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Horizons of radiating black holes in Einstein-Gauss-Bonnet gravity
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A Vaidya-based model of a radiating black hole is studied in a 5-dimensional Einstein gravity with
Gauss-Bonnet contribution of quadratic curvature terms. The structure and locations of the apparent and
event horizons of the radiating black hole are determined.
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I. INTRODUCTION
The Vaidya metric [1], which has the form

2
ds? = —[1 - M}M + 2edvdr
r

+ 2(d#? + sin%0d p?), e*r1 (1)
is a solution of Einstein’s equations with spherical sym-
metry for a null fluid (radiation) source described by
energy-momentum tensor 7,, = ul,l;,, [, being a null
vector field. For the case of an ingoing radial flow, € = 1
and m(v) is a monotone increasing mass function in the
advanced time v, while € = —1 corresponds to an out-
going radial flow, with m(v) being in this case a monotone
decreasing mass function in the retarded time v. Also,
several solutions in which the source is a mixture of a
perfect fluid and null radiation have been obtained in later
years [2—8]. The Vaidya-based metric is today commonly
used for the study of Hawking radiation, the process of
black hole evaporation [9], and study of the dynamical
evolution of the horizon associated with radiating black
holes [10-14].

In recent years, motivated by development in the string
theory, there has been renewed interest in the theories of
gravity in higher dimensions. As a possibility, the Einstein-
Gauss-Bonnet gravity, as low energy limit of the string
theory, is of particular interest because of its special fea-
tures. In this paper, we consider the 5D action with the
Gauss-Bonnet terms for gravity and give a model of the
gravitational collapse of a null fluid including the pertur-
bative effects of quantum gravity. The Gauss-Bonnet terms
are the higher curvature corrections to general relativity
and naturally arise as the next leading order of the
a-expansion of heterotic superstring theory, where « is
the inverse string tension [15].

The aim of this brief report is to study how the location,
character, and evolution of event horizon (EH) and appar-
ent horizon (AH) get modified in the presence of the
Gauss-Bonnet term. The calculations are based on the
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recently introduced exact solution for a radiating Vaidya
solution in the Einstein-Gauss-Bonnet gravity [16,17].

I1. VAIDYA SOLUTION IN EINSTEIN
GAUSS-BONNET GRAVITY

We begin with a review of Einstein Gauss-Bonnet grav-
ity and Vaidya radiating black hole solution in it. The
gravitational part of the 5-dimensional (5D) action that
we consider is

1
S = fdsx\/_g[ﬁ (R —2A + aLGB):| + Smatterv (2)
K3

where R and A are the 5D Ricci scalar and the cosmologi-
cal constant, respectively. k5 = /87wGs, where Gs is the
5D gravitational constant. The Gauss-Bonnet Lagrangian
is the combination of the Ricci scalar, Ricci tensor R, and

1 a
Riemann tensor R} por S

Lgp = R* — 4R ,R" + R, ROPPC. (3)

In the 4-dimensional space-time, the Gauss-Bonnet terms
do not contribute to the field equations. « is the coupling
constant of the Gauss-Bonnet terms. This type of action is
derived in the low-energy limit of heterotic superstring
theory [15]. In that case, « is regarded as the inverse string
tension and positive definite and we consider only the case
with @ = 0 in this paper. We consider a null fluid as a
matter field, whose action is represented by S, . I
Eq. (2).

From the action (2) we derive the following field equa-
tions:

Gab - aHab = TabJ (4)
where

Gab = Rah - %guhR) (5)

Ha, = 2[RR,, — 2R4oRE — 2RYPR 15 + RSP Ry ]
—18uwLcs- (6)

The energy-momentum tensor of a null fluid is
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Tab = Mlalb’ (7)

where w is the nonzero energy density and [, is a null
vector such that

l,=8%  1,1“=0. (8)

Expressed in terms of Eddington advanced time coordinate
(ingoing coordinate) v, the metric of general spherically
symmetric space-time

ds> = —A(v, r)* f(v, r)dv? + 2A(v, r)dvdr + r*dQ3,
©))
dQ3 = do* + sin*0d$* + sin’Osin® p2dy®. Here A is an
arbitrary function. We wish to find the general solution of
the Einstein equation for the matter field given by Eq. (7)
for the metric (9), which contains two arbitrary functions.
It is the field equation G = 0 that leads to A(v, r) = g(v).

This could be absorbed by writing d = g(v)dv. Hence,
without loss of generality, the metric (9) takes the form

ds* = —f(v, r)dv* + 2dvdr + r*dQ3, (10)

The Einstein field equations take the form

p-2a-peta-pr=o an

4 2 4
FEf S )L )+ =0
(12)

_3/f, ta

p=5o =1, (13)

Then, f is obtained by solving only the (11), This equation
is integrated to give the general solution as

2
f=l+—[1i 1+
4o

3 (14)

8am(v):|
where m(v) is an arbitrary function of v. The special case
in which m is a nonzero constant we call the GB-
Schwarzschild solution, of which the global structure is
presented in [18].

There are two families of solutions which correspond to
the sign in front of the square root in Eq. (14). We call the
family which has the minus (plus) sign the minus— (plus +
) branch solution. From the (r, v) component of (4), we
obtain the energy density of the null fluid as

3

for both branches, where the dot denotes the derivative
with respect to v. In order for the energy density to be non-
negative, riz = 0 must be satisfied. In the general relativis-
tic limit & — 0, the minus-branch solution reduces to
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f=1- sz) (16)
r
which is the 5D Vaidya solution in Einstein gravity [19]. It
may noted that, in 5D Einstein gravity, the density is still
given by Eq. (15). There is no such limit for the plus-
branch solution. In the static case riz = 0, this solution
reduces to the solution which was independently discov-
ered by Boulware and Deser [20] and Wheeler [21].

The Kretschmann scalar (KS = R,,.,R*“?, R .4 is the
5D Riemann tensor) and Ricci scalar (R = R,,R%, R, is

the 5D Ricci tensor) for the metric (10) reduces to

KS = f2+ 0/ +20-/2 a7
and
R=f"+7 =507 (18)
r r

which diverges at »r = 0 and hence the singularity is a
scalar polynomial [22]. Radial (# and ¢ = const.) null
geodesics of the metric (10) must satisfy the null condition

d 2
p sl (R (R
dv da

8an?1 (v) :| (19)
r

The nature (a naked singularity or a black hole) of the
collapsing solutions can be characterized by the existence
of radial null geodesics coming out from the singularity. It
has been shown that a timelike naked singularity is formed,
which does not appear in the general relativistic case [17].

ITI. RADIATING BLACK HOLE HORIZONS

In this section, we study the structure and location of the
EH’s and AH's in the presence in Einstein-Gauss-Bonnet
gravity and compare it with that in the general relativity
case by use of the solution obtained in the previous section.
We consider the minus-branch solution in order to compare
with the general relativistic case. The line element of the
radiating black hole in Einstein-Gauss-Bonnet gravity has
the form (10) with f given by Eq. (14) and the energy-
momentum tensor (7). The luminosity due to loss of mass
is given by Ly = —dM/dv, Ly <1 measured in the
region where d/dv is timelike. In order to further discuss
the physical nature of our solutions, we introduce their
kinematical parameters. Following York [10] a null-vector
decomposition of the metric (10) is made of the form

8ab = _IBalh - laBb + Yab (20)
where
Ba = _BZ’ la = _%f(v’ V)BZ + 6{1’ (21)

Yap = 1?8969 + r’sin®(0)85 67 + r2sin?(0)sin?() 8% 87,
(22)
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= B.,B* =0,
la’)/ah = Or

LB = —1,
YaBY =0, (23)

with f(v, r) given by Eq. (14). The optical behavior of null
geodesics congruences is governed by the Raychaudhuri
equation

1
% = K@ - Rablalb - §®2 - Uaba'“b + a)abw“b,

(24)

with expansion O, twist w, shear o, and surface gravity K.
The expansion of the null rays parametrized by v is given
by

®=V,—K, (25)

where the V is the covariant derivative and the surface
gravity is

K= —pB"V,1, (26)

The AH is the outermost marginally trapped surface for the
outgoing photons. The AH can be either null or spacelike,
that is, it can ‘“move” causally or acausally. The apparent
horizons are defined as surface such that ® =0 which
implies that f = 0. Using Egs. (14), (21), and (26)

r m(v) 2m(v)
=4—[1— 1 + 8a 4}+ - Q)
@ r 1+ Samr(—f)

Then Egs. (14), (21), (25), and (27) yield the expansion
parameter

0= %[1 +£[1 — i+ 8a<mr(f)>ﬂ (28)

From the Eq. (28) it is clear that AH is the solution of

[1 + %[1 ~ i+ 8a<mr(f))ﬂ 0. (9

i.e.,

rag = Vm(v) — 2a. (30)

In the relativistic limit & — 0 then r,y — +/m(v). Hence
our solution reduces to the solution [14,19] in 5D space-

time. One sees that g, (rag = /m(v) — 2a) = 0 implies
that r = \/m(v) — 2a is timelike surface. For an outgoing
null geodesic r = \/m(v) — 2a, 7 is given by Eq. (19). It is
clear that the presence of the coupling constant of the
Gauss-Bonnet terms « produces a change in the location
of the AH. Such a change could have a significant effect in
the dynamical evolution of the black hole horizon.
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. L 4m(v)i
i = i(1 — 1+ 8a m@) + 227 31)
da r

1+8a¢f)
p

At the timelike surface r = ym(v) — 2, ¥ = 0 and ¥ > 0

for L > 0. Hence the photon will escape from the r =
Jm(v) — 2« and reach an arbitrary large distance.

On the other hand, the EH is a null three-surface which is
the locus of outgoing future-directed null geodesic rays
that never manage to reach arbitrarily large distances from
the black hole and are determined via Raychaudhuri equa-
tion. It can be seen to be equivalent to the requirement that

[‘{Zr} ~ 0. (32)
EH

dv?

An outgoing radial null geodesic satisfies

dr 1 r? m(v)

— =—|1+—|1—,/1+8 . 33

72 Tial ()]} e
Then Egs. (27) and (28) can be used to put Eq. (32) in the
form

3ﬂ} 3 Ly
EH

K®EH = |:— 3 ’
2r dv 2rgn /1 4 Sa(w)
where the expansion is
3 2
~ L+ g™ as)
2reH 4o TEH

For the null vectors /, in Eq. (21) and the component of the
energy-momentum tensor yields

3 3/

(34)

R, I910 = — L. 36
ab 2r dv (36)
The Raychaudhuri equation, with ¢ = w = 0 [10]:
doe 1
27 = KO — R, I*I" — - O 37
T b > (37)
Thus neglecting ©2, Egs. (34), (36), and (37), imply that
do®
[—} =~ (. (38)
dv |gn

The event horizon in our case are therefore placed by
Eq. (38). Following [11,14], the solution can be immedi-
ately written

rgn = A/m*(v) — 2a, (39)

where
m*(v) = m(v) — % (40)

Thus the expression of the apparent horizon is exactly
same as its counterpart Eq. (30) with the mass replaced
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by the effective mass m*. The region between the AH and
the EH is defined as a quantum ergosphere [10]. All these
results are consistent with known results in 5D space-time
for the & — 0 case.

IV. CONCLUSION

We have examined Vaidya radiating black holes in
Einstein-Gauss-Bonnet gravity. The structure and location
of the AH and EH are determined. We have pointed out
exact location of these horizons. It is clear that presence of
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the coupling constant of the Gauss-Bonnet terms « pro-
duces a change in the location of these horizons. Such a
change could have a significant effect in the dynamical
evolution of the black hole horizon. In particular, our
results in the limit @ — O reduced exactly to vis-a-vis
5D relativistic case.
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