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We show that Lorentz symmetry is generally absent for noncommutative (Abelian) gauge theories and
obtain a compact formula for the divergence of the Noether currents that allows a thorough study of this
instance of symmetry violation. We use that formula to explain why the results of ‘‘Noncommutative
gauge theories and Lorentz symmetry’’, Phys. Rev. D 70, 125004 (2004) by R. Banerjee, B. Chakraborty,
and K. Kumar, interpreted there as new criteria for Lorentz invariance, are in fact just a particular case of
the general expression for Lorentz violation obtained here. Finally, it is suggested that the divergence
formula should hold in a vast class of cases, such as, for instance, the standard model extension.
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We want to illustrate here why the conclusions of
Ref. [1] on the possibility to preserve full Poincaré invari-
ance for Abelian noncommutative gauge theories (NCGTs)
à la Seiberg-Witten [2], described by a Lagrangian of the
form
 

L̂ � �1
4F̂

2 � �1
4F

2 � 1
8� � FF

2 � 1
2�F�F� � F� � � �

� L̂jO��� � � � � ; (1)

are incorrect. Our notation is standard: F̂2 � F̂ � F̂ �
F̂��F̂

��, and so on, where F̂�� � @�Â� � @�Â� � i�Â� ?
Â� � Â� ? Â�� (F�� � @�A� � @�A�) is the noncommu-
tative (commutative) field strength, and ��� �
�i�x� ? x� � x� ? x�� is the x-independent antisymmetric
matrix encoding noncommutativity of coordinates.
Namely, based on the results of Ref. [3], we shall explicitly
show that what in Ref. [1] are interpreted as novel criteria
for Lorentz invariance—e.g., @�M����2���L̂=�����	
������$��
, cf. Eqs. (81) and (82) in [1]—are in fact the
opposite.

In Noether’s first theorem [4,5] the action A �R
d4xL��i; @�i� is said to be invariant under the infini-

tesimal continuous transformation �� (or, equivalently, ��
is said to be a symmetry of A)—here f�i�x�g is the set of
fields of any spin-type, i is a multi-index, and although the
theorem holds for the general case, for the case in point we
need only to consider first derivatives of the fields—when,
for all field configurations (off-shell), ��A � 0. If this
happens then there is a conservation law,

 @�J
�
� �

X
�i

���i
���i; (2)

when the field configurations respect ���i
 � 0 (on-
shell). Here J�� is the current for a rigid gauge transforma-
tion, J�� �

P
�i

��i���i, or for a spatiotemporal trans-
formation (including supersymmetry), J�� �

P
�i

��i	

���i�L��x
���V��, ��i � �L=�@��i, and ���i
 �

@���i � �L=��i are, in Noether’s terminology, the
‘‘Lagrange expressions.’’ There are further possibilities
for conservation in certain special cases, i.e., when
although for some �i ���i
 is not zero the corresponding
���is on the right side of (2) can be set to zero without this
producing a vanishing current J�� on the left side. This
happens for special choices of the parameters and only for
certain theories, like, e.g., the theory (1) in point. In what
follows we shall call these ‘‘relic symmetries.’’

In any case, invariance of a classical field theory under
the continuous transformation �� always means

 @�J
�
� � 0: (3)

Simply on the basis of this, those results of Ref. [1] that say
@�J

�
Lorentz � 0 can never be interpreted as an invariance.

Let us now consider the infinitesimal Poincaré trans-
formations as �x� � �f�, with f� � a� and f� �
!��x� for infinitesimal translations and homogeneous
Lorentz transformation, respectively. According to their
indices’ structure, the fields f�i�x�g respond to those coor-
dinates’ changes as �f�i � �i�x� ��0i�x� � Lf�i�x�
(see, e.g., [6]). Note that the changes are evaluated at the
same point x. This is not strictly necessary but simplifies
the analysis because �@�; �f
 � 0. Here the Lie derivative
along the vector f� has the usual expression

 L f��...�
�...� � f�@���...�

�...� ���...�
�...�@�f

� � � � �

���...�
�...�@�f� ���...�

�...�@�f� � � � �

���...�
�...�@�f

�: (4)

The ten currents can be written in the compact form

 J�f �
X
�i

��i�f�i �Lf�; (5)

where J�f � T��a� and J�f � M���!�� for translations
and Lorentz transformations, respectively, with T�� the
canonical energy-momentum tensor and M��� the angular*iorio@ipnp.troja.mff.cuni.cz
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momentum tensor. We can call �f�i the ‘‘algebraic’’
transformations, i.e., the transformations purely based on
the indices’ structure of the fields, as opposed to those
generated by the Noether charges �f�i � f�i; QfgPoisson,
where Qf �

R
d3xJ0

f, which we call ‘‘dynamical’’ trans-
formations. For consistency, the latter can only coincide
with the algebraic transformations or be zero [3]: �f�i �

�f�i or �f�i � 0.
Suppose now that there are only two fields, f�ig �

�	j; 
k�, and that the field	j is dynamical, i.e., the relative
��j is nonzero, while the field 
k is nondynamical, i.e.,
��k � 0 (as before, j and k are to be understood as multi-
indices). The currents do not contain the algebraic varia-
tions �f
k

 J�f � ��j�f	j �Lf�; (6)

thus they cannot depend on whether the field 
k has been
varied in the action. We want to study now the invariance
and dynamical consistency properties of theories of this
class. We shall do that by studying @�J

�
f .

In general, we cannot say what @�J
�
f looks like. This

depends on the way 
k appears in the action. For instance,
it could be fully decoupled from the dynamical field 	j, in
which case no sign of it would be found in J�f , hence in
@�J

�
f (see, e.g., [7]). Let us consider instead the

Lagrangian for two vector fields 	j � B� and 
k � P�

 L � 1
2@�B

�@�B� � V�B� � B�P�; (7)

where V�B� � aB2 � bB4 � � � � and the nondynamical
field is indeed coupled to the dynamical one to form
what would be a scalar if both fields are transformed
according to their indices’ structure (algebraically). We
have ���

B � ��� � @�B�, ���
P � 0, ��B�
 �

@���� � �V=�B� � P�, ��P�
 � B�, �fB� �
f�@�B� � B�@�f�, and �fP� � f�@�P� � P�@�f�.
The Poincaré currents are J�f � ����fB� �Lf� and
(using @�f� � 0 and @2f� � 0)
 

@�J
�
f � �@������fB� ����@��fB� � f�@�L

� �P� � �V=�B���f�@�B� � B�@�f��

������@�f��@�B� � f�@�@�B�

� �@�B��@�f�
 � f���P� � �V=�B��@�B�

����@�@�B� � B�@�P�


� B���f�@�P� � P�@�f�� (8)

 � �@�B���@�B��@�f� � �@�B���@�B��@�f�

� ��V=�B��B�@�f�: (9)

Each one of the three terms in (9) is separately zero: for
translations this is simply due to @f� � 0, while for
Lorentz transformations each term is a product of a sym-

metric expression and the antisymmetric !��. What is left
is then the expression in (8) which reads

 @�J
�
f � B���LfP

�� � ��P�
���fP
��: (10)

Let us make here several comments:
(I) In general the Poincaré symmetry is broken because

we cannot implement the constraint ��P�
 � 0 un-
less we want the theory to become trivial, B� � 0.
One may argue that it never seems meaningful to
require ��
k
 � 0, but it is not so and this is at the
heart of what in [3] is called dynamical consistency.
The (counter-)example one could consider is that of
the dummy fields in supersymmetric theories, as we
shall show in some details later. There is still room
for dynamical consistency, though, for noninvariant
theories as the theory (7). In this case the charges are
in general not conserved because ��
k
 � 0 does
not make sense, but they still generate the �s and
one has to demand that �	j � �	j while �
k � 0.

(II) The algebraic transformations of the nondynamical
field appear on the right side of (10) regardless of
whether this field has been varied or not in the action
to obtain the current. They are produced by the
combination of (��	j
 � 0� 	 �f	j (term
B�P�@�f� here) and of f�@�L (term
�B�f

�@�P
� here).

(III) It is possible in this case to have relic symmetries,
i.e., to set �f
k to zero without making J�f trivially
vanishing. Thus there is a subset of the parameters
f� for which there is invariance, namely, the solu-
tions to LfP� � 0. For translations LfP� �
a�@�P

� � 0, i.e., the directional derivative along
a� of P� must vanish. For nonconstant P� only
those translations are symmetries, hence, in general
not even T�� is always conserved. To have at least
general energy and momentum conservation one
chooses a constant P� which gives as conditions
for relic Lorentz symmetry !�

�P
� � 0. This gives

~� � ~P � 0 and ~!	 ~P � P0
~� , where !0i � �i and

!ij � �ijk!k, with ~� the rapidity vector and ~!
identifying the axis of rotation. For P0 � 0 all
boosts in the plane orthogonal to ~P and all rotations
around ~P are solutions, thus the subgroup of
SO�3; 1� they identify is SO�2; 1�.

(IV) �fP� enter the expression for the conservation of
the current with the minus sign. As it does not make
sense to set ��P�
 to zero, the flux of the current is,
in general, nonzero and proportional to the varia-
tions of the background field seen from the point of
view of the transforming field, i.e., transforming
with the opposite sign. If, for instance, the dynami-
cal field rotates of an angle # the relative angular
momentum has a net flux given by (��P�
 times) a
rotation of the background field of an angle �#.
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This mechanism gives a precise meaning to what in
literature is sometimes referred to as the ‘‘decou-
pling’’ between ‘‘particle’’ and ‘‘observer’’ trans-
formations occurring in certain (Lorentz)
noninvariant models, such as the standard model
extension (SME) [8]: From the point of view of
the Noether currents there is no ambiguity and al-
ways the invariance is broken with the exception of
the relic symmetries. Hence only one kind of trans-
formation is generated by the Noether charges (the
particle transformations) while the other transforma-
tions manifest themselves as the terms breaking the
invariance in the way described above.

Let us explain now in more details why for dummy fields
in supersymmetric theories the constraint ��
k
 � 0
makes sense. Although this is a general result, let us
consider the simple case of the massive free Wess-
Zumino theory. The Lagrangian is
 

LWZ � �@�’@�’y �DDy

�

��
�
i
2
 @ � �m’D�

m
2
 2

�
� �H:c:�

�
; (11)

and the algebraic supersymmetry transformations that
leave it invariant are

 �’ �
���
2
p
� �’y �

���
2
p

�� � (12)

 � � � i
���
2
p
�� ����@�’�

���
2
p
��D

� � _� � i
���
2
p
� ���� _�@�	

y �
���
2
p

�� _�Dy
(13)

 �D � i
���
2
p

�� �@6  �Dy � i
���
2
p
�@6 � ; (14)

where ’ is the dynamical complex scalar field,  is its
(Weyl) partner, and D is the nondynamical complex scalar
field. Here the implementation of the constraint ��D
 �
Dy �m’ � 0 (and its H.c.) gives a perfectly meaningful
theory, namely, the free, massive Wess-Zumino
Lagrangian
 

LWZ � �@�’@
�’y �m2’’y �

i
2
� @6 � � � �@6  �

�
m
2
� 2 � � 2�: (15)

Furthermore, the supercurrent, J�susy�
���
2
p
� � ��� ��@�’�

im�� � ’y�H:c:�, is conserved and the relative charge
Qsusy �

R
d3xJ0

susy generates on-shell also the transforma-
tions of D, even though there is no associate momentum
�D to D. This is easily seen by considering that ��Dy
 �
0 means D � �m’y, while �� � _�
 � 0 means i� �@6  � _� �
�m � _�, thus acting on-shell with Qsusy on D gives
�susyD� fD;Qsusyg � �m

���
2
p

�� � f’y;�’yg � �m
���
2
p

�� � ,
with �’y � @0’. Using the on-shell expression for � _�

gives �susyD � i
���
2
p

�� �@6  , which coincides with the alge-
braic transformation. This is an illuminating instance of

dynamical consistency: supposing ��	j
 � 0 is always
implemented, ��
k
 � 0 on one side gives conservation,
and on the other side gives an expression for the non-
dynamical field in terms of dynamical ones 
k�	j� that,
when acted upon with the charge, gives back precisely the
algebraic transformation, � � �.

With the help of the previous considerations, to treat the
case in point of the NCGT (1) is now fairly easy. The
current has the form J�f � ����fA� � L̂f�, and the di-
vergence can be written as follows:

 @�J
�
f � ���F��@�f� �

�
�L̂
�F��

F��

�
2@�f� (16)

 �

�
���

�L̂

����

�
2@�f� �

�L̂

����
����2@�f�� (17)

 � �����
��Lf�
��� � �����
���f�

���: (18)

Let us prove it. It was shown in [9] that, after partial
integration, no derivatives of F�� appear in the expansion

hence one can write symbolically L̂�
P
n�

nFn�2, i.e., the
Lagrangian is a homogeneous polynomial in � and F.
Furthermore, only two things can happen: either one given
� is coupled to one F (i) or to two Fs (ii). Notice now that
deriving L̂ with respect to F and then multiplying by F
produces precisely the same result as multiplying by � and
then deriving with respect to � (in reverse order) because:
in case (i) the ��� singled out from the derivation �=�F��
contracts (with the � of @�f� and) with the � of the
outcome of the derivation with �=����, i.e., F�� times
the same terms multiplying ���; in case (ii) when the free
index of � left out of the derivation is � then the contribu-
tion is zero for a mechanism of cancellation we shall soon
describe, while when the free index is� (say ���) then the
� that contracts with the F�� must be on one F, and
together with the F�� gives what would be obtained by
deriving with �=����. There is still need to address the
apparent mismatch between the number of terms produced
by deriving

P
n�

nFn�2 with respect to F and the number of
terms obtained by deriving it with respect to �. They are in
fact the same. For translations everything vanishes. For
Lorentz transformations @�f� � !�

�. Let us consider this
case. The extra two terms one obtains by deriving with
respect to F vanish because: either one gets �2��nFn�	
�F��F���!

�
� (case (i) above) or one gets����nFn�2��� �

��nFn�2��
�
!�

� (case (ii) above), i.e., always a symmetric
expression times !�

�. The latter cancellation is also re-
sponsible for the matching ��=�F�F� ��=�� in case (ii)
above. Finally, notice that for constant ���: A��Lf��� �
A���

��2@�f
� for any antisymmetric A��. Collecting all

this information gives the result (18).
The discussion on invariance and dynamical consistency

goes along the lines of the previous discussion. The theory
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is in general not invariant under Poincaré transformations
because it does not make sense to set �����
 to zero: on
the one hand this constraint would make the theory trivial
(e.g., at first order we would get F�� � 0), on the other
hand it does not allow to express ��F� in a meaningful way.
That is why the only way left for dynamical consistency is
�f��� � 0 and �fA� � �fA�, as proved already in [3].
There is room for relic symmetries found by solving
Lf��� � 0, which is satisfied for all translations. For
Lorentz transformations we have to solve ���!�

� � 0.

For � � 0 we get ~~�	 ~! � 0, while for � � j and � �
0 we get ~�	 ~� � 0, where ~! and ~� have been already

defined, ~~� � ��01; �02; �03� and ~� � ��1; �2; �3�, with
�ij � �ijk�k. Furthermore, by taking the equation for � �
j and � � k, ~�j�k � ��

j
k
~� � ~!� �k!j, and contracting it

with !k we get ~� � ~! � 0, while contracting it with �j we

get ~~� � ~� � 0. Thus, rotations around ~~� and boosts along ~�

are still symmetries, provided ~~� � ~� � 0. The group is
SO�2� 	 SO�1; 1�, modulo some discrete symmetries,
and it has been considered in great detail in [10].

Note that the expression (17) coincides, at first order in
�, with what is obtained in [1] (use L̂jO��� in (1), compute
the derivatives and rearrange the terms as discussed) and
interpreted there as ‘‘the criterion for Lorentz invariance in
the case ��� transforms like a tensor,’’ which is evidently
an incorrect interpretation (cf. Eqs. (81) and (82) and also
Eq. (87) and the following discussion).

We conclude that for (Abelian) NCGTs of the kind in (1)
only relic symmetries are present and they are translations
in any direction and the subgroup of the Lorentz group
compatible with ���, i.e., whose parameters satisfy

Lf��� � 0 (SO�2� 	 SO�1; 1� for the case ~~� � ~� � 0).
There is no choice on whether to transform or not trans-
form ���: for dynamical consistency �f��� � 0 for all
f�, while the �f��� are precisely the terms breaking the
invariance in general (as �����
 � 0 cannot be imple-
mented) and they are produced, with the minus sign, in
@�J

� regardless of whether ��� has been varied in the
action due to the particular coupling of these fields with the
dynamical field F��. This means that the system under-
going a Lorentz transformation with parameter !�

�, not

belonging to the relic symmetries, sees the ��� transform-
ing with the parameter �!�

� as the cause of nonconserva-
tion of the M���. This also solves the ambiguity of the
particle and observer transformations in this context, as the
Noether (in general not conserved) charges only can gen-
erate one kind of transformation (particle) while the other
kind (observer) are seen to appear in the way illustrated
above. Thus, there is only one criterion for Lorentz invari-
ance of NCGTs and it is the usual one, @�M��� � 0.

We hope that this Comment will ultimately clarify that
for NCGTs of the kind discussed here standard Lorentz
symmetry is not present and that statements like ‘‘NGCT
has Lorentz invariance only when ��� transforms like a
tensor’’ are simply wrong. We did not consider here non-
commutative modifications of the Lorentz algebra—as,
e.g., that proposed in [11] (the twisted coproduct approach)
or in [12] (the �-deformed transformations approach)—
where the transformations themselves are modified hence a
different meaning must be ascribed to Lorentz invariance.
In [1] and in [3] the same approach is used of standard
Lorentz transformations hence there is no room for oppo-
site conclusions on Lorentz invariance.

One further development of this analysis is to prove
under which conditions the following conjecture is true:
When in the action the nondynamical 
1

k1
; . . . ; 
nkn are

coupled to the dynamical 	1
j1
; . . . ; 	m

jm
(and/or their deriva-

tives) to obtain what would be a scalar if both sets of fields
are transformed algebraically then the result

 @�J
�
f �

Xn
i�1

��
iki
���f

i
ki
�; (19)

holds. Here
Pm
i�1 ��	i

ji

 � 0 has been used, and let us

stress again that the expression of the current on the left
side is independent of whether the nondynamical fields in
the action have been varied or not. We expect that this is the
case of the SME [8]. Finally, it would be interesting to
study within this approach the supercurrents of the
Lorentz-violating Wess-Zumino model proposed in the
SME context in Ref. [13].

We thank Zuzana Vydorova for valuable help with some
computations.
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