; (94)

which have to be combined with the gauge boson matching
conditions in Table I. The vertex graph contributes 2aY ,
�aY , and 0, respectively, to the anomalous dimensions of
the three operators in the full theory. The wave function
graphs contribute an additional aY to all three operators.

X. APPLICATION TO THE STANDARD MODEL

The results we have obtained for the toy theory can now
be used to compute results for the standard model. One has
to be careful in using the correct coupling constants, since
the standard model is a chiral gauge theory, and the toy
model is vectorlike.

For the LHC, one is interested in processes such as dijet
production. The SCET operators at the high scale Q in-
volve more than two SCET fields. That is, in q �q! q �q, the
EFT operator has four fields, two for the incoming particle
and two for the outgoing ones. One can obtain results for
more than two external particles by combining the two-
particle results computed in this paper with the appropriate
gauge theory factors such as CA and CF. There are several
interesting features of the analysis which are independent
of the calculations presented in this paper, so we defer the
discussion of experimentally relevant examples to a sub-
sequent publication [21]. Here we show how our results
can be used to compute the radiative corrections to quark
production by a gauge-invariant current �Qi�

�PLQi, where
Qi is the quark doublet4 for generation i � u, c, t, and to
charged lepton production by �L��PLL. We will do the
computations for light quarks in Sec. X A, for leptons in
Sec. X B, and for top quarks in Sec. X C. All fermion
masses other than the top quark mass are neglected.

A. Light quarks

The first generation quark doublet is

 Qu �
u
d0

� �
�

u
Vudd� Vuss� Vubb

� �
; (95)

using the mass eigenstate basis. At the scale Q� mq, the
coefficient of the operator in the full electroweak theory is
assumed to be unity. For the first generation, all quark
masses and Yukawa couplings can be neglected, and so

the answer is given by combining the gauge boson contri-
butions computed earlier.

The operator in SCET at the scale Q is

 

�Qu�
�PLQu ! c�Q�� �	�Qu�

n;p2
Wn	�

�PL�W
y
�n 	
�Qu�
�n;p1
	; (96)

where 	�Qu� represents the left-handed electroweak u-quark
doublet, Eq. (95), in SCET, and we have suppressed gauge
indices. The matching condition is

 logc�Q� �
�
�s�Q�

4�
4

3
�
�2�Q�

4�
3

4
�
�1�Q�

4�
1

36

��
�2

6
� 8

�
;

(97)

using the third column of Table I with LQ � 0 at the scale
� � Q. The gauge couplings have been multiplied by the
corresponding CF values: 4=3 for an SU�3� triplet, 3=4 for
an SU�2� doublet, and 1=36 for Y � 1=6. The electroweak
couplings renormalized at � � MZ are

 �2�MZ��
�em�MZ�

sin2�W�MZ�
; �1�MZ��

�em�MZ�

cos2�W�MZ�
; (98)

and their values at Q are obtained by the usual 
-functions
of the standard model.

The theory below Q is SCET with an SU�3� � SU�2� �
U�1� gauge symmetry. In this regime, the SCET current in
Eq. (96) is multiplicatively renormalized with anomalous
dimension (from the fourth column in Table I)

 ���� �
�
�s���

4�
4

3
�
�2���

4�
3

4
�
�1���

4�
1

36

�
�4LQ � 6	:

(99)

The anomalous dimension � is used to run c down to a
scale of order the gauge boson mass. One can integrate out
the weak gauge bosons sequentially, by first integrating out
the Z boson at � � MZ, followed by the W at � � MW .
This sums ��log2MW=MZ�

n, n > 1 terms, while neglecting
��MW=MZ�

n, n > 0 power corrections. This is not a good
choice to use for the standard model, since MW=MZ is not
very small, and summing powers of MW=MZ is more
important than summing �log2MW=MZ terms. Instead,
we integrate out the W and Z at a common scale, chosen
to be � � MZ. In this way, we match directly from an
SU�3� � SU�2� �U�1� gauge theory onto a SU�3� �
U�1�em gauge theory of gluons and photons, and there
are no complications of an intermediate stage of broken
electroweak symmetry where the Z is integrated out, but
not the W.

At the scale � � MZ, integrating out the W and Z
bosons gives a matching correction to the SCET operator,
 

� �	�Qu�
n;p2

Wn	��PL�W
y
�n 	
�Qu�
�n;p1
	

! a�u�� �	�u�n;p2
Wn	��PL�W

y
�n 	
�u�
�n;p1
	

� a�d
0�� �	�d

0�
n;p2

Wn	��PL�W
y
�n 	
�d0�
�n;p1
	: (100)

Since the electroweak symmetry is broken, the u and d04This is not to be confused with Q, the momentum transfer.
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parts of the operator get different matching corrections. The corrections ai are obtained using the last column of Table I:

 

log a�u��MZ� �
�em

4�sin2�Wcos2�W

�
1

2
�

2

3
sin2�W

�
2
�

9

2
�

5�2

6

�

�
�em

4�sin2�W

�
1

2

��
�log2 M

2
W

M2
Z

� 2 log
M2
W

M2
Z

log
Q2

M2
Z

� 3 log
M2
W

M2
Z

�
9

2
�

5�2

6

�
;

log a�d
0��MZ� �

�em

4�sin2�Wcos2�W

�
�

1

2
�

1

3
sin2�W

�
2
�

9

2
�

5�2

6

�

�
�em

4�sin2�W

�
1

2

��
�log2 M

2
W

M2
Z

� 2 log
M2
W

M2
Z

log
Q2

M2
Z

� 3 log
M2
W

M2
Z

�
9

2
�

5�2

6

�
: (101)

The first term for loga�u;d
0� is the Z contribution, the second

term is the W contribution, and the coupling constants are
renormalized at MZ.

Below MZ, the operators in Eq. (100) are multiplica-
tively renormalized, with anomalous dimensions

 ��u� �
�
�s���

4�
4

3
�
�em���

4�
4

9

�
�4LQ � 6	;

��d
0� �

�
�s���

4�
4

3
�
�em���

4�
1

9

�
�4LQ � 6	;

(102)

for the u and d0 terms.
The final result for the operator at a low scale is

 

�Qu��PLQu ! c�u�� �	�u�n;p2
Wn	��PL�W

y
�n 	
�u�
�n;p1
	

� c�d
0�� �	�d

0�
n;p2

Wn	��PL�W
y
�n 	
�d0�
�n;p1
	; (103)

with
 

log c�u���� � log c�Q� �
Z MZ

Q

d�
�
���� � log a�u�

�
Z �

MZ

d�
�
��u����;

log c�d
0���� � log c�Q� �

Z MZ

Q

d�
�
���� � log a�d

0�

�
Z �

MZ

d�
�
��d

0����; (104)

where the various pieces are given in Eqs. (97), (99), (101),
and (102). The EFT operator, Eq. (103), can then be used to

compute processes such as dijet production using SCET
[41]. For jet production, the scale � would be chosen to be
of order the jet invariant mass, around 30 GeV for jets at
the LHC.

B. Leptons

The computation for the radiative corrections to the
lepton current �L��PLL, where L is the lepton doublet

 L �
�
‘

� �
; (105)

is similar to that for the quark doublet, and we summarize
the final result. The full-theory operator at the low scale �
is

 

�L��PLL! c���� �	���n;p2
Wn	��PL�W

y
�n 	
���
�n;p1
	

� c�‘�� �	�‘�n;p2
Wn	�

�PL�W
y
�n 	
�‘�
�n;p1
	; (106)

with the coefficients given by Eq. (104) with u! �, d0 !
‘, where the terms on the rhs of Eq. (104) for leptons are
 

log c�Q� �
�
�2�Q�

4�
3

4
�
�1�Q�

4�
1

4

��
�2

6
� 8

�
;

���� �
�
�2���

4�
3

4
�
�1���

4�
1

4

�
�4LQ � 6	;

���� � 0;

��‘� �
�em���

4�
�4LQ � 6	; (107)
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log a�‘��MZ� �
�em
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�
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�
: (108)
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C. Top quarks

In this subsection, we show how our results can be used
to compute the radiative corrections to t�t production by a
gauge-invariant vector current �Qt�

�PLQt, where Qt is the
left-handed quark doublet in the standard model,

 Qt �
t
b0

� �
�

t
Vtdd� Vtss� Vtbb

� �
; (109)

and b0 � Vtdd� Vtss� Vtbb using the mass eigenstate
basis. We will neglect all quark masses other than mt.
This example illustrates how to use the fermion mass and
Higgs exchange contributions computed in the toy
example.

The operator in SCET at the scale Q is
 

�Qt��PLQt ! c1�Q�� �	
�Qt�
n;p2

Wn	��PL�W
y
�n 	
�Qt�
�n;p1
	

� c2�Q�� �	
�t�
n;p2

Wn	��PR�W
y
�n 	
�t�
�n;p1
	; (110)

where 	�Qt� and 	�t� represent the left-handed electroweak
t-quark doublet, Eq. (109), and the right-handed t-quark
singlet tR in SCET and we have suppressed gauge indices.
The tR terms arise from Higgs exchange graphs, Fig. 11.

The matching condition is
 

log c1�Q� �
�
�s�Q�

4�
4

3
�
�2�Q�

4�
3

4
�
�1�Q�

4�
1

36

�

�

�
�2

6
� 8

�
;

c2�Q� �
�

2
g2
t �Q�

16�2

��
1

2

�
; (111)

using Table I and Eq. (94) with LQ � 0 at the scale� � Q.
The gauge couplings have been multiplied by the corre-
sponding CF values, 4=3 for an SU�3� triplet, 3=4 for an
SU�2� doublet, and 1=36 for Y � 1=6. The top quark
Yukawa coupling is normalized so that gt �

���
2
p
mt=v,

with v� 247 GeV. The Higgs exchange graph in the
chiral standard model has been computed using the toy-
model value, Eq. (94), for a vectorlike theory, combined
with the result that a Yukawa vertex flips the fermion
chirality. The factor of 2 in front of g2

t =�16�2� arises
from summing over a closed SU�2� index loop, i.e. because
the Higgs and Q are SU�2� doublets (the sum on � in

Fig. 11). The factor of 1=2 in square brackets is the
coefficient of aY in the second line of Eq. (94), with LQ !
0 at � � Q. The Higgs exchange vertex correction mixes
the QL operator with the tR operator. Higgs exchange
corrections do not contribute to the diagonal coefficient
c1, since the first row of Table V shows that the full-theory
wave function renormalization has no finite part.

The theory below Q is SCET with an SU�3� � SU�2� �
U�1� gauge symmetry. In this regime, the two operators in
Eq. (110) are multiplicatively renormalized with anoma-
lous dimensions
 

�
dc1

d�
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�s���
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4
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4
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4�
1

36
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�4LQ � 6	
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c1;

�
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�s���

4�
4

3
�
�1���

4�
4

9

�
�4LQ � 6	 � 2

g2
t �Q�

16�2

�
c2:

(112)

The tL wave function factor due to Higgs exchange does
not have the factor of 2 from the SU�2� index summation
that is present for tR. The Higgs vertex graph, which causes
c1 � c2 mixing, is 1=Q2 suppressed.

The anomalous dimension � is used to run c1;2 down to a
scale of order mt. At this scale there are several different
methods one can use. As for massless quarks, one can
integrate out the scales mt, MW , MZ, and MH in various
ways, e.g. one can integrate out each particle at a scale �
equal to its mass, or integrate out one or more particles
simultaneously at some common value of �. Integrating
out the top quark leads to a complicated effective theory
with dynamical W and Z bosons which is no longer
SU�2� �U�1� invariant, since the b0 quark is in the theory
but not t. Luckily, the best method for experimentally
relevant computations is also the simplest to use: Since
mt,MW ,MZ, and presumablyMH are not widely separated,
one can integrate them all out together. In this way, one
goes directly from an SU�3� � SU�2� �U�1� invariant
theory to a SU�3� �U�1�em gauge theory, with broken
SU�2� �U�1� symmetry and no electroweak gauge bo-
sons. This procedure keeps the entire mass dependence
on the four mass scales.

At the scale � � mt, the t-quark SCET field is replaced
by the heavy quark field tv, whereas the b0 quark SCET
field in the doublet 	�Qt� remains an SCET field 	�b

0�. The
operator matching is
 

� �	�Qt�
n;p2

Wn	��PL�W
y
�n 	
�Qt�
�n;p1
	 ! 1

2a1 �tv2
��tv1

� a2� �	
�b0�
n;p2

Wn	

� ��PL�W
y
�n 	
�b0�
�n;p1
	;

� �	�t�n;p2
Wn	��PR�W

y
�n 	
�t�
�n;p1
	 ! 1

2a3 �tv2
��tv1

; (113)

where the matching coefficients are denoted a1;2;3. Using
the result of Sec. VIII G for the gauge boson exchange

tR

tR
Qtα

Qtα

Hα

FIG. 11. Higgs correction which causes �Qt�
�PLQt to mix

with �t��PRt. The index � is an SU�2� index, and is summed
over.
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graphs, and Sec. IX for the Higgs exchange graphs gives
 

Fg�Q;M;m� � �log2 M
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All running couplings are renormalized at � � mt. The
expressions are given by adding the contributions due to
the Z [Fg�Q;MZ;mt� term], W [Fg�Q;MW;mt� term],
gluon, �, H [Fh�MH;mt� term], h0 [Fh�MZ;mt� term],
and h� [Fh�MW;mt� term], where h0, h� are the unphys-
ical Higgs scalars present in R	�1 gauge. The gluon and
photon corrections arise because one is making a transition
from a theory in which the top quark is represented by a
SCET field to one in which it is represented by an HQET
field (see Sec. VIII C).

Below � � mt, the �tv2
tv1

operator has anomalous di-
mension (from the third column of Table IV)

 �3 �

�
�s
4�

4

3
�
�em

4�
4

9

�
4�wr�w� � 1	; (115)

where w � v2 
 v1 � 1�Q2=�2m2
t �.

The radiative corrections to the �tt operator can then be
combined with known methods to obtain t-quark decay
distributions [38]. The QCD corrections (the �s terms)
have already been included in the analysis of Ref. [38].
The new results in this paper are the additional electroweak
radiative corrections, including Higgs effects.

XI. NUMERICS AND CONCLUSIONS

We have shown how SCET methods can be used to
compute the radiative corrections to electroweak pro-
cesses. We discussed the results for massless external
particles given in Ref. [20] in more detail, and derived
the result that there is at most a single power of LQ in the
matching at M to all orders in perturbation theory. The
existence of LQ terms in the matching atM is a new feature
of SCET with massive gauge bosons. The results of

Ref. [20] have been extended to include external particle
masses and radiative Higgs exchange corrections propor-
tional to the Yukawa couplings.

Most of the paper used the vectorlike SU�2� gauge
theory. Section X explained in detail how the results for
the vectorlike theory could be used to compute radiative
corrections in the standard model, which is a chiral gauge
theory. In this paper, we have computed radiative correc-
tions to operators with two external particles. These can be
used to compute the production rate for two external
particles by a gauge-invariant bilinear source. This could
be applied to the decay rate of a (hypothetical) gauge
singlet particle into two fermions. SCET methods can
also be used to compute the radiative corrections to the
dominant high energy processes observable at the LHC,
such as dijet production from quark-quark scattering. For a
partonic process such as qq! qq, the EFT operator is a
four-quark operator, and the radiative corrections can be
obtained by using the results of this paper, summed over all
pairs of particles. The anomalous dimensions are about
twice as big as the ones for the two-quark operators con-
sidered here. We postpone further discussion to a subse-
quent publication [21].

We conclude by giving some plots which show the
typical size of the radiative corrections. The LHC center-
of-mass energy is

���
s
p
� 14 TeV. The partonic center-of-

mass energy
���̂
s
p

is much lower, because a proton with
energy E has partons with energy fraction x 
 1, given
by a parton distribution f�x� which vanishes as x! 1. The
bulk of the dijet cross section is at low ŝ, but the LHC has
sufficient luminosity to be able to observe the dijet cross
section up to

���̂
s
p

of order several TeV. We plot the Sudakov
form factor for electron production via �L��PLL, u-quark
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production via �Qu�
�PLQu, and t-quark production via

�Qt��PLQt, which are the results given in Sec. X, for
���̂
s
p

between 0.25 and 8 TeV. Figure 12 gives the results for
FE�Q

2� for the three cases, stopping the evolution at � �
MZ. In Fig. 13, the EFT operators have been evolved all the
way down to � � 30 GeV, the typical invariant mass used
to define a jet at the LHC. In both these figures, the quark
form factors also include QCD radiative corrections.
Figure 14 shows the electroweak contributions to the three
form factors as a percentage change relative to the form
factor including only the QCD radiative corrections. We
have used a Higgs mass of 200 GeV in the plots. Varying
the Higgs mass between 150 and 500 GeV makes a differ-
ence of less than 0.5%. FE is normalized to unity in the
absence of radiative corrections. Radiative corrections for
electrons are about 7% at 2 TeV, and � � MZ, increasing
to about 8% for � � 30 GeV due to the QED running
below MZ. The corrections for quarks are much larger,

15% for the t-quark, and 30% for the u-quark at � � MZ,
increasing to 40% and 50%, respectively, at � � 30 GeV.
There is also a significant difference between the results for
t- and u-quarks, arising from power corrections which
depend on mt=MW;Z and Higgs corrections which depend
on the Yukawa coupling gt. The bulk of the difference is
due to the power corrections, the gt terms are less than
1%.5 The corrections for the four-quark operators needed
for realistic processes are bigger, with corrections even to
color singlet processes being greater than 20%. The radia-
tive corrections are large enough that resummation is
necessary to get an accurate prediction for the partonic
cross sections. We have shown how one can perform the
resummation using EFT methods. Previous computations
[2–15] have done the resummation using infrared evolu-
tion equations [3]. The EFT method allows one to include
mass effects as well as Higgs corrections in a systematic
way, which have not been included previously. It also
handles the crossover between the SU�3� � SU�2� �
U�1� and the SU�3� �U�1� gauge theories above and
below the weak interaction symmetry breaking scale, in-
cluding the effects of unequal W and Z masses. The
infrared evolution method uses a conjectured form for
this crossover with equal W and Z masses. The extension
of previous results to massive external particles is currently
being studied by other groups using a method-of-regions
analysis [42].
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FIG. 12 (color online). The Sudakov form factor for u-quarks
(solid black), t-quarks (dotted red), and electrons (dashed blue)
at � � MZ for mH � 200 GeV. Note that the quark form factors
include QCD corrections.

FIG. 13 (color online). The Sudakov form factor for u-quarks
(solid black), t-quarks (dotted red), and electrons (dashed blue)
at � � 30 GeV for mH � 200 GeV. Note that the quark form
factors include QCD corrections.

FIG. 14 (color online). The electroweak contribution to the
Sudakov form factor (as a percentage change) for u-quarks (solid
black), t-quarks (dotted red), and electrons (dashed blue) at � �
30 GeV for mH � 200 GeV.

5Note that the Higgs corrections do not have the LQ enhance-
ment that is present for the gauge bosons.
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APPENDIX A: ANALYTIC REGULATOR
DEPENDENCE OF COLLINEAR GRAPHS

The n-collinear contribution Eq. (37) can be written as
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where

 � �
1

r1 � r2
; � �

r1 � r2

r1 � r2
: (A2)

The �n-collinear contribution is given by Eq. (A1) with�!
��, �! ��, �2 ! �1, ��1 =p

�
2 ! ��2 =p

�
1 . The depen-

dence on r1;2 and �1;2 is additional scheme dependence
introduced by the analytic regulator. The sum of the
n-collinear and �n-collinear contributions simplifies greatly,
and gives Eq. (43) on using ��1 � �2

1=p
�
1 , ��2 � �2

2=p
�
2 . In

particular, the � and � terms cancel between the two
contributions. The relevant relations are
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The identities, Eq. (A3), do not make any assumptions
about the values of �2

1 and �2
2, which need not be equal.

It is convenient to use the special case of Eq. (A1) with
� � � � 0 to define the n, �n-collinear contributions. This
form is given by using the analytic regulator followed by
the limit r2 � �r1, r1 ! 1, and gives
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which has no 1=� singularities. This form is similar to the
value obtained in Ref. [29] using a rapidity regulator.

APPENDIX B: PARAMETER INTEGRALS
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2. Scalars
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For 4z � 1, the results can be analytically continued using�������������
1�4z
p

! i
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4z�1
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and tanh�1�
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�! itan�1�
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�. In each integral, the factors of i cancel, and
the function remains real.
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