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Electroweak Sudakov logarithms at high energy, of the form (a/sin?@y)"log™"s/M3,, are summed
using effective theory methods. The corrections are computed to processes involving two external
particles in the standard model. The results include nonzero particle masses, such as the t-quark mass,
electroweak mixing effects which lead to unequal W and Z masses, and radiative Higgs corrections
proportional to the Yukawa couplings. We show that the matching at the scale My, ; has a term at most
linear in logs/u? to all orders. The effective theory formalism is compared with, and extends, previous

work based on infrared evolution equations.

DOI: 10.1103/PhysRevD.77.053004

L. INTRODUCTION

The Large Hadron Collider (LHC) has a center-of-mass
energy of /s = 14 TeV, and will be able to measure
collisions with a partonic center-of-mass energy of several
TeV, more than an order of magnitude larger than the
masses of the electroweak gauge bosons. Radiative correc-
tions to scattering processes depend on the ratio of
mass scales, and radiative corrections at high energy
depend on logarithms of the form logs/M%V,Z. In high
energy exclusive processes, radiative corrections are en-
hanced by two powers of a large logarithm for each order
in perturbation theory, and the logarithms are often re-
ferred to as Sudakov (double) logarithms. Electroweak
Sudakov corrections are not small at LHC energies, since
alog’(s/Mj3, ,)/ (47 sin*0y) ~ 0.15 at \/s =4 TeV. These
Sudakov corrections lead to a breakdown of fixed order
perturbation theory, and need to be summed to all orders.

Electroweak corrections at high energy have double
logarithms, even for processes which are conventionally
called inclusive, such as the total e™e™ cross section at
large angles, because the colliding particles are not elec-
troweak gauge singlets [1]. There are no electroweak sin-
glet fields in the standard model. A composite particle such
as the proton, while a color singlet, is not an electroweak
singlet.

There is an extensive literature on electroweak Sudakov
effects [2—15]. The computations use infrared evolution
equations [3], based on an analysis of the infrared structure
of the perturbation theory amplitude and a factorization
theorem for the Sudakov form factor [16]. These summa-
tions have been checked against one-loop [§—10] and two-
loop [11-15] computations.

The Sudakov logarithm log(s/M3, ;) can be thought of
as an infrared logarithm in the electroweak theory, since it
diverges as My, ; — 0. By using an effective field theory
(EFT), these infrared logarithms in the original theory can
be converted to ultraviolet logarithms in the effective
theory, and summed using standard renormalization group
techniques. The effective theory needed is soft-collinear
effective theory (SCET) [17,18], which has been used to

1550-7998/2008 /77(5)/053004(24)

053004-1

PACS numbers: 12.15.Lk, 12.38.Cy, 13.40.Ks, 13.87.—a

study high energy processes in QCD [19], and to perform
Sudakov resummations arising from radiative gluon
corrections.

This paper studies high energy electroweak Sudakov
corrections using SCET, and expands on our previous
work [20]. In Ref. [20], we showed how to compute
log s/M3, , corrections to the Sudakov form factor for
massless fermions using EFT methods. In this paper, the
results are generalized to massive fermions such as the top
quark, and include radiative corrections due to Higgs ex-
change. The corrections are computed without assuming
that the Higgs and electroweak gauge bosons are degener-
ate in mass, as in previous calculations. A new feature of
EFT matching, the existence of single logarithmic match-
ing corrections [20], is discussed in detail, and proven to be
true to all orders in perturbation theory. This paper dis-
cusses the Sudakov form factor computation in detail. The
Sudakov form factor is not of direct relevance to LHC
processes, but it allows us to illustrate the EFT method
for operators involving two external particles. The compu-
tations of the Sudakov form factor given in this paper can
be used to compute electroweak corrections to processes
relevant for the LHC, such as dijet production, ¢f produc-
tion, or squark pair production, which involve operators
with four external particles. The results are given in a
future publication [21], and can be obtained from the
computations given in this paper by summing over all pairs
of external particles with the appropriate group-theoretic
factors.

The outline of the calculation is given in Sec. II. The
SCET formalism and the full theory we use for our calcu-
lations are described in Sec. III. Known results on the
exponentiation of the Sudakov form factor, and a compari-
son of the infrared evolution equation formalism with the
SCET approach, is given in Sec. IV. Section V discusses
the calculation of Sudakov corrections for massive gauge
bosons and massless external particles. Section VI gives
the proof that there is at most a single logarithm found in
the matching condition to all orders in perturbation theory,
and consistency conditions on the matching coefficients
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and anomalous dimensions are given in Sec. VII. The
extension to massive external particles is given in
Sec. VIII for all possible hierarchies of mass scales, in-
cluding cases in which particle masses are not widely
separated, so that multiple scales have to be integrated
out simultaneously. Massive scalar exchange graphs, rele-
vant for Higgs exchange, are computed in Sec. IX.
Applications of the formalism to electroweak Sudakov
corrections in the standard model are given in Sec. X for
light quarks, the top quark, and leptons.

Notation.—We use a(u) = a(u)/(4m), and a,(u) =
a;(un)/(4m) where i = s, 2, 1 for the QCD, SU(2), and
U(1) couplings in the standard model. Hypercharge is
normalized so that Q = T5 + Y. Logarithms are denoted
by Ly = logA?/u?, for A = Q, M, my, m,. Cp and Ty are
the Casimir and index for the external particles. We use the
subscript F for both fermions and scalars, to avoid rewrit-
ing the same expression twice.

II. OUTLINE OF CALCULATION

The physical quantity we study is the Sudakov form
factor in the Euclidean region, defined as the amplitude
Fr(Q?%) = (p,|0|p,) for the scattering of on-shell particles
p? = m? by an operator O, with Q> = —(p, — p;)* > 0.
The timelike Sudakov form factor is given by analytic
continuation, F(s) = Fg(—s—i0"), so that log(Q*/u?)—
log(s/u?) —im.

We will compute F(Q?) for fermion scattering by O =
Jy*, P, poty, scalars scattering by O = ¢T ¢,
i(ptD*¢p — D*pT ), and fermion to scalar (or vice
versa) scattering by O = s¢p. All operators are taken to
be gauge singlets so the incoming and outgoing particles
have the same gauge quantum numbers, but not necessarily
the same mass.

The form factor, Fz(Q?), is computed using a sequence
of effective theories. For the high energy process consid-
ered is this paper, there are several widely separated scales
and we must switch to the relevant theory as we move
between scales. At scales higher than Q2, the theory is the
original gauge theory, referred to as the full theory in EFT
terminology. The precise theory, and the SCET formalism
used are given in Sec. II1.

As we move to scales below Q2, we transition to an
effective field theory (SCET) where degrees of freedom
with off shellness on the order of Q? are integrated out. The
full and EFT have the same infrared (IR) physics but
different ultraviolet (UV) behavior and to ensure that the
operators in the respective theories have the same on-shell
matrix elements, we must introduce a matching coefficient,
exp[C(u)]. For later convenience, the matching coefficient
is written as an exponential. If the full theory is matched
onto SCET at w, then the matching coefficient is chosen
so that

(P2l O )l p1) = exp[Cl)Kpal (o)l pr), (1)
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where O(u) is the EFT operator corresponding to the full-
theory operator O(u). The matching coefficient exp C(u ()
is independent of infrared physics, and can be computed if
perturbation theory is valid at u,. In general, a single

operator O can match onto a set of operators O; in the
EFT with the same quantum numbers. This occurs, for
example, for four-fermion operators in the analysis of
high energy parton scattering, and can be included by
treating all the equations below as matrix equations, as is
familiar from the well-known analysis of operator mixing.
The matching coefficient C(ug) contains logug/Q*
terms, and there are no large logarithms if wy is chosen
to be of order Q. We will choose uy = Q, though any
value of order Q is acceptable. Any physical observable is
independent of the choice for wy. It is conventional to
choose c(u), the coefficient of O in the full theory, to equal
unity at u = Q. With this choice, which gives the usual
normalization for Fg(Q?), ¢(Q) = exp C(Q) is the coeffi-
cient of @ in SCET at u = Q. The evolution of c(u)
between scales is given by the renormalization group
equation

de(p)
dp

% = y(pw)e(p), 2

where y(u) is the anomalous dimension of @ in the EFT.

We must repeat this sequence of matching and renor-
malization group evolution as various energy scales are
crossed, and more and more degrees of freedom are inte-
grated out. An advantage of the EFT approach is that it
divides the full multiscale computation into several simpler
pieces, each of which depends on a single scale. This
allows one to easily identify which quantities are universal,
and which ones depend on the specific process. In an EFT
calculation, the IR divergences in the theory above a
matching scale must match with the UV divergences in
the theory below the matching scale. We have checked this
explicitly for all the computations in this paper. In most of
the tables, we have given only the finite parts of the graphs.

III. SCET FORMALISM

SCET is an effective theory that describes energetic
particles, with energy of order Q, where Q is some large
scale which characterizes the scattering process. SCET
contains all the modes of the full theory with invariant
mass much smaller than Q2. The SCET fields and
Lagrangian depend on two null four-vectors n and 1,
with n = (1, n) and 7 = (1, —n), where n is a unit vector,
so that 7i - n = 2. In the Sudakov problem, one works in the
Breit frame, with n chosen to be along the p, direction, so
that 71 is along the p; direction. The momentum transfer ¢
has no time component, g° =0, so that the particle is
backscattered. The light-cone components of a four-vector
p are defined by p* =n - p, p~ =7 - p. In our problem,
pr =piL=p; =p1 =0, and Q> =p{p;. A fer-
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mion moving in a direction close to n is described by the
n-collinear SCET field £, ,(x), where p is a label momen-
tum, and has components 7 - p and p | [17,18]. It describes
particles (on- or off-shell) with energy 2E = 71 - p, and
p* < Q?. The SCET power counting is p~ ~ Q, p* ~
OA%, p; ~ QA, where A < 1 is the power counting pa-
rameter used for the EFT expansion. The total momentum
of the field &, ,(x) is p + k, where k is the residual mo-
mentum of order QA? contained in the Fourier transform of
x. Note that the label momentum p only contributes to the
minus and L components of the total momentum.

The gauge field is represented by several distinct fields
in the effective theory: n-collinear fields A, ,(x) and
fi-collinear fields A; ,(x) with labels, and ultrasoft fields
A(x) with no label, analogous to the soft and ultrasoft fields
introduced in NRQCD [22]. The n-collinear field contains
gluons with momentum near the n-direction, and momen-
tum scaling i+ p~ Q, n- p~ QA% p; ~ QA, and the
ii-collinear fields contain gluons moving near the
ni-direction, with momentum scaling n-p~ Q, n-p ~
QA%, pi ~ QA. The ultrasoft field contains gluons with
all momentum components scaling as QA2.

The EFT fermion field satisfies the constraint

%fw — ¢ 3)

where

Pn:%) ’ PH+PFL:1 (4)
are projection operators.
Lagrangian is [18]

The leading order fermion

, Z(m D+ )fn,, )

where iD = id + gA is the ultrasoft covariant derivative,
and - - - denotes terms involving the collinear gauge field.
The fermion propagator is

e P
2p?

The effective theory knows about the large momentum
scale Q through the labels 7 - p, and n - p; on the fields
& p, and &; |, for the outgoing and incoming particles. As
a result, SCET anomalous dimensions can depend on Q.
However, there are no modes in SCET which couple 7z - p,
to n - py, so that SCET does not contain modes with off-
shellness of order Q2, which are present in the full theory.

We will also need to introduce SCET fields to describe
energetic scalar particles, such as the Higgs boson. We will
use @, , as the n-collinear field for a scalar particle moving
in a direction close to n, analogous to &, , for fermions.
The field @, , is normalized the same way as the full-
theory field ¢, and produces scalar particles with ampli-

(6)
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tude unity. The scalar kinetic energy term becomes
D,¢'Drp — @}, p)in- D) + pi1®,, (D)

in the effective theory. It is also convenient to use a
redefined scalar field,

Gup = p) Py ®)

in terms of which the kinetic term becomes

L= ¢np<ln D + >¢np )

and has the same normalization as the fermion Lagrangian
equation (5). The rescaled scalar propagator is now

1 n-p
— — . (10)
PP
¢,,p produces scalar particles moving in the n-direction
with amplitude /(7 - p).

The theory we consider is a SU(2) spontaneously broken
gauge theory, with a Higgs in the fundamental representa-
tion, where all gauge bosons have a common mass, M. This
is the theory used in many previous computations [4—
7,15], and allows us to compare with previous results. It
is convenient, as in Ref. [15], to write the group theory
factors using Cr, Cy, Tr, and np, where 2np is defined to
be the number of weak doublet Weyl fermions.! We will
consider this theory with fermionic and scalar matter fields
in arbitrary gauge representations, with the fermions as-
sumed to be vectorlike. These fields are the external par-
ticles in the operators @. We will also need to consider
graphs which are analogous to Higgs exchange graphs in
the standard model. For this purpose, we will add a gauge
singlet scalar field y, which couples to the fermions and
scalars via gauge-invariant interactions,

Ling = —hyxthih; — hqﬁ,i/\/¢;r¢ir (1)

hy,; is dimensionless, and /4 ; has dimensions of mass. We
will assume that /4 ; is independent of Q for power count-
ing purposes. In our toy example, y is a gauge singlet field,
and does not break the gauge symmetry. The fermion
masses are independent of the Yukawa couplings of y.
The toy example Higgs field is a doublet, and breaks the
gauge symmetry, but does not couple to the matter fields. In
the standard model, the Higgs field breaks the gauge
symmetry, and also has Yukawa couplings which generate
fermion masses.

The computations are extended to the SU(3) X
SU(2); X U(1)y standard model in Sec. X, including
Higgs exchange corrections and unequal gauge boson

"This convention for ng is used in Ref. [15]. Note that the
results only hold for C4 = 2, since for an SU(N) group with N >
2, a fundamental Higgs does not break the gauge symmetry
completely.
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FIG. 1. Graphs in the standard model involving both Yukawa
and gauge couplings which have no analog in the toy example.

masses. Our results are given to leading order in the EFT
power counting, i.e. we neglect power corrections of the
form m?/Q?, and M?/Q?, while retaining all logarithmic
corrections log m?/Q?* and log M?/Q?. The gauge boson
exchange graphs can be obtained from those of the toy
model. In the standard model, the Higgs field breaks the
gauge symmetry, and also has Yukawa couplings to the
chiral fermions. At one-loop, we can obtain the Higgs
exchange corrections from the y-exchange graphs in our
toy example. Graphs with Higgs bosons coupling to both
the fermions and the gauge bosons start at two-loops (see
Fig. 1).

IV. EXPONENTIATION

We start by summarizing some known properties of the
Sudakov form factor [23] for the vector current. We will
see later how the same expressions can be rederived using
renormalization group methods in SCET. The Euclidean
form factor F(Q?) has the expansion (L = log(Q?/M?))

FE =1+ a(k12L2 + kllL + kl()) + az(k24L4 + k23L3

+ k22|_2 + k21|_ + k20) + a3(k36L6 + - ') + - °,
(12)

with the a” term having powers of L up to L?". In the
literature, the highest power of L is called the LLg term, the
next power is called the NLLy term, etc. We have included
the subscript F (for the form factor) to distinguish it from
the renormalization group counting described below.

The series for logF;(Q?) takes a simpler form,

1OgFE = a(lgul_z + lglll_ + I;l()) + az(/g23L3 + 1€22L2

+ EZIL + 1220) + a3(l€34L4 + - ‘) + - °y
(13)

with the @" term having powers of L up to L"*!, and the
expansion begins at order «. Note that Eq. (13) implies
nontrivial relations among the coefficients &, in Eq. (12).
At order n, there are 2n + 1 coefficients k,,,,, 0 = m = 2n
in Eq. (12), but only n + 2 coefficients &,,,,, 0=m=n+ 1
in Eq. (13).

The right-hand side (rhs) of Eq. (13) can be written in
terms of the LL series Lfy(al) = kjpal? + kya?l3 +
-+-, the NLL series f(al) =k aL + kypa?l?+ ---,
the NNLL series af,(al) = kjga + kyja®L + - - - etc. as

PHYSICAL REVIEW D 77, 053004 (2008)
logFy = Lfo(al) + fi(al) + afs(al) +---.  (14)

fo and f| begin at order «, and the remaining f, begin at
order one.

In this paper, LL, NLL, etc. (with no subscripts) will
refer to the counting for logFg. This is also the counting
appropriate for a renormalization group improved compu-
tation, and is different from the conventional counting
discussed above. If one looks at the order a2 terms, for
example, the conventional counting is that the L* term is
LLg, the L3 term is NLLp, the L? term is N’LLg, the L term
is N°LLg, and the L term is N*LLg. Using our counting,
the terms are given by exponentiating logF to LL, NLL,
N2LL, N?LL, and N°LL, respectively. At higher orders, the
mismatch in powers of N between the two counting meth-
ods increases.

For precision electroweak studies, the first few orders
are sufficient. Typical loop corrections are suppressed by
a/(47r). There can be large coefficients in the perturbation
expansion. For example, there are large coefficients in the
cusp anomalous dimension [see Egs. (50) and (54)]. In this
paper we have computed corrections to the Sudakov form
factor; for dijet production and processes involving four-
particle operators, the anomalous dimensions are at least
twice as large as for the Sudakov problem. For these
reasons, we use the estimate « instead of a/(4s) for the
size of loop corrections. For QCD, a ~ 0.1, and for elec-
troweak corrections, a — ., /sin’6y ~ 0.03.
logs/M% ~ 8 for s ~4 TeV, so aL~1 for QCD and
~0.2 for electroweak corrections. The NLL series is of
order 10% for QCD corrections, and a few percent for
electroweak corrections. The NNLL series is of order a
percent for QCD, and sub-percent for electroweak
corrections.

A. Infrared evolution equations

An expression for the Sudakov form factor in the limit
M/Q < 1 with on-shell massless fermions, p3 = p? = 0,
obtained using the evolution equations is [15,23-25]

log F(Q?) = log Fy(a(M))

0*du?
+ [2 S| dtatun + étann)

u? d/.le
+ [ Tatu) | (1)
MM
in terms of functions Fy, {, &, and I' of the coupling
constant, which have the expansions
Fola) =1+ Fya+ FPa® + - -+,
Fa) =TWag +T@g2 + .-,
Ha)=Wa+ (P2 + -+,
)= ¢EWa + @2 + - -+

(16)

The superscript gives the loop order of the Feynman graphs
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which contribute. I" is known as the cusp anomalous
dimension.

The gauge coupling constant g satisfies the renormal-
ization group evolution equation

3 gS 7
b —b T—
Yaem?)? 21672
17)

or equivalently,
|

log Fy(0%) = [Fg” 40+ gL + %rﬂ)u}a(m + [
1

1
+ 2 (BT + 2by(by¢ ) — TO)L?

A comparison of this expansion with Eq. (14) shows that f
is determmedby W and by, £, by T2, g £ b and
f2 by Fl) r23) 025 &@ poy. In general f, i
determmed by £ and terms up to F(" D ptn) | g b
The expression, Eq. (15), is not unique. The identity
1 (2du® 9G(a(w))
= =G -G
3 et Belaln) = Gla(@) - Glat)
2D

can be used to show that Eq. (15) is invariant under the
transformation,

at) — Tau) + “C9D g oy,

La(w) — La(w) - zG(aw)), 22)
&(a(M)) — &(a(M)) + 2G(a(M)).
As aresult, I', £, and £ are not uniquely determined from

Fr(Q?) by Eq. (15).

B. Renormalization group evolution equations

The corresponding expression for F(Q?) in the EFT
formalism, as will be derived in Sec. V, is

2

log F(0%) = C(a(Q)) + Dy(alM) + D,(a(M) log =2,
[5 d: [A(a(u)) loghss i B(a(m)}

23)

where exp C(a(Q)) is the multiplicative matching coeffi-

cient at 0%, y(u) = A(a(u))log(u?/Q?) + B(a(u)) is the
SCET anomalous dimension between @ and M, and

PHYSICAL REVIEW D 77, 053004 (2008)

d
_a = B,(a) = —2a(bya + bya* + bya® + ---). (18)
The one-loop coefficient is
11 4 1
b0=?CA—§TFnF—§TFnS, (19)

where n; is the number of complex scalars, and 2n is the
number of fermion weak doublets, in the convention of
Ref. [15].

After combining Eqgs. (15)—(18) and expanding to order
a(M)?, the form factor takes the following form:

(F(l))z + F(2) + (D + D)+ - (F(Z) — by M)L2

- 6(190F<1>)L3}1(M)2 + E(Fg“)z —FOFD 4+ FO 4 (70 4+ £0)L + E(F(3) — b D) — 2y f@D)L2

1
+ Eb%F(l)L“}a(MP e (20)

[

expD(a(M)), D(a(M))=Dy(a(M))+ D,(a(M))log 0>/ M*
is the multiplicative matching coefficient at M. The match-
ing coefficient C and the SCET anomalous dimension 7y are
independent of physics at the low scale M, and so do not
depend on the gauge boson and Higgs masses. The new
feature of the massive gauge boson calculation is the
existence of a single-log term, D(a(M)) in the matching
at M. That there are no higher powers of logQ?/M? in the
matching is proved to hold to all orders in Sec. VI. A, B, C,
Dy, have loop expansions analogous to Eq. (16). The
N"LL series for logFy requires A®+1) B, Dglil), and
cn=, D(l") contributes only to the a"L term in f,,.
The identity equation (21) and

2 2 2 2
j 0 dp ] “ A ) = f ¢ %na(m)log%

M?

(24)

can be used to show that Eq. (23) is unchanged by the
redefinitions

GG(a(M))

Ala(p)) = Ala(p)) + ——— B,(a(w)),

Bla(w) — Bla(u)) + 2w (“(“))

C(a(Q)) — C(a(Q)) + H(a(Q)),
Dy(a(M)) — Do(a(M)) — H(a(M)),
Dy(a(M)) — D;(a(M)) + G(a(M)). (25)

Bala(p)) + 2G(a(p)),

Transformations such as these can arise from a change of
scheme in the computation of the SCET matching coeffi-
cients and anomalous dimensions.
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We can now demonstrate the equivalence of the Sudakov form factor in Eq. (23) and the form factor given in Eq. (15).

By taking G(a) = —é&(a)/2 in Eq. (22), H(a) = —C(a) and G(a) = —D,(a) in Eq. (25), brings Eq. (15) with Eq. (23) to a
common form, and gives the identifications:
! Atatu) — PR g (o)) = Tat) — L 2D
~ 2 Bla(w) + 5 wﬁawm» + Dy (alp) = Zlalp) + Ela(w) 26)

C(a(M)) + Dy(a(M)) = log Fo(a(M)).

The left-hand side of Eq. (26) is invariant under Eq. (25), and the rhs under Eq. (22). The computations of the SCET
anomalous dimension and the cusp anomalous dimension in the literature use the same scheme, so that I' = A/2, and

%A(a)=r(a), D(a) = £(a), ——B(>+

1 8C(a)

Bala) = {(a), C(a) + Dy(a) = logFy(a). (27

The expansion of logF(Q?) to order a(M)? using the SCET form is

log Fp(Q%) = [C(” + Dy + <— %B(” + Dﬁ”)'— + %A“)Lz}a(M) + [C(Z) + DY + (— %B(Z) — boC + D(12)>L

1 1 1
+ 4 (A? + byB)L? - 12(boA“))Lﬂa(zu)2 + [c@) + D + (— B9 = b, CW = 26,C?) + D(f))L

1 1 1
+ Z(A<3> + byBY + 2by(B? + 2b,CV))L2 — E(blA“) +2b2BY + 2b,AP)L3 + ﬂbgA“)L“}a(M)?

V. MASSLESS EXTERNAL PARTICLES

In this section we calculate the form factor logF(Q?)
for the case Q% > M? > m?, m3. Atscales u > Q we use
the full theory, and the renormalization group evolution of
c(w) is given by

de(u)
P
(1)

where yp(a) = yp'a + y(z) - is the full-theory
(1

= ypla(w))c(w), (29)

anomalous dimension for O. The one-loop values vy
are given in Table I. The general form for F given in
Sec. IV is for the vector current, where yr = 0, and c(u >
Q) is chosen to be unity. It also holds for the other opera-
tors with c(u = Q) = 1 in the full theory.

The full theory is matched onto SCET at a scale p of
order Q. The effective theory has modes with off-shellness

TABLE 1.

(28)

[

of order Q integrated out, so the matching coefficient
depends on logQ?/u?, and these logarithms are not large
if u~ Q.

The operator O in the full theory matches to the operator
O in SCET:

JT ¢ — exp C(WE, ,, W IT Wi, ]
¢t — exp C(W[ @}, W, Wi, ]
iptD" ¢ — exp C(WI®L, W, 10D, + iDy)*
X [Wid; ]
I — exp C(E, , W, [Wid; , ] (30)

where iD,; =P +g(n-A; )%, iD,=Pt+g(i-A,_,)"L
and P are the SCET label operators introduced in Bauer
et al. [18]. Collinear gauge invariance requires that, in the

One-loop corrections to the Sudakov form factor. y. is the full-theory anomalous dimension, C is the matching coefficient

at w ~ Q, v; is the SCET anomalous dimension, and D is the matching coefficient at u ~ M. y}l), c, 7(11), and D are the

coefficients of a = a/(4) in the one-loop corrections, and Ly = log Q?/u?, Ly, = log M?/ u?.

Y 7 /Cr CO(u)/Cr Pw)/cr D (w)/Cr

Jy -6 -3 +%2—27 4Ly, — 6 —L}, +2LyLy — 3Ly +2— =
dyry 0 L3 +3Lp+ 2 -8 4L, - 6 —L2 + 2Lyl — 3LM+2 =
pory 2 L +4, +Z 8 4Ly — 6 —L} + 2Lyl — 3Ly + 3 -3
dte -6 L+l +T -2 4L, — 8 —L}, +2Lyly — 4Ly +1 3T
i(ptDEp — Dt ) 0 L) +4ly+ T -8 4L, — 8 —L2, +2LyL, — 4|_MJrz =
b, pt -3 —L +2, + T 4 4Ly —7 —L2 4 2Lyly — Ly 4 -
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p2 p2

P1 S
(a)

FIG. 2. Graphs contributing to the matching condition
C(a(Q)). The solid line can be either a fermion or scalar. The
second graph only exists for the scalar case O = i(¢pTD*¢p —

Dr¢te).

(b)

matching of gauge-invariant operators at leading order in
the power counting, the fields occur in the combination
wi Enps wi ®, ,, where W, is a Wilson line containing
n-collinear gauge fields obtained by integrating over a path
in the 7i-direction [18].

C(u) depends on the operator being matched [i.e. the
C’s in Eq. (30) have different values, and C can depend on
I'] and, for convenience, we have written the multiplicative
matching coefficient as exp C(u) rather than C(u). As is
well known, the matching coefficient can be computed as
the finite part of the full-theory matrix element, evaluated
on shell, with all infrared scales such as the gauge boson
mass set to zero (see e.g. [26—28]). The full-theory graphs
to be evaluated at one-loop are those in Fig. 2, and when
combined with the wave function and tree-level graphs,
give the value of the full-theory matrix element (p,|O|p,).
The graphs for the EFT vertex correction are shown in
Fig. 3, and when combined with the tree-level and wave

function graphs, give the EFT matrix element {p,|O|p,).
The gauge boson and fermion masses are infrared scales
and can be set to zero in the matching computation thus
leading to scaleless integrals for the one-loop EFT and
wave function graphs. Since these scaleless integrals are
set to zero in dimensional regularization, the EFT matrix
element is equal to its tree-level value. The full theory and
EFT operators O and O are normalized to have the same
tree-level value, so exp[C(1)] = (p2|Olp1)/ (P2l Ol p1)usee,
i.e. the matching condition is given by the on-shell full-
theory matrix element normalized to its tree-level value
(see e.g. Ref. [27] for more details).

The computation of the SCET one-loop graphs for O =
Jry* i is identical to that for DIS [26]. Particle masses,

P2

(a)

(b)

——— -
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such as the gauge boson mass, are all much smaller than Q,
and only contribute M?/Q? power corrections at the scale
Q, which are being neglected. The one-loop values of C(u)
for the other cases are computed similarly, and are given in
Table I, where C(u) = CWa(w)/(47) defines the one-
loop correction C'V. There are no large logarithms in this
matching correction if the matching scale u is chosen to be
of order Q. We will choose the matching at the high scale
to be at u = Q, and C(u = Q) is given by the third
column in Table I with L, — 0.

The renormalization group evolution of c¢(w) in the
effective theory is given by the anomalous dimension of
O in SCET. The anomalous dimension v is used to evolve
¢(u) from u = Q down to the low scale u = M. The one-
loop anomalous dimension is given by the ultraviolet
counterterms for the SCET graphs in Fig. 3 (after zero-
bin subtraction, see Ref. [29]). As noted earlier, anomalous
dimensions in SCET can depend on Q. Ultraviolet diver-
gences do not depend on the infrared properties of the
theory, such as a gauge boson mass, so the anomalous
dimension for @ = ¢y is identical to the DIS result
[26]. The same argument as that given in Ref. [26] for deep
inelastic scattering shows that y,(w) is linear in logu?/Q?
to all orders [26,30], so vy is written as

+ B(a(w)), 3D

¥1(1) = Ala(u)) log =5 0

which defines A and B. The anomalous dimension has the
expansion y; =y\"a+ 7(12)612 +oo, A=AWG+ A@g? +

, B=BWa+B?a2+---. The computations for the
other cases are similar, and the results are given in
Table 1. Note that the anomalous dimension depends only
on the external fields for the operators, and is equal for the
three different fermion operators, and for the two different
scalar operators. The reason is that the EFT anomalous
dimension depends on the IR divergence of the full-theory
graph, and the IR divergence is independent of the vertex
factors. The anomalous dimension for ¢ is the average of
the anomalous dimensions for the fermionic and scalar
operators.

The next step in the EFT computation is the matching
condition at the low scale u ~ M. At this scale, the mas-
sive gauge boson is integrated out, and one matches to an
effective theory which is SCET without the massive gauge

p2 %)

®—>—— —>——-
oL é

/// 055 6O
©)

FIG. 3. SCET graphs for the matrix element of O. The dotted lines are SCET propagators, and represent either fermions or scalars.
The upper graphs are the n-collinear and 7i-collinear graphs, and the lower graph is the ultrasoft graph. There are also wave function

graphs. For zd)TD ¢, graphs (a) and (b) also have a contribution where the gauge boson field at ® arises from the covariant derivative.
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boson. In our toy example, this effective theory contains no
gauge particles, and is a free theory. There is no need to
introduce any propagating gauge modes below M [31]. The
matching at u ~ M is given by evaluating the graphs in
Fig. 3, and the wave function graphs. The gauge boson
mass can no longer be set to zero, since it is of the same
order as the matching scale, and the one-loop SCET graphs
are nonzero. The matching computation is discussed in
detail here for the fermion vector current. The other cases
are treated similarly.

One matches the operator c(,Aud)[g-:,”,2 Wn]yﬂ[Wg &qp, lin
SCET with gauge particles (the theory above M) onto the
operator [exp D(u)]c(n)é, ,, v*&s, in SCET without
gauge particles (the theory below M). The n-collinear
graph in Fig. 3 gives

d/k 1 4 A
I =—i 2 26C moal
n g~ FC(M)[(zﬂ)d k2 _M2 2" 2
Xﬁ'(Pz_k),yM _1 i,
(py — k)? -k
d/k
= —2j 2C m,,2€
1g°Crpy™ 2m)
% i+ (py— k)
[(py —k)?>+i0"[—7-k+i0T[k> — M?>+i0"]

(32)

This integral is divergent, even in 4 — 2e dimensions with
an off-shellness, unlike the previously studied examples
where the gauge boson was massless. A related divergence
was encountered by Beneke and Feldman in their study of
the B — m€v form factor. Beneke and Feldman used an
analytic regulator [32,33] to evaluate their integrals, and
we use an extension of their method. A similar procedure
was used by Jantzen et al. [7] in their study of two-loop
electroweak Sudakov corrections. The p; propagator de-
nominator (p; — k)? in the full theory is analytically con-
tinued to

1 (—v?)%

(pi =0 [(p; — K712
where v; and §; are new parameters. The (p, — k)? de-
nominator in Eq. (32) arises from the collinear p, propa-
gator, and so gets modified as in Eq. (33). The —7i - k
propagator in Eq. (32) arises from the (p; — k)? propagator
when k becomes n-collinear. In this limit

1 . (— l/%)al
(pr=R0?  [(n-p)(=ii- k)]
We will therefore analytically continue the —7i - k propa-

gator in Eq. (32), which arises from the W, Wilson line in
O using

(33)

(34)

L G20

R e (35)
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where »; = v3/p;. We will see below that it is important
that v is related to »? in this way. Note that under boosts,
v| transforms like the minus component of a four-vector.
With this choice, Eq. (32) gives

2\e/ v3\S v\ (e + §,)

- % p( PN 22\ (2| 2E€ T 00)
= =22Crey ) a2) ;) T+ o)
« I'2—€—5)I'(8, — 8))

].—‘(2 - € — 51) '

The regulated value of I, is given by setting §; = r;0 and
taking the limit 6 — O first, followed by € — 0 [32,33],

(36)

a 1 2 1 w?
I,=—C H —+ ~ log2
" 4r re(p)y [rl —r,0€ ri—ryd OgM2
2 1 1 2 N
n2 —2+—<2+ n logv—£
ry —rp € € ry —nrn p2
2 2 2 2
+ logy—z2 +2+ 210g'u—2+ "2
ry —n M M ry —n
2 2 o) 2 -
X log'U“—2 logy—z2 + N log'U“—2 logV—L
M ry— 1 M D>
2 2 2
ry 2,LL Iy rya
+ log®— + — , (37
rnTn S M 2(r; — 1) 3(”1—72)} &7

which is a boost invariant expression, since v| /p; is boost
invariant. Equation (37) is valid away from the symmetric
point r| = ry.

The fi-collinear graph is given by Eq. (37) with the
replacements 8, < 8,, v, — vy, v{ = vy, p; — py,

with v = 13/p5,
2Ne/ 2N v\ (e + 8;)
o 7’ v vy \% 1
=2 177 i Y e R Rl S 4
o= T2 Crelnly (MZ) <M2> (pi) (i +3)
I'2—€—6)'(6, — 8,)
X .

The parameters v; and v| play the same role as u™ in the
rapidity regularization method of Ref. [29].

The ultrasoft graph in Fig. 3 is regulated by the same
method. The p, propagator (p, — k)> is multipole ex-
panded in the effective theory, and becomes —p; k™,
where p, is a label momentum. Using Eq. (33) for the
fermion propagators, we see that after multipole expan-
sion, they are regulated in the same way as the Wilson line
propagators. The ultrasoft graph gives

k1
Qm)d k> — M?
(>, ) o
[n-(py =017 [a-(py =B
and vanishes on shell, since p; = p; = 0.
The total SCET contribution is given by the sum of the

n-collinear, 7i-collinear, and ultrasoft graphs, as well as the
wave function renormalization correction. The collinear

o

Iy = —ig?Cre(p)y* ] n

(39)
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K
0D
7%, »

k+p

FIG. 4. One-loop correction to the fermion propagator.

correction to the particle propagator is the same as in the
full theory [18], and the ultrasoft correction vanishes, so
the wave function corrections are the same as in the full
theory. The fermion graph, Fig. 4, gives

o 1 1 M?
Cr—ip|l— —=—In— |, 40
F47Tl[5[€UV 2 nﬂz} 0
and so contributes a wave function correction
a 1 1
0z=Cp—|——=—Ly | 41
‘ Fam |:6UV 2 M} @b

Our normalization convention is such that the on-shell
matrix element gets a contribution — 8z/2 for each external
particle. The wave function corrections for the various
cases we need are tabulated in Table II. In the table, we
have distinguished between UV and IR divergences by the
subscript on the 1/ € terms. The scalar operators require the
scalar propagator correction, Fig. 5, which gives

‘ 2 3 M?
ipzﬂcF[—— —Z4 21n—2:|
47T Eyv 2 M
3 M2
- iM2aSCF[— 2 1+3 1n2}. (42)
4 €uv M

The first term gives the wave function correction, and the
second is the mass shift of the scalar proportional to the
gauge boson mass. The scalar mass shift is canceled by the
bare mass term in the scalar Lagrangian, which is adjusted

TABLE II. One-loop gauge boson contribution to on-shell
wave function renormalization. The gauge boson mass is M
and the particle (fermion or scalar) mass is m. hpg are given
in Appendix B.

Field m M
1 _ 1

l'// 0 0 EITV €IR
1 0 #0 EULV—%—LM
11 #0 0 $+%+4—3Lm
b #0 #0 a3 = Ly + hp(m*/M?)
) 0 0 -+2

0 #0 —2—3“{-1—2L
¢ €y 2 M
1) #0 0 —%%—%
¢ #0 #0 — =3+ 2Ly + hs(m*/M?)
h, 00 0 - +2
h e #0 73+;"I{_
v €uv M
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K k
W)
300 e
| AN 93 P P g 5 p
———e— > — — ¢ — — ——= 7d()‘€@7»777
k+p

FIG. 5. One-loop correction to the scalar propagator.

to keep the physical scalar massless. This cancellation is an
example of fine-tuning required to have light scalars.
The total on-shell amplitude I, + I; + I, — 2(8z/2) is

a 2 1
9 577

Uy~ 3L+ 5 - ?} (43)

The total amplitude equation (43) is independent of &, r,
and r, introduced by the analytic regulator, and depends
only on e of dimensional regularization. The cancellation
of the » and & dependence is discussed in more detail in
Appendix A. In evaluating Eq. (43), we have used v| =
vi/pi.vy = v3/p;,and Q*> = p; p;.The 1/e and 1/ €
poles are ultraviolet divergences, and are canceled by the
renormalization counterterms in the effective theory. The
IR divergences in the EFT are regulated by the gauge boson
mass, so the 1/€ divergences in Eq. (43) are UV divergen-
ces. The 1/e term multiplied by —2 gives the SCET
anomalous dimension listed in Table I, and is a nontrivial
check on the analytic regulator computation. The SCET
anomalous dimension was computed in Ref. [26] using an
off-shell regulator, and the analytic regulator gives the
same result. While the total anomalous dimension is the
same, the contribution of individual diagrams to the
anomalous dimension depends on the regulator. For ex-
ample, in Ref. [26], the ultrasoft graph had a 1/e diver-
gence which contributed to the anomalous dimension,
whereas the ultrasoft graph vanishes on-shell when eval-
uated using the analytic regulator method. Contributions
can be moved between the collinear and ultrasoft diagrams,
depending on the choice of regulator.

The EFT below the matching scale w ~ M is SCET
without gauge particles; thus there are no one-loop dia-
grams to consider in the theory below M. The finite part of
Eq. (43) gives the multiplicative matching coefficient
exp D(u) at the low scale w of order M. The coefficient

of O in the effective theory after integrating out the gauge
bosons is given by c(u — 07) = [exp D(u)]c(u + 0%),
where c(u + 0F) are the coefficients before and after
integrating out the gauge bosons, respectively. The coeffi-
cient D(u) has the usual expansion D = DWWg + D@ a? +
-+ -, and at one-loop order is

2

D = CF[—Lﬁl +2Lyly — 3Ly + g - 5767} (44)
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for the fermion vector current. The other cases are com-
puted similarly, and are given in Table I. The matching at
M is independent of the vertex structure, and depends only
on whether the particles are fermions or scalars. The (¢
matching is the average of the results for two fermions and
two scalars. This is a new feature of the effective theory,
which follows because the graphs factorize into contribu-
tions from the individual particles. The matching at Q from
the full theory does not have this property.

Note that D(u) is a function of both L), and L, and is
linear in Ly. The matching condition depends on both
scales Q and M. The dependence of the matching on the
high scale Q is a new feature of SCET with massive gauge
bosons, and has not occurred in previous computations in
SCET, or other EFTs. We noted earlier that SCET graphs
know about the scale Q through the labels 72 - p, and n - p;
since Q> = (ii - p,)(n- p;). Nevertheless, in previous
computations such as DIS, the matching condition at the
jet scale M3 < Q? depended on log M?/u?, and there was
no log 0%/ u? dependence. It is easy to see why there must
in general be L, terms in the matching condition in our
case. If D is the matching condition at w, and vy, ; are the
anomalous dimension in the theories above and below w,

dD
w——=v, () = yp(w). (45)

du

In our example, y; = O since the theory below M is a free
theory. Since ), has the form Eq. (31) with a L, term, such
terms must also be present in D. Let us contrast this with
DIS. For moments My of the deep inelastic scattering
structure function with N > 1, the jet scale is M3 =
Q?/N. The theory above the jet scale has an anomalous
dimension 7y, which depends on L, and the theory below
the jet scale has Altarelli-Parisi evolution with anomalous
dimension y; which depends on logN. The two anomalous
dimensions are related in such a way that y;, — vy, «
logQ?/N, the logarithm of the jet scale. The matching D
also depends only on the jet scale Q%/N, and there are no
large logarithms in D if w is chosen to be of order the jet
scale [26].

The L, term in Eq. (44) is multiplied by L, and so there
is no Ly term in D if the matching scale is chosen to be
exactly equal to M. This is accidental, and does not happen
at higher orders. One can show explicitly that at two-loops,
there is a nonzero L, contribution to D even if 4 = M. In
the standard model, it is convenient to integrate the weak
gauge bosons out at a single scale 4 = M, and one has
one-loop terms in the matching condition of the form
(log 0*/M3)(log M}, /M3).

Renormalization group improved perturbation theory is
used to sum logarithms in an EFT. This would not be
possible if there were arbitrary powers of L in the match-
ing condition. We will prove in Sec. VI that to all orders in
perturbation theory, the matching condition D is linear in
L. Thus renormalization group summation can be used to

PHYSICAL REVIEW D 77, 053004 (2008)

obtain all logarithms except the first, so that in the Sudakov
problem at order o, the 2n — 1 terms a”L?", ..., a"L? can
be obtained by renormalization group evolution, but not
the single log term «”L, which gets a matching contribu-
tion from D. The general form for D(u) is

D(u) = Do(a(u), Ly) + Dy(a(u), LM)LQ: (46)

which defines D ;. At one-loop, Eq. (44) gives

9 57
1 _ 2
Dy’ =Cp| —Lj 3Ly +z——|
R e AR = .
DV =2C,Ly,.
Choosing u = M gives the matching coefficient
Q2
D(pn = M) = Dy(a(M),0) + D;(a(M), 0) log e @d

In our example, D, (a(M), 0) = 0, so there is no log Q?/M?
term in the one-loop matching coefficient. One expects that
D;(a(M),0) # 0 at higher orders, so there can be a single
large logarithm in the matching coefficient.

The final step in the computation is to compute the on-

shell matrix element of O in the theory below M. Since the
gauge bosons have been integrated out, this theory is a free
theory, and the matrix element is trivial, being given by its
free field value. The Sudakov form factor is defined as the
ratio of the scattering amplitude to its value in the free
theory, so the low energy matrix element contribution to
the Sudakov form factor is unity.

The contributions to the Sudkakov form factor are:

(1) The coefficient ¢(w) in the full theory just above the
matching scale u = Q, which is chosen to be unity.

(2) The multiplicative matching coefficient exp C(u)
for the matching between the full theory and
SCET at the scale u = Q.

(3) The integral of the SCET anomalous dimension
between u = Q and u = M.

(4) The multiplicative matching coefficient exp D(w)
for the matching at the scale u = Q between
SCET, and SCET with the gauge bosons integrated
out.

(5) The low energy matrix element, which gives unity,
using the conventional normalization for the form
factor.

Combining these contributions gives Eq. (23) for the
Sudakov form factor given earlier. The terms are repre-
sented schematically as

C Y1 D

o 1w (49)

The expression Eq. (23) for the Sudakov form factor,
with the one-loop coefficients given in Table I, can be
compared with known fixed order results in the case of
the fermion vector current by expanding this in a power
series expansion in a(M) as shown in Eq. (28). The result
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correctly reproduces the known al, o?L*, and o?L> terms
(L =log Q*/M?).

Comparison with the two-loop results of Refs. [7,15]
allows us to extract values for the two-loop cusp anoma-
lous dimension,

268 4 80
A(2) - <_ T + §7TZ>CFCA + ?CFTan

32
+?CFTFnS' (50)
The non-log part of the anomalous dimension is
961 1172
B® = (47 =3 —48{(3))C2 + (- — —
4m (C+(~ 55—
260  4a?
+52003))CrCa + (oo + " \CpTonp
27 3
167

The log part of the matching at M for equal Higgs and
gauge boson masses is

112 4 782 20
2 _ _ _
D =5+ 5 Jeetins + |~ 5~ 40)

26 T

+ 537+ ==Cl (—)}C, 52

\/g 2 3 F ( )
where the Clausen function is

>, sinnx
Cl = . 53
2()() Z I’l2 ( )

1

The anomalous dimension for Q > u > M is indepen-
dent of infrared physics, such as spontaneous symmetry
breaking and the gauge boson mass, and so can be written
in terms of group invariants such as Cr and C4. The
expressions for A? and B? hold in a gauge theory with
fermion and scalar fields in arbitrary representations.

The matching D(lz) depends on the gauge boson masses,
and is only valid in a SU(2) gauge theory with scalars in the
fundamental representation. The expression Eq. (52) has a
CpTgnp term from fermion loop corrections to the gauge
boson propagator, and a Cr term. The C term arises from
scalar loop corrections to the gauge boson propagator, as
well as graphs such as Fig. 6 which arise due to sponta-
neous symmetry breaking. The group theory invariant for
Fig. 6 depends on the pattern of symmetry breaking, and
cannot be written in terms of SU(2) X U(1) invariants.
Jantzen and Smirnov [15] have therefore explicitly used
the group theory factors for a broken SU(2) theory in
evaluating these contributions, and we follow their con-
vention here. Furthermore, Ref. [15] computed the two-
loop graphs only for My = My, and so Eq. (52) is only
valid for equal Higgs and gauge boson masses.

The three-loop cusp anomalous dimension is known in a
theory without scalar fields [34]:

PHYSICAL REVIEW D 77, 053004 (2008)
(%)

FIG. 6. A graph whose group-theoretic factor cannot be writ-
ten in terms of invariants such as Cp and Cy.

245 268 , 44 2
ré = — + 2 _ — 4\ 2
CF[( 3 P T T )CA
836 80 , 112
=+ —
( 27 2717 T3 5(3)>CATF"f

110 32
; (T - 32;(3)>cFan s+ 22T f)z} (54)

so A®) = 2I'® is known, neglecting scalar contributions.
These missing scalar contributions are expected to make
small corrections to I'®. The scalar term contributes 7% to
the two-loop cusp anomalous dimension A®.

Our one-loop computation combined with the known
two-loop cusp anomalous dimension sums the LL. and NLL
series for the Sudakov form factor. The NNLL series
requires A® which is known excluding Higgs contribu-
tions, B? which is known [Eq. (51)], D® which is known
for My = M, and C ), Dg)l) which are known (Table I). For
electroweak applications, the LL and NLL are more than
adequate for precision studies.

VL. PROOF THAT D IS LINEARIN L,

The general functional form of the n-collinear graphs is
exp F(a(u), Ly, Ly, L), where Ly, =logM?/u?, L, =
logv3/u?, and L_ =logv;/p;. Using v = v?/pf
and Q%= p{p;, this can be rewritten as
exp F(a(u), Ly, Ly, Ly — Lp), where Ly = log Q*/u?.
Similarly, the 72-collinear graphs have the functional form
exp G(a(u), Ly, Ly, Ly — Lp). The sum of all the collinear
graphs is the product exp(F + G), because the n and
ni-collinear graphs factor. These graphs give the matching
coefficient exp D, since the ultrasoft graphs vanish on
shell, so that D has the additive form

D(a(u), Ly, Lg) = Fla(u), Ly, Ly, Ly = Lp)
+ G(a(,u), LM’ Ll, L2 - LQ) (55)

The L;, L, dependence cancels, since D is independent of
2
V1,2'
Equation (55) implies that D(a(u), Ly, Lp) is linear in
Lo. The proof is as follows: Differentiating Eq. (55) with
respect to Ly and L, with respect to L, and L, and with

>There are also wave function contributions to D. These are
independent of Q.
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respect to L, and L, gives

028181F+8281G, 028162F+8282G,

(56)
0= 828|F + 62816,

where 9, , is the derivative with respect to L, ,. The second
derivative of D with respect to L, is

oD

E = 3181F+ 8282G = —8281G - 8162F

= —9,0,(F+ G) = —9,0,D =0, (57)

using Eq. (56) and the commutation of partial derivatives,
030, = 0,05. Thus D can be at most linear in L.
Equation (55) is D before the addition of renormalization
counterterms. The finite part shows that the matching
correction is linear in Ly, justifying the form Eq. (46)
used earlier. The infinite part shows that the SCET anoma-
lous dimension is linear in Ly, and so gives another proof
of this known result [26,30].

VII. CONSISTENCY CONDITIONS

There are consistency conditions on matching coeffi-
cients and anomalous dimensions which follow from the
structure of the effective theory. Consider the matching of
an operator between a high energy theory and a low energy
theory at some scale w. The operator coefficients are
cpi(w), with anomalous dimensions 7y, ;(u) in the two
theories, wdc),;/du = 7y, c;;. Assume that there is a
multiplicative matching coefficient X(u) between the
two theories, so that ¢;(u) = X(w)c,(u). The matching
scale u is arbitrary, so one gets the constraint

d d
,ud— log X + ,LLd— log ¢y, (58)

d
Ma loge; =

which gives the relation
d
YiT Y = Mg logX, (59)
7

between the matching coefficient and the anomalous di-
mensions in the two theories. In the Sudakov problem,
applying Eq. (59) to the matching between the full theory
and SCET gives
d

m—C, (60)

du
and applying it to the matching when the gauge boson is
integrated out gives

Y —YFr=

7’ a4 D, (61)
du
since the theory below M is a free theory, and so has zero
anomalous dimension.
The anomalous dimension in the full theory and SCET
have the form y(a(u)) and y = —A(a(u))Ly + Bla(w)),

0—y=
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respectively, where we have used the result that vy is linear
in L to all orders [26]. The matching coefficient C at the
high scale Q is independent of the low energy scales such
as M, and has the form C(a(u), Ly). The matching coef-
ficient D at u ~ M can depend on both Q and M, since the
SCET field labels depend on Q. As a result, D has the form
D(a(w), Ly, Lp). Any dependence on Q?/M? can be con-
verted into dependence on Ly and L, using Q*/M?* =
exp(Ly — Ly).
Equation (60) gives

aC aC

A(a(u))Lg — Bla(p)) + yrla(p)) =2 T ~ 5, Bal@).
(62)
Writing C as an expansion in L,

Cla(p), Lg) = > Cyla(w)Ly, (63)

n=0

gives the consistency conditions

aC
vr(a) — Bla) = 2Cy(a) — —Oﬁa(a),
Ala) = 4C5(a) = 21 B, (a), (64
mCya) =g @), n=3,

which determine C,,, n > 0 in terms of Cy, A, B, and yp,
and are satisfied by the one-loop values in Table 1. The
matching coefficient at u = Q is Cy(a(Q)).
Equation (61), applied to the matching at M, gives
aD aD oD
A Lo—B =— —2——2—— (65
(a()lg = Blalpe) =5 Bula) =25~ =2 (69)

Using Eq. (46), and equating powers of L, gives

~ Blalw) = 0 Bu(a) ~ 2Dy ~ 2500 w
Alalu) = %20 Bula) 257
Writing D;, i = 0, 1 as an expansion in LM,
Diatu) L) = 3 Dylatu)ly, (6
gives the consistency conditions
~="20p, —2p,, -2y,
2nD,,, = aDO’"‘l B,— 2Dy, 1, n=2
aDlO,Ba 2Dy, (©9
D, (@) = Pl g =,
’ da

which determine D, ,,, n > 0 in terms of D; o, A, and B, and
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are satisfied by the one-loop values in Table I. The match-
ing coefficient at u = M is Dgg(a(M)) + D o(a(M)) X
logQ?/M>.

VIII. MASSIVE PARTICLES

The calculations so far have been performed for external
particles with masses m;, much smaller than the gauge
boson mass. In this section, we extend the results to mas-
sive external particles. For fermions, we will assume that
the theory is vectorlike, so that the fermion mass arises
from a gauge-invariant mass term —majif. The standard
model, a chiral gauge theory, where masses arise from
Higgs couplings due to spontaneous symmetry breaking,
is discussed in Sec. X.

A.Q > my > M > m,

Consider first the case where one particle has mass m,,
with Q > m, > M, and the other particle has mass m;
much smaller than M. For definiteness, the outgoing par-
ticle is taken to be heavier than M, and the incoming one
lighter than M, but the results are symmetric under 1 < 2.
The Sudakov form factor can be computed using a se-
quence of effective field theories.

One first matches from the full theory to SCET with a
massive particle at u ~ Q and uses the same set of opera-
tors listed in Eq. (30) except &, ,, is now a n-collinear
SCET field with mass m, as in Refs. [35,36]. This match-
ing is independent of scales much smaller than Q, such as
my, my, and M, and thus remains the same as in Table I.
The second step is to run the operator in the effective
theory from Q to m,. The anomalous dimension ¥ is also
independent of low mass scales and again gives the same
result as the massless case. At the scale m,, one switches
from SCET to a new effective theory in which the massive
particle is described by a heavy quark effective theory
(HQET) field h,,, with a velocity v,, with v3 = 1 [37].
The other (massless) particle is still described by a SCET
field. The fermion vector current, for example, is now
given by ﬁvz yH W,;f & p,» instead of Eq. (30), and similarly
for the other operators. The HQET field, hvz, does not
transform under collinear gauge transformations; there-
fore, there is no factor analogous to the W,;r Wilson line
that goes along with the &; field. &, still couples to ultra-
soft gluons. One can make an additional field redefinition
which eliminates the ultrasoft gluon coupling to 4, and
introduces a Wilson line in the v, direction [38]. Both
methods give the same on-shell matrix elements.

The matching condition at m, is given by the difference
between the vertex graphs in Figs. 3 and 7, and the wave
function graphs, evaluated at & = m,, i.e. between graphs
where ¢, ,, and h,,, are used for particle 2. Note that there
are three vertex graphs in the theory above m,, and only
two graphs in the theory below m,, because there is no
collinear Wilson line associated with A,,,. The graphs in the
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theory above m, are evaluated with the gauge boson mass
set to zero (since m, > M) at the on-shell point p5 = m3.
The graphs in the effective theory are evaluated with M —
0 at the on-shell point k, - v, = 0, where &, is the residual
momentum of particle 2. Figures 3(b) and 7(a) are equal,
since the 71 collinear interactions do not depend on whether
the other field at the vertex is /,, or g?n »,- They cancel in the
matching computation. The ultrasoft graphs [Figs. 3(c) and
7(b)], the &5 ,, wave function graph, and the HQET wave
function graph all vanish on shell, so the matching com-
putation is given by Fig. 3(a) and the on-shell wave func-
tion graph for &, ,,. The vertex graph [Fig. 3(a)] does not

need an analytic regulator, and gives (for O = y* i)
2

1 1 m3 1 m
I, = aCpy*| = +—(2 —log =5 | + =~ log”> —
¢ Fy[z 6( OgM2> 28 w2
% 2
—2log 2+ 14 69
o8 3+ 15 } (69)

The wave function correction for a massive fermion is

1 2
60z =aCp|—+ —+4—3log
€uv  €R

2
e } (70)

Combining Egs. (69) and (70) gives the multiplicative
matching condition exp R, R = RWa + - - -, at u of order

my,
R= aCF[ L2, — le + 77—2 + 2} (71)
2712
where L, = log m; 2/ u?. The other cases are evaluated in a

similar manner, and the results are summarized in
Table III. The wave function correction for a massive

scalar, which is needed for the last three rows, is
o0z = an[— 2 + i} (72)

€uv  €R

The remaining steps are the evaluation of the anomalous
dimension in the region M < u < m,, and the matching
condition exp S at the scale M. These can be computed by
evaluating the graphs in Fig. 7 and the wave function
corrections, at the on-shell point k, = 0, p} = 0, and keep-
ing the gauge boson mass nonzero. The graphs need to be
regulated using an analytic regulator. The &; ,, is regulated

P2

y ®=’=(;=’:

P1 i P1 ,{ %
A Yo 60
(a) (b)

FIG. 7. SCET graphs for the matrix element of @. The dotted
lines are SCET propagators, and represent either fermions or
scalars. The double lines are HQET propagators.
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TABLE III.
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One-loop results for Q > m, > M > m,;. R is the matching coefficient at w ~ m,, y, is the anomalous dimension

between m, and M, and § is the matching coefficient at u ~ M. The results only depend on whether the light part