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The Polyakov loop extended Nambu–Jona-Lasinio (PNJL) model with imaginary chemical potential is
studied. The model possesses the extended Z3 symmetry that QCD does. Quantities invariant under the
extended Z3 symmetry, such as the partition function, the chiral condensate, and the modified Polyakov
loop, have Roberge-Weiss periodicity. The phase diagram of confinement/deconfinement transition
derived with the PNJL model is consistent with the Roberge-Weiss prediction on it and the results of
lattice QCD. The phase diagram of chiral transition is also presented by the PNJL model.
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With the aid of the progress in computer power, lattice
QCD simulations have become feasible for thermal sys-
tems at zero quark chemical potential (�) [1]. As for �>
0, however, lattice QCD has the well-known sign problem,
and then the results are still far from perfection; for ex-
ample, see Ref. [2] and references therein.

Several approaches have been proposed to solve the sign
problem. One of them is the use of imaginary chemical
potential, since the fermionic determinant that appears in
the Euclidean partition function is real in the case; for
example, see Refs. [3–5] and references therein. If the
physical quantity such as chiral condensate is known in
the imaginary � region, one can extrapolate it to the real�
region, until a discontinuity appears. Furthermore, in prin-
ciple, one can evaluate with the Fourier transformation the
canonical partition function with fixed quark number from
the grand canonical partition function with imaginary
chemical potential [6].

Roberge and Weiss (RW) [6] found that the partition
function of SU�N� gauge theory with imaginary chemical
potential � � i�=�,

 Z��� �
Z
D D � DA� exp

�
�
Z
d4x

�
� ��D�m0� 

�
1

4
F2
�� � i

�
�

� �4 
��
; (1)

is a periodic function of � with a period 2�=N, that is,
Z��� 2�k=N� � Z��� for any integer k, by showing that
Z��� 2�k=N� is reduced to Z��� with the ZN transforma-
tion,

  ! U ; A� ! UA�U
�1 � i

g�@�U�U
�1; (2)

where U�x; �� are elements of SU�N� with the boundary
condition U�x;�� � exp��2i�k=N�U�x; 0�. Here  is the
fermion field with mass m0, F�� is the strength tensor of

the gauge field A�, and � is the inverse of temperature T.
The RW periodicity means that Z��� is invariant under the
extended ZN transformation,

 �! �� 2�k
N ;  ! U ;

A� ! UA�U�1 � i
g�@�U�U

�1:
(3)

Quantities invariant under the extended ZN transformation,
such as the thermodynamic potential ���� and the chiral
condensate, keep the RW periodicity. Meanwhile, the
Polyakov loop 	 is not invariant under the transformation
(3), since it is transformed as 	! 	e�i2�k=N. In general,
noninvariant quantities such as 	 do not have the period-
icity. Roberge and Weiss also showed with perturbation
that in the high T region d����=d� and 	 are discontinu-
ous as a function of � at values of �2k� 1��=N, and also
found with the strongly coupled lattice theory that the
discontinuities disappear in the low T region. This is called
the Roberge-Weiss phase transition of first order, and is
observed in lattice simulations [3–5].

Figure 1 shows a predicted phase diagram in the �-T
plane. The solid lines represent the RW discontinuities of
the Polyakov loop, and the dot-dashed lines show the chiral
phase transition predicted by the lattice simulations,
although results of the simulations are not conclusive yet
since it is hard to take the chiral limit in the simulations.
The RW transition is the first-order one appearing in	, but
not an ordinary first-order confinement/deconfinement
transition. Although both are defined by discontinuities
of 	, the latter is a jump of j	j from almost zero to a finite
value, but the former is a discontinuity of 	 in its phase, as
shown later.

As an approach complementary to first-principle lattice
simulations, one can consider several effective models.
One of them is the Nambu–Jona-Lasinio (NJL) model
[7]. Although the NJL model is a useful method for under-
standing chiral symmetry breaking, this model does not
possess a confinement mechanism. As a reliable model that
can treat both the chiral and the deconfinement phase
transitions, we can consider the Polyakov loop extended
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NJL (PNJL) model [8–20]. In the PNJL model the decon-
finement phase transition is described by the Polyakov
loop. It is known that effects of the Polyakov loop make
the critical endpoint [21–23] move to higher T and lower�
than the NJL model predicts [16,20].

The PNJL model has the extended Z3 symmetry needed
to reproduce the RW periodicity, as shown later. In this
paper, we study the phase diagram in the �-T plane by
using the PNJL model. Both the chiral and the deconfine-
ment phase transitions are analyzed in the chiral �m0 � 0�
limit, where the lattice simulation is not available.

The model we consider is the following two-flavor PNJL
Lagrangian,

 L � �q�i��D� �m0�q�Gs�� �qq�2 � � �qi�5 ~�q�2�

�U�	�A�; 	�A��; T�; (4)

where q denotes the two-flavor quark field, m0 does the
current quark mass, and D� � @� � iA� � i
�0� for the
chemical potential � � i�=�. The field A� is defined as
A� � 
�0gA�a

�a
2 with the gauge field A�a, the Gell-Mann

matrix �a, and the gauge coupling g. In the NJL sector, ~�
stands for the isospin matrix, and Gs denotes the coupling
constant of the scalar-type four-quark interaction. The
Polyakov potential U, defined later in (11), is a function
of the Polyakov loop 	 and its complex conjugate 	�,

 	 �
1

Nc
TrL; 	� �

1

Nc
TrLy; (5)

with

 L�x� � P exp
�
i
Z �

0
d�A4�x; ��

�
; (6)

where P is the path ordering, A4 � iA0, andNc � 3. In the
chiral limit �m0 � 0�, the Lagrangian density has the exact
SU�2�L 	 SU�2�R 	U�1�v 	 SU�3�c symmetry.

The temporal component A4 is diagonal in the flavor
space, because the color and the flavor space are com-
pletely separated out in the present case. In the Polyakov

gauge, L can be written in a diagonal form in the color
space [10]:

 L � ei���3�3��8�8� � diag�ei��a; ei��b ; ei��c�; (7)

where �a � �3 ��8=
���
3
p

, �b � ��3 ��8=
���
3
p

, and
�c � ���a ��b� � �2�8=

���
3
p

. The Polyakov loop 	
is an exact order parameter of the spontaneous Z3 symme-
try breaking in the pure gauge theory. Although the Z3

symmetry is not exact in the system with dynamical
quarks, it still seems to be a good indicator of the decon-
finement phase transition. Therefore, we use 	 to define
the deconfinement phase transition.

Under the mean field approximation (MFA), the
Lagrangian density becomes

 L MFA � �q�i��D� � �m0 � s��q�U���

�U�	;	�; T�; (8)

where

 � � h �qqi; s � �2Gs�; U � Gs�
2: (9)

Using the usual techniques, one can obtain the thermody-
namic potential
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where E�p� �
�������������������
p2 �M2

p
, E
�p� � E�p� 
 i�=�, and

M � m0 � s. We use U of Ref. [13] which is fitted to
the result of lattice simulation in the pure gauge theory at
finite T [24,25]:

 

U

T4
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(11)

 b2�T� � a0 � a1

�
T0

T

�
� a2

�
T0

T

�
2
� a3

�
T0

T

�
3
; (12)

where parameters are summarized in Table I. The
Polyakov potential yields a deconfinement phase transition
at T � T0 in the pure gauge theory. Hence, T0 is taken to be
270 MeV, predicted by the pure gauge lattice QCD
calculation.

The variables of 	, 	�, and � satisfy the stationary
conditions,

 @�=@	 � 0; @�=@	� � 0; @�=@� � 0: (13)

The thermodynamic potential���� at each � is obtained by

FIG. 1. The RW prediction on the QCD phase diagram in the
�-T plane.

SAKAI, KASHIWA, KOUNO, AND YAHIRO PHYSICAL REVIEW D 77, 051901(R) (2008)

RAPID COMMUNICATIONS

051901-2



inserting the solutions, 	���, 	����, and ����, of (13) at
each � into (10).

The thermodynamic potential � is not invariant under
the Z3 transformation, 	��� ! 	���e�i2�k=3 and 	���� !
	����ei�2�k=3�, although U of (11) is invariant. Instead of
the Z3 symmetry, however, � is invariant under the ex-
tended Z3 transformation,

 e
i� ! e
i�e
i�2�k=3�; 	��� ! 	���e�i�2�k=3�;

	���� ! 	����ei�2�k=3�:
(14)

It is convenient to introduce new variables � � ei�	 and
�� � e�i�	� invariant under the transformation (14).

The extended Z3 transformation is then rewritten into

 e
i� ! e
i�e
i�2�k=3�; ���� ! ����;

����� ! �����;
(15)

and � is also rewritten into
 

� � �2NfV
Z d3p
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�
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1

�
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� 3��e�2�E�p�e��B � e�3�E�p�e��B�

�
1

�
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2
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�
�3�T�T4

6
���3e��B ��3e���B�

�
b4T4

4
�����2

�
V; (16)

where �B � 3� � i3�=� is the baryonic chemical poten-
tial and the factor e
��B is invariant under the transforma-
tion (15). Obviously, � is invariant under the
transformation (15).

Under the transformation �! �� 2�k=3, (16) keeps
the same form, if ���� and ����� are replaced by ����
2�k=3� and ���� 2�k=3��, respectively. This means that
the stationary conditions for ���� and ����� agree with
those for ���� 2�k=3� and ���� 2�k=3��, respec-
tively, and then

 �
�
�� 2�k

3

�
� ���� and �

�
�� 2�k

3

�
�
� �����:

(17)

The potential � depends on � through ����, �����,
����, and ei�. We then denote ���� by ���� �
������; �����; ei��, where ���� is suppressed since it is
irrelevant to the proofs shown below. The RW periodicity
of � is then shown as

 �
�
��

2�k
3

�
� ������; �����; ei�2�k=3��i��

� ������; �����; ei�� � ����; (18)

by using (17) in the first equality and the extended Z3

symmetry of � in the second equality.
Equation (16) keeps the same form under the transfor-

mation �! ��, if ���� and ����� are replaced by
������ and �����, respectively. This indicates that

 � ���� � ����� and ������ � ����: (19)

Furthermore, � is a real function, as shown in (16). Using
these properties, one can show that

 � ��� � ������� � �������; ����; e�i��

� �������; ������; e�i�� � �����: (20)

Thus, � is a periodic even function of � with a period
2�=3. The chiral condensate ���� is also a periodic even
function of �, ���� � ���� 2�k=3� � �����, because it
is given by ���� � d����=dm0.

The modified Polyakov loop� has a periodicity of (17).
The real (imaginary) part of � is even (odd) under the
interchange �$ ��, because of (19): Re������ �
����� �������=2 � Re������� and Im������ �
����� �������=�2i� � �Im�������. Thus, the real
(imaginary) part of � is a periodic even (odd) function
of �.

Since ����, ����, and ���� are periodic functions of �
with a period 2�=3, here we think a period 0 � � � 2�=3.
In the region, periodic even functions such as ����, ����,
and Re������ are symmetric with respect to a line � �
�=3. This indicates that such an even function has a cusp at
� � �=3, if the gradient lim�!�=3
0d�=d� is neither zero
nor infinity. Such a cusp comes out in the high T region, as
shown later with numerical calculations. This means that
the chiral phase transition at � � �=3 is the second order.

Meanwhile, Im������ is a periodic odd function, so that
Im����=3� ��� � �Im�����=3� ��� �
�Im����=3� ��� for positive infinitesimal �. This indi-
cates that Im������ is discontinuous at � � �=3, if it is not
zero there. This is the RW phase transition, which is seen in
the high T region, as shown later. The phase of �,
arctan�Im���=Re����, has the same property as the imagi-
nary part, since the phase is obviously a periodic odd
function. Thus, the RW transition at � � �=3 is the first-
order one appearing in the imaginary part of � and the
phase of �.

Since the NJL model is nonrenormalizable, one then
needs to introduce a cutoff in the momentum integration.

TABLE I. Summary of the parameter set in the Polyakov
sector used in Ref. [13]. All parameters are dimensionless.

a0 a1 a2 a3 b3 b4

6.75 �1:95 2.625 �7:44 0.75 7.5
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Here we take the three-dimensional momentum cutoff �.
Hence, the present model has three parameters, m0, �, Gs,
in the NJL sector. Following Ref. [23], we take � �
0:6315 GeV and Gs � 5:498 GeV�2, although we con-
sider the chiral limit (m0 � 0).

Figure 2 shows� as a function of � in two cases of T �
250 MeV and 300 MeV. The potential � is smooth every-
where in the low T case, but not at � � �2k� 1��=3 in the
high T case. This result is consistent with the RW predic-
tion [6] and lattice simulation [4] on the � and the T
dependence of the QCD thermodynamic potential.

Figure 3 shows the real and imaginary parts of the
modified Polyakov loop ����. In the case of T �
300 MeV, the imaginary part of ���� is discontinuous at
� � �2k� 1��=3, while the real part of���� is continuous
but not smooth there. Thus, the phase transition of first
order appears at � � �2k� 1��=3 in the high T region.
This is precisely the RW phase transition. In the case of
T � 250 MeV, meanwhile, both the real and the imagi-
nary parts are smooth everywhere. All the results on the �
and the T dependence of � are consistent with the RW
prediction on it and the results of lattice simulations [3–5].

Figure 4 shows the chiral condensate � as a function of
�. In the case of T � 300 MeV, � has a cusp at each of
� � �2k� 1��=3. Thus, the phase transition of second

order comes out at � � �2k� 1��=3. Meanwhile, in the
case of T � 250 MeV, there is no cusp at � �
�2k� 1��=3, indicating no phase transition there.

Figure 5 represents the phase diagram in the �-T plane.
The phase diagram is symmetric with respect to each of
lines � � k�=3 for any integer k. The dashed curve be-
tween D and E represents the deconfinement phase tran-
sition of crossover, and the dot-dashed curve between C
and F shows the second-order chiral phase transition. Thus,
for � � k�=3 the chiral phase transition occurs at higher T
than the deconfinement phase transition does. The solid
vertical line starting from point E represents the first-order
RW transition of �. Both the RW and the chiral phase
transitions occur on the line between E and F, although the
RW transition is first order and the chiral one is second
order there. Point F turns out to be a bifurcation of the
chiral phase transition line, and point E is an endpoint of
the RW phase transition.

Temperatures of C, D, E, F are about 261 MeV,
240 MeV, 269 MeV, 328 MeV, respectively. Thus, at � �
0 the critical temperature of the chiral phase transition is
higher by about 20 MeV than that of the deconfinement
transition, and the difference is getting larger gradually as
� increases to �=3. Meanwhile, the lattice simulation
suggests that the two critical temperatures are almost iden-
tical, not only for zero � but also for finite � [4]. The
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FIG. 2. Thermodynamic potential � as a function of �. The
solid line represents a result of the case of T � 300 MeV, and
the dashed one corresponds to that of T � 250 MeV.
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FIG. 4. Chiral condensate � as a function of �. The definitions
of the lines are the same as in Fig. 2.
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FIG. 3. The modified Polyakov loop ���� as a function of �: (a) for the real part and (b) for the imaginary part. The definitions of the
lines are the same as in Fig. 2.
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difference between the two critical temperatures, seen in
Fig. 5, is reduced by a factor 3 by adding the scalar-type
eight-quark interaction to the PNJL Lagrangian [20].

There are some ambiguities in the PNJL model, for
example, the form of the Polyakov potential U and the
value of T0. For U, the logarithmic form of [15,16] may be
more appropriate when j	j is large. For T0, it may be more

reasonable to take a lower value, say 180 MeV, deter-
mined from lattice simulations with dynamical quarks
[13,20,26], instead of the present one, 270 MeV, from the
pure gauge lattice simulation. The lower value of T0 shifts
both the chiral and deconfinement transition lines toward
lower T. Further discussions on these will be made in the
forthcoming paper.

The success of the PNJL model comes from the fact that
the PNJL model has the extended Z3 symmetry, or more
precisely, that the thermodynamic potential (16) is a func-
tion only of variables, �, ��, e
��B , and �, invariant
under the extended Z3 symmetry. A reliable effective
theory of QCD proposed in the future is expected to have
the same property in its thermodynamic potential. This
may be a good guiding principle to elaborate an effective
theory of QCD.
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FIG. 5. The phase diagram in the �-T plane.
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