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We present explicit solutions of the signum-Gordon scalar field equation which have finite energy and
are periodic in time. Such oscillons have strictly finite size. They do not emit radiation.
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I. INTRODUCTION

Dynamics of self-interacting scalar fields is still a sub-
ject of very interesting and important research. Because
such fields are ubiquitous in physics, from condensed
matter to cosmology, the results can have a wide impact
on our understanding of the material world. Nonlinearity of
pertinent field equations is the reason for the existence of
very nontrivial and often unexpected phenomena. In par-
ticular, much attention has been paid to so-called oscillons,
extremely long-lived scalar field configurations which in
many respects behave like solitons, but which finally decay
into radiation, see e.g. recent papers [1]. The nonlinearity
can have various forms. In the current literature dominate
models with polynomial Lagrangians which are smooth in
a vicinity of the pertinent ground state field. However, in a
recent paper [2] we have pointed out a rather interesting
class of scalar field models with non polynomial field
potentials (i.e., interaction terms) which are V-shaped at
their minima and which have another kind of nonlinearity.
The simplest example of such a model is the signum-
Gordon model.

The signum-Gordon model (s-G) has the following
Lagrangian [3]

 L �
1

2

@’
@x�

@’
@x�
� gj’j; (1)

where ’ is a real (1� 1)-dimensional scalar field, � � 0,
1 and x0, x1 are dimensionless variables obtained by the
appropriate choice of units for the physical time and posi-
tion coordinates. g > 0 is a dimensionless coupling con-
stant. The pertinent field potential has the form
U�’� � gj’j. Its left and right derivatives at ’ � 0, where
it has the absolute minimum, do not vanish—they are
equal to �g. Hence, in the case of the s-G model the
second derivative U00�0� is (in a sense) infinite. In the
majority of field theoretic models, the field potential
U�’� is smooth at its absolute minimum at ’ � ’0, and
�0 � �U

00�’0��
�1=2 is recognized as the fundamental

length scale in the model. In the case of massless models
�0 is infinite, while finite �0 > 0 characterizes massive
models with the finite mass parameter m2

0 � 1=�2
0. In this

classification, the s-G model corresponds to �0 � 0 and
infinitem2

0 —for this reason it can be called a supermassive
model.

Several rather interesting features of the models with V-
shaped field potentials have been pointed out in our pre-
vious papers: the existence of static, compact solitons
(topological compactons) [4], the presence of a scaling
symmetry [2], and the variety of exact self-similar solu-
tions [3,5]. In these papers we have also presented a sound
physical motivation for considering such models. It in-
cludes the description of an infinite chain of harmonically
coupled classical pendulums, and the dynamics of an
elastic string (a vortex) pinned with a constant force to a
line. Because of such a down-to-earth physics behind the s-
G model, it is not surprising that the model is perfectly well
behaved from the physical viewpoint. In particular, the
conserved energy is bounded from below, and the field
equation is of the standard hyperbolic type with the usual
causality features. In the papers [3,4] examples of sponta-
neous symmetry breaking with the corresponding topologi-
cal defects have been discussed. V-shaped field potentials
should be considered as a viable alternative to smooth
potentials in Ginzburg-Landau type models. On the other
hand, the dynamics of the scalar field in this model is of
course influenced by the fact that the field potential is not
smooth at the minimum. Moreover, the model cannot be
linearized even if the amplitude of the scalar field is
arbitrarily small, contrary to the models with smooth field
potentials. Perhaps such a mathematical obstacle is one of
the of the reasons for which the models with V-shaped field
potentials were not discussed in the literature1

In the present paper we show that the s-G model pos-
sesses solutions with finite energy which are periodic in
time—the oscillons. These oscillons are interesting for the
following reasons. First, they are given explicitly as exact
solutions of the s-G field equation. Moreover, they do not
lose their energy because they do not emit any radiation—
the field oscillations are strictly periodic in time. They have
a compact support in the space, i.e., a strictly finite size. In
these respects they differ from the oscillons of the ’4

model which are known only as approximate numerical
solutions and seem to contain a radiative component.

1Let us stress that it is not a fundamental difficulty. It should
rather be regarded only as a certain inconvenience—the signum-
Gordon model is perfectly sound from both physical and mathe-
matical viewpoints. Nevertheless, it has the implication that one
cannot base a perturbative expansion on the free field.
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II. THE SIGNUM-GORDON EQUATION

The signum-Gordon equation is the Euler-Lagrange
equation corresponding to Lagrangian (1). It can be written
in the following form

 @2
t ’�x; t� � @2

x’�x; t� � sign�’�x; t��; (2)

where t �
���
g
p
x0, x �

���
g
p
x1. The sign function has the

values �1 when ’ � 0 and 0 for ’ � 0. Because of the
�sign�’� term Eq. (1) is nonlinear in a rather special way.
Mathematical aspects of this equation are discussed in [3].
Generally speaking, physically relevant are solutions
which are continuous functions of x and t, but only piece-
wise smooth. They belong to the class of so-called weak
solutions of partial differential equations. The reader not
familiar with the mathematics of such solutions should
consult the literature, e.g., [6,7].

The novel feature of Eq. (2) is that the nonlinear term
�sign�’� remains finite for arbitrarily small j’j provided
that ’ � 0. This fact has profound influence on the dy-
namics of weak fields. In other models nonlinear terms
vanish when fields become arbitrarily small, cf. the �’3

nonlinear term in the case of the nonlinear Klein-Gordon
equation. Consider, for example, the Gaussian wave packet
’�x; t � 0� � exp��x2� at the initial time t � 0. Let us
assume for simplicity that @t’�x; t � 0� � 0. The field
acceleration @2

t ’�x; t � 0� is obtained from the field equa-
tions. In the case of the�’3 nonlinearity the dominating at
large jxj contribution to the acceleration comes from the
@2
x’�x; t � 0� term and it is positive, hence the Gaussian

wave packet will spread out. In the case of the s-G equation
the�sign�’� term dominates at large jxj and it is negative,
hence the wave packet will shrink for certain time.
Heuristically, both ‘‘forces‘‘ �’3 and �sign�’� push the
field toward the equilibrium value ’ � 0, but the�sign�’�
force is much more effective in this respect.

The signum term in Eq. (2) remains constant until ’
becomes equal to zero. Therefore, on each interval on the x
axis such that ’ has a constant sign on it, one can use the
well-known formula for the general solution of the one-
dimensional wave equation, suitably modified to incorpo-
rate the constant �1 or �1 term in the equation:

 ’�x; t� � h�x� t� � g�x� t� � c1t
2; (3)

where 2c1 � �1�� �sign�’��. The functions h, g and the
constant c1 are determined from the initial and boundary
conditions.

III. THE OSCILLON

Motivated by the heuristic considerations about the
wave packets we shall try to construct a solution of the s-
G equation (2) which does not spread out at least during a
certain time interval. We start by specifying simple initial
data at t � 0:

 ’�x; 0� � 0;

@t’�x; 0� �
�

0 if x � 0 or x 	 1;
v�x� if 0< x< 1;

(4)

where the initial field velocity v�x� is assumed to be
negative. Its exact form will be determined later.
Moreover, we impose the following boundary conditions

 ’�x � 0; t� � 0; ’�x � 1; t� � 0: (5)

The hope is that the field will remain localized in the
interval 0 � x � 1 for arbitrary times t > 0.

Because v�x� is negative, for small enough t > 0 the
field ’ will be negative or equal to zero. Therefore, in the
region 0< x< 1 we use formula (3) in which c1 � 1=2.
The functions h and g are determined from conditions (4)
and (5). For a certain reason which will become clear later
we denote the solution given below by ’�. Simple calcu-
lations give the following results

 ’��x; t� �

8<
:
’1�x; t� if 0 � x � t;
’2�x; t� if t � x � 1� t;
’3�x; t� if 1� t � x � 1;

(6)

where

 ’1�x; t� � �
x2

2
� tx�

1

2

Z t�x

t�x
dsv�s�; (7)

 ’2�x; t� �
t2

2
�

1

2

Z t�x

x�t
dsv�s�; (8)

 ’3�x; t� � �
x2

2
�

1

2
� xt� x� t�

1

2

Z 2�t�x

x�t
dsv�s�: (9)

The reason for splitting the unit interval 0 � x � 1 into
the three parts is that the boundary conditions (5) modify
the field at the points which are causally connected with the
points x � 0 and x � 1: such points form the two sub-
intervals 0 � x � t, 1� t � x � 1. These subintervals
meet at the time t � 1=2. Hence, the solution given above
is valid for t in the interval 
0; 1=2�, and for x in the interval
[0,1].

Note that at the initial time t � 0 only ’2 is present
because the spatial supports of ’1, ’3 are shrunk to the
points x � 0, x � 1, respectively. The functions ’1, ’2

match each other at the point x � t, similarly as ’2, ’3 at
x � 1� t, so that ’� as well as @t’�, @x’� are continu-
ous functions of x, t.

In the next step we extend the solution’� to the whole x
axis. Of course we just would like to put ’�x; t� � 0 for
x < 0 and for x > 1. This is possible provided that

 @x’1�x � 0; t� � 0; @x’3�x � 1; t� � 0; (10)

because otherwise @x’ would have discontinuities at the
points x � 0, x � 1 Such discontinuities, if present, would
have to move with ‘‘the velocity of light‘‘ �1 because the
s-G equation belongs to the class of hyperbolic partial
differential equations. Conditions (10) give the following
equations
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 v�t� � �t; v�1� t� � �t;

where 0 � t � 1=2. It follows that the initial field velocity
v�x� has the following simple form

 v�x� �
�
�x if 0 � x � 1

2;
x� 1 if 1

2 � x � 1:
(11)

Now we can compute the integrals present in formulas
(7)–(9). It is convenient to split the time interval 
0; 1=2�
into two parts. It turns out that when t has values from the
interval 
0; 1=4� then

 ’1�x; t� � �
x2

2
; (12)

 ’2�x; t� �

8>><
>>:
t2
2 � xt if t � x � 1

2� t;
x2

2 � t
2 � x

2�
t
2�

1
8 if 1

2� t � x � 1
2� t;

t2
2 � t�x� 1� if 1

2� t � x � 1� t;

(13)

 ’3�x; t� � �
�1� x�2

2
; (14)

and for t from the interval 
1=4; 1=2�

 ’1�x; t� �
�
� x2

2 if 0 � x � 1
2� t;

t2
2 � tx�

x
2�

t
2�

1
8 if 1

2� t � x � t;
(15)

 ’2�x; t� � t2 �
x2

2
�
x
2
�
t
2
�

1

8
; (16)

 ’3�x; t� �
� t2

2 � tx�
x
2�

t
2�

3
8 if 1� t � x � 1

2� t;

� �1�x�
2

2 if 1
2� t � x � 1:

(17)

Note that @t’�x; t� � 0 at the time t � 1=4.
To summarize, we have found a solution of the s-G

equation such that ’ � 0 outside the interval [0,1] on the
x-axis, and inside this interval it has the form given by
formulas (6) and (12)–(17), provided that 0 � t � 1=2.
Snapshots of the field configurations at the times t � 1=8
and t � 1=4 are presented in Figs. 1 and 2. For times t from
the interval �1=4; 1=2� the solution has the same shape as
presented in Fig. 1, but now the two rectilinear segments
expand and move until they cover the intervals 
0; 1=2�,

1=2; 1� on the x-axis.

In order to find ’ for times larger than 1=2 we compute
’� and @t’� at t � 1=2 and we take these functions of x
as the new initial data for the s-G equation. The calculation
is trivial, but one should remember about watching the
domains of the involved functions because they are given
by inequalities which also depend on time. The result is
quite surprising and crucial for further progress:

 ’��x; t� 1=2� � 0; @t’
��x; t� 1=2� � �v�x�; (18)

where v�x� is given by formula (11). These formulas imply
that ’�x; t� for t > 1=2 can be obtained with the help of
symmetries of the s-G equation: the time translation t!
t� 1=2 and the change of sign of the field ’! �’. The
solution obtained in this way is denoted by ’�. Thus,

 ’��x; t� � �’��x; t� 1
2�: (19)

The solution ’��x; t� holds for t in the interval 
1=2; 1�. At
the time t � 1 the field ’ and its time derivative @t’ return
to their initial values (4). Thus, the period of the oscillon is
equal to its spatial size, i.e., to 1.

Note that the oscillon is spatially symmetric: the solu-
tion is invariant under the spatial reflection at the point x �
1=2, that is with respect to the substitution x! 1� x. The
point x � 1=2 is the center of the oscillon.

The s-G equation is dilation invariant [3]: if ’�x; t� is a

solution of it, then so is also ’l�x; t� � l2’
�
x
l ;
t
l

�
, where l is

an arbitrary real, positive constant. Applying this symme-
try to the oscillon solution presented above we generate a
one-parameter family of oscillons of the length l=

���
g
p

with
the period equal to the length (let us recall that we use the
dimensionless variables x�). The amplitude of the oscil-
lations of the scalar field is equal to l2=16. The total energy
of the oscillons is given by the formula obtained from
Lagrangian (1)

 E �
1

2

���
g
p Z 1

�1
dx
�@t’�2 � �@x’�2� �

���
g
p Z 1

�1
dxj’j

�

���
g
p

24
l3:

0 1 x3/8 7/8

(x,t=1/8)ϕ
1/8 5/8

−0.03

−0.05

−0.01

FIG. 1. Picture of the oscillon solution at the time t � 1=8. For
x from the intervals 
1=8; 3=8� and 
5=8; 7=8� the function
’�x; 1=8� is represented by rectilinear segments which at the
time t � 1=4 shrink to the points 1=4 and 3=4, respectively, see
the first and third lines of formula (13).

(x,t=1/4)

1/2 1 x1/4 3/4

−0.02

−0.04

−0.06

0

ϕ

FIG. 2. Picture of the oscillon solution at the time t � 1=4.
This configuration is ‘‘the turning point’’ because precisely at
this time @t’ changes its sign from negative to positive.
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The frequency of the oscillations of the field is�l�1, hence
the energy E vanishes in the limit of high frequencies.

The s-G equation is also invariant with respect to
Poincaré transformations. In particular, boosts provide os-
cillons moving with an arbitrary constant velocity v such
that jvj< 1.

IV. REMARKS

(1) Note that the s-G oscillons have a strictly finite size,
and that the field approaches its vacuum value ’ �
0 in the parabolic manner. They share these features
with static topological compactons discussed in [4].
The compactness and the parabolic approach to the
vacuum field seem to be generic features of the
models with V-shaped field potentials.

(2) We have attempted to investigate the stability of the
s-G oscillon under small perturbations. Our numeri-
cal simulations did not show any instability. On the
analytic side, the problem turns out to be quite
difficult. The main reason is that there is no linear
approximation to the function sign�’� around ’ �
0. This fact seems to render the standard linear
stability theory useless. Note however that sign�’�
"� � sign�’� for ’ � 0 and a small enough pertur-
bation ". Therefore, in such cases the s-G equation
implies the simple massless wave equation for the
perturbation @�@�" � 0. It follows that the pertur-
bation does not grow: it splits into left- and right-
movers which just travel with the velocities�1 until
they reach a point at which the function sign�’� "�
changes its sign. It remains to be investigated what
happens at such points. Generally, one could expect
complicated dynamical processes including an
emission of radiation or of small oscillons.

(3) The s-G equation admits explicit solutions which
describe arbitrary chains of static, nonoverlapping
oscillons of arbitrary sizes. The multioscillon solu-
tions are obtained trivially by adding appropriately

translated in space single oscillon solutions. Such
oscillons do not interact with each other because
they have strictly finite sizes.
We expect that the s-G oscillons will likely have to
be taken into account when considering various
dynamical processes with the s-G field. The oscil-
lons with arbitrarily small energies can probably be
emitted in such processes, thus forming a kind of
‘‘infrared’’ cloud consisting of a number of small,
compact oscillons.

(4) There is a remote analogy between our oscillons and
the breather known from the sine-Gordon model.
The breather is a soliton-antisoliton bound state,
where the soliton as well as the antisoliton alone
are represented by static, finite energy solutions of
the sine-Gordon field equation. In the case of the
signum-Gordon model we do not expect any static,
finite energy solutions. However, there exist static,
infinite energy solutions of the form ��x� x0�

2=2,
where x0 is a free parameter present because of
translational invariance of the model. The left- and
right-hand ends of the oscillon are given by pieces of
these static solutions, see, e.g., formulas (12) and
(14). Therefore, one may regard the oscillon as a
finite energy bound state of the two infinite energy
configurations represented by the static solutions.

(5) The present work can be continued in several direc-
tions. For example, it is not clear at all what would
happen if our oscillons collide with each other.
Another interesting question is about existence of
oscillons in the signum-Gordon model in two and
three spatial directions—work in this direction is in
progress.
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[3] H. Arodź, P. Klimas, and T. Tyranowski, Acta Phys. Pol. B
38, 2537 (2007); 38, 3099 (2007).
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