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We parametrize all classical probe brane configurations that preserve four supersymmetries in (a) the
extremal D1-D5 geometry, (b) the extremal D1-D5-P geometry, (c) the smooth D1-D5 solutions proposed
by Lunin and Mathur, and (d) global AdS3 � S3 � T

4=K3. These configurations consist of D1 branes, D5
branes, and bound states of D5 and D1 branes with the property that a particular Killing vector is tangent
to the brane world volume at each point. We show that the supersymmetric sector of the D5-brane world
volume theory may be analyzed in an effective 1� 1 dimensional framework that places it on the same
footing as D1 branes. In global AdS and the corresponding Lunin-Mathur solution, the solutions we
describe are ‘‘bound’’ to the center of AdS for generic parameters and cannot escape to infinity. We show
that these probes only exist on the submanifold of moduli space where the background BNS field and theta
angle vanish. We quantize these probes in the near-horizon region of the extremal D1-D5 geometry and
obtain the theory of long strings discussed by Seiberg and Witten.
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I. INTRODUCTION

Despite many advances, quantizing string theory in non-
trivial spacetime backgrounds remains a difficult task. In
the past few years, some progress has been made by
approaching this problem using canonical methods [1–8].
The principle behind these studies is that if one can under-
stand a subsector of the classical theory well enough it may
be possible to quantize it autonomously and obtain a sector
of the Hilbert space of the full quantum theory. This
procedure can only work if the canonical structure of the
classical phase space ‘‘decouples’’ this sector from the rest
of the theory. The studies above suggest that supersym-
metric sectors, such as the one we will study here, often
satisfy this criterion.

Since the space of all classical solutions of a theory is
isomorphic to its classical phase space, it is of interest if
one can obtain a complete parametrization of even a spe-
cial subsector of classical solutions. This subsector can
then be quantized using the methods of [9] (see [10] for
a review). In this paper, we pursue this programme by
parametrizing all classical supersymmetric brane probes
moving in (a) the extremal D1-D5 background, (b) the
extremal D1-D5-P background, (c) the smooth geometries
proposed in [11–13] with the same charges as the D1-D5
system, and (d) global AdS3 � S3 � T4=K3.

The physical significance of these backgrounds is as
follows. The AdS/CFT conjecture [14,15] relates
type IIB string theory on global AdS3 to the Neveu-
Schwarz (NS) sector of a 1� 1 dimensional CFT on its
boundary. The solutions in global AdS we find below
correspond to the 1=4 Bogomol’nyi-Prasad-Sommerfield
(BPS) sector of the CFT of the Higgs branch. On the
boundary, the NS and R sectors are related by an operation
called ‘‘spectral flow.’’ Performing this operation on the
supergravity solution for global AdS yields the near-

horizon region of one of the solutions of Lunin and
Mathur [12]. This corresponds to the specific Ramond
ground state obtained by spectrally flowing the NS vac-
uum. Other Ramond vacua are described by other solutions
in [12]. The zero mass Banados-Teitelboim-Zanelli (BTZ)
black hole which is the near horizon of the extremal D1-D5
geometry, on the other hand, has been argued to be an
‘‘average’’ over all Ramond ground states.

The giant graviton brane probes we find comprise D1
branes, D5 branes, and bound states of D1 and D5 branes.
As we make more precise in Sec. II B, we find that these
supersymmetric probes have the property that a certain
Killing vector is tangent to the brane world volume at
each point. Hence, given the shape of the brane at any
one point of time, one can translate it in time along the
integral curves of this Killing vector to obtain the entire
brane world volume. The set of all solutions is parame-
trized by the set of all initial shapes. This simple prescrip-
tion is sufficient to describe supersymmetric probes in all
the backgrounds we mentioned above.

Surprisingly, we find that the symplectic structure on
these classical solutions is such that we can describe all the
solutions above, including supersymmetric solutions to the
Dirac-Born-Infeld (DBI) action on the 6 dimensional D5-
brane world volume, in a unified 1� 1 dimensional frame-
work. It is well known that the infrared limit of the world-
volume theory of a bound state of D1 branes and D5
branes, in flat space, is given by a 1� 1 dimensional sigma
model. However, our result which we emphasize is classi-
cal, is valid in curved backgrounds, and does not rely on
taking the infrared limit.

Our probes exist on the submanifold of moduli space
where the background NS-NS fluxes and theta angle are set
to zero. On this submanifold, the boundary theory is known
to be singular because the stack of D1 and D5 branes that
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make up the background can separate at no cost in energy
[16]. One may wonder then whether the probes we find are
artifacts of this singularity, i.e., whether they merely rep-
resent breakaway D1-D5 subsystems which can escape to
infinity. In global AdS, and in the Ramond sector solution
dual to global AdS, this is not the case. In these geometries,
for generic parameters, the 1=4 BPS giant gravitons that we
describe, are ‘‘bound’’ to the center of AdS and cannot
escape to infinity. This indicates that they correspond to
discrete states and not to states in a continuum. In the
boundary theory this means that they correspond to BPS
states that are not localized about the singularities of the
Higgs branch. Averaging over the Ramond vacua to pro-
duce the zero mass BTZ black hole, however, washes out
the structure of these discrete bound states and the only
solutions we are left with are at the bottom of a continuum
of nonsupersymmetric states.

We prove that no BPS probes survive if we turn on a
small NS-NS field. This is not a contradiction, for it merely
means that the 1=4 BPS partition function jumps as we
move off this submanifold of moduli space. Further inves-
tigation of this issue in the quantum theory and of protected
quantities, like the elliptic genus and the spectrum of
chiral-chiral primaries, is left to [17].

Giant gravitons in AdS3 have been considered previ-
ously [12,18–20], and it was noted that regular 1=2 BPS
brane configurations exist only for specific values of the
charges. These are precisely the values at which the giant
gravitons we describe can escape to ‘‘infinity’’ in global
AdS. The moduli space of 1=4 BPS giant gravitons, how-
ever, is far richer, and this is what we will concern our-
selves with in this paper.

A brief outline of this paper is as follows. In Sec. II we
perform a Killing spinor and kappa-symmetry analysis to
determine the conditions that D brane probes, in the four
backgrounds above, must obey in order to be supersym-
metric. Using this insight, in Sec. III we explicitly con-
struct supersymmetric D1-brane solutions in these
backgrounds and verify that they satisfy the BPS bound.
Then, in Sec. IV we show how bound states of D1 and D5
branes (represented by D5 branes with gauge fields turned
on in their world volume) can also be described in the
framework of Sec. III. In Sec. V we discuss the effect of
turning on background NS-NS fluxes. In Sec. VI we dis-
cuss the quantization of probes moving in the near-horizon
region of the D1-D5 background. In Sec. VII we conclude
with a summary of our results and their implications.
Appendixes A, B, and C discuss some technical details,
while in Appendixes D and E we discuss Killing spinor
equations for various D1-D5 geometries and global AdS.

II. KILLING SPINOR AND KAPPA-SYMMETRY
ANALYSIS

We consider type IIB superstring theory compactified on
S1 �K where K is T4 or K3. We will concentrate on the

case of T4, unless otherwise stated. Let us parametrize S1

by the coordinate x5, T4 by x6, x7, x8, x9, and the non-
compact spatial directions by x1, x2, x3, x4. We will use
coordinate indices xM,M � 0; 1; . . . ; 9; xm, m � 1, 2, 3, 4;
xa xi or a, i � 6, 7, 8, 9. We will parametrize the 32
supersymmetries of IIB theory by two real constant chiral
spinors �1 and �2, or equivalently by a single complex
chiral spinor � � �1 � i�2.

In Sec. II A we will review the preserved supersymme-
tries, or the Killing spinors, of the backgrounds (a) D1-D5,
(b) D1-D5-P, (c) Lunin-Mathur geometries, and (d) global
AdS3 � S3. In Sec. II B we will describe the construction
of supersymmetric probe branes, using a kappa-symmetry
analysis, which preserve a certain subset of the supersym-
metries of the background geometry.

A. Review of supersymmetry of the backgrounds

1. SUSY of D1-D5 and D1-D5-P in the flat space
approximation

We first consider the D1-D5 system, which consists of
Q1 D1 branes wrapped on the S1 and Q5 D5 branes
wrapped on S1 � T4. Let us first compute the supersym-
metries of the background ignoring backreaction. In this
approximation we regard the Q1 D1 branes and the Q5 D5
branes as placed in flat space. The residual supersymme-
tries of the system can be figured out in the following way.
A D1 brane wrapped on the S1 preserves the supersymme-
try (SUSY)1

 �0̂�5̂� � �i�
�: (1)

Similarly, a D5 brane wrapped on S1 � T4 preserves the
supersymmetry

 �0̂�5̂�6̂�7̂�8̂�9̂� � �i�
�: (2)

The above equations can be derived by considering the
BPS relations arising from IIB SUSY algebra or by con-
sidering the �-symmetry condition on the DBI description
of a D1 or D5 brane. A combined system of D1 and D5
branes will therefore preserve eight supersymmetries given
by �’s which satisfy both (1) and (2).

For later reference, we set up some notation. The eight
residual supersymmetries of the D1-D5 system can be
described as satisfying either

 �6̂�7̂�8̂�9̂� � �; �0̂�5̂� � ��; � � i�� (3)

or

 �6̂�7̂�8̂�9̂� � �; �0̂�5̂� � �; � � �i��: (4)

The two conditions above are called left- and right-moving

1We will denote by �M̂ the flat space gamma matrices satisfy-
ing ��M̂;�N̂� � 2�M̂;N̂ , By contrast, gamma matrices in a curved
space, �M, will be defined by �M � �M̂e

M̂
M where eM̂ are the

vielbeins. In the flat space approximation, �M � �M̂.
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supersymmetries, respectively. Thus the D1-D5 system has
(4, 4) (left, right) supersymmetries.

D1-D5-P.—If we add to the D1-D5 system P units of
left-moving momentum along the S1, the resulting D1-D5-
P system has (0, 4) supersymmetry [defined by (4)], in the
notation of the previous paragraph.2 In the flat space limit
and for noncompact x5, a left-moving momentum can be
seen as arising from applying an infinite boost to the D1-
D5 system in the t-x5 plane. It is easy to see that the right-
moving supersymmetries are invariant under such a boost,
while the left-moving supersymmetries are not. Since the
supersymmetry conditions are local, the argument can be
extended to the case where x5 is compact.

2. SUSY of the full D1-D5 and D1-D5-P geometry

It has been assumed above that theQ1 D1 branes andQ5

D5 branes are in flat space. For Q1, Q5 large, the metric,
dilaton, and the Ramond-Ramond (RR) fields get de-
formed. The modified background geometry, applying
standard constructions, is given by the ‘‘D1-D5’’ geometry,
described in Table I (in Sec. III B). This geometry should
be thought of as describing an ‘‘ensemble’’ rather than any
particular microstate of the D1-D5 system. In case of the
D1-D5-P, the backreacted metric is given in (50) (the
dilaton and RR fields are given by Table I).

To analyze unbroken supersymmetries of these back-
grounds and the others to follow, we need to solve the
Killing spinor equations in these backgrounds. These
Killing spinors were considered, in fact for a much larger
class of metrics, in [21,22]. We quote the results of this
analysis here, with a very brief introduction, and explain
details, for each of the cases, in Appendix D.

In the case of the D1-D5 geometry and the other geome-
tries we consider below, the metric may always be written
in terms of vielbeins as

 ds2 � ��et̂	2 � �e5̂	2 � em̂em̂ � eâeâ: (5)

The coordinate indices are as explained in the beginning of
Sec. II. The �̂	 represents a flat space index (vielbein label).
Spinors are defined with respect to a specific choice of
vielbeins, and they transform in the spinorial representa-
tion under an SO�1; 9	 rotation of the vielbeins. The precise
form of the vielbein, in the geometries we consider, may be
found in Appendix A 2.

Finding the residual supersymmetries of a particular
background amounts to solving the Killing spinor equa-
tions which are obtained by setting to zero the dilatino
variation (D2) and the gravitino variation (D3). The analy-
sis in Appendix D tells us that (1) and (2) continue to
describe the supersymmetries of the D1-D5 geometry,
while (4) continues to describe the supersymmetries of
the D1-D5-P geometry.

3. SUSY of Lunin-Mathur geometries

It was explained in a sequence of papers [11,13,23,24]
that the geometry of Table I should be treated as an
‘‘average’’ over several allowed D1-D5 microstates. The
gravity solution dual to any particular Ramond ground
state was described by Lunin and Mathur [11,12]. The
analysis of [21,22] and Appendix D shows that even these
solutions preserve the supersymmetries given by (1) and
(2).

4. SUSY of global AdS3 � S3 � T4

Type IIB string theory on global AdS3 is dual to the NS
sector of the CFT on the boundary. If we take the geometry
to be AdS3 � S3 � T4, the boundary CFT has (4, 4) super-
conformal symmetry. We will describe these supersymme-
tries below.

Global AdS3 � S
3 is described by the metric

 

ds2 � �cosh2�dt2 � sinh2�d�2 � d�2 � cos2�d�2
1

� sin2�d�2
2 � d�

2: (6)

We will find the bulk Killing spinors of this background in
two ways. In Appendix E, we will find them by explicitly
solving the IIB Killing spinor equations in a manner simi-
lar to [25]. Below we will find them in an alternative
method, due to Mikhailov [26], which is quite illuminating.

The metric (6) arises by embedding (a) AdS3 in flat R2;2

by the equations X�1 � cosh� cost, X0 � cosh� sint,
X1 � sinh� cos�, X2 � sinh� sin� and (b) S3 in flat R4

by the equations Y1 � cos� cos�1, Y2 � cos� sin�1,
Y3 � sin� cos�2, Y4 � sin� sin�2. We can therefore re-
gard AdS3 � S

3 � T4 as embedded in R2;10 as a
codimension-two submanifold.

Now consider R2;10 spinors that are simultaneously real
and chiral. Regard R2;10 as a product of R2;2�
 AdS3	,
R4�
 S3	, and R4 (which we compactify to get the T4).
The spinors now should be regarded as transforming under
SO�2; 2	 � SO�4	 � SO�4	. It is possible to consistently
restrict attention to a subclass of these spinors, namely,
those that are chiral under the last SO�4	 [this is consistent
because complex conjugation does not change SO�4	
spinor chirality]. We now have a set of 16 real or eight
complex spinors. These spinors are chiral in R2;6 as well as
in R4. We will denote these spinors by �.

Let us denote by ~�A, A � �1; 0; 1; . . . ; 10 the R2;10

gamma matrices. We define by NAdS the vector in R2;2

which is normal to the AdS3 submanifold and by NS the
vector in R4 which is the normal to S3. The prescription of
[26] is that the Killing spinors are given by

 � � �1� �~� � NAdS	�~� � NS		�; (7)

where � are the R2;10 spinors constrained as in the previous
paragraph. The two normal gamma matrices are explicitly
given by ~� � NAdS � �X

�1~��1 � X
0~�0 � X

1~�1 � X
2~�2	

and ~� � NS � X3~�3 � X4~�4 � X5~�5 � X6~�6.
2We adopt the slightly unusual terminology that a wave rotat-

ing counterclockwise on the S1 is left moving.
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In Appendix E we show that the 16 real spinors defined
by (7) are the same as the ones obtained from directly
solving the IIB Killing spinor equations.

B. Construction of supersymmetric probes

1. D1 probe in D1-D5/D1-D5-P background: Flat space
approximation

We first construct supersymmetric D1-brane probes in
the D1-D5 background, in the approximation described in
Sec. II A 1. Consider a probe D string executing some
motion in this background.

In this subsection we demonstrate that this probe pre-
serves all the right-moving supercharges of the background
[corresponding to supersymmetry transformations (4)],
provided its motion is such that

(1) The vector

 n �
@
@t
�

@
@x5

(8)

is tangent to the brane world volume at every point.
(2) The brane always maintains a positive orientation

with respect to the branes that make up the
background.

We will first prove these statements, and then return, at
the end of this subsection, to an elaboration of their
meaning.

According to assumption 1 above, n is tangent to the
world volume at every point. A second, linearly indepen-
dent, tangent vector may be chosen at each point so that the
coefficient of @

@t is zero. Making this choice, this normal-
ized vector may be written as v2 � sin	 @

@x5
� cos	u

where u represents a spacelike unit vector orthogonal to
x5. By assumption 2, we have sin	> 0.3 In general, the
direction of u and the value of 	 will vary as a function of
world-volume coordinates. Although n, v2 are linearly
independent, they are not an orthonormal set since n is a
null vector. We can construct an orthonormal basis of
vectors v1, v2 at each point of the world volume by the
Gram-Schmidt method, yielding

 v 1 � n= sin	� v2

� 1= sin	
�
@
@t
� cos2	

@
@x5
� cos	 sin	u

�
: (9)

For the probe to preserve some supersymmetry �, we must
have, at each point of the world volume,

 �v1
�v2
� � �i��: (10)

The above equation is equivalent to

 �
�0̂�5̂ �

�u

sin	
�cos	�0̂ � �sin2	 cos	� cos3		�5̂	

�
�

� �i��: (11)

This is clearly satisfied by spinors that satisfy (4) since (4)
implies that �0�5� � � which ensures �0� � ��5� and a
consequent vanishing of the coefficient of �u above. Note
that in flat space �M̂ � �M.4

The conditions (1) and (2), listed at the beginning of this
subsection, are easily solved by choosing a world-sheet
parametrization in terms of coordinates 
, �, such that
 

xM � nM�� xM�
	; x0 � �; x5 � x5�
	 � �;

xq � xq�
	; q � 1; 2; 3; 4; 6; 7; 8; 9 (12)

where x5�
	, xq�
	 are arbitrary functions, except that
@
x5 > 0. To connect with the earlier discussion, we iden-
tify v2 as the unit vector along sM � @
xM. Note that by
condition (2) above, we need @
x5 � �n; s	> 0, which is
equivalent to our earlier condition sin	> 0. This con-
straint, together with the periodicity of configurations in

, implies that

R
d
x5�
	 � 2�Rw, where R is the radius

of the x5 circle, andw is a positive integer that we will refer
to as the winding number. The configurations described in
this paragraph are easy to visualize. They consist of
D strings with arbitrary transverse profiles, winding the
x5 direction w times, and moving at the speed of light in the
positive x5 direction.

Equation (10) is equivalent to the �-symmetry projec-
tion, which can alternatively be written as
 

�� � i��;

� :� 1
2�MN@	x

M@
xN�	
=
�������
�h
p

� 1
2��n;�s�=

�������
�h
p

� �v1
�v2
;

(13)

where h is the determinant of the induced metric on the
world volume in the 
, � coordinates above. In the third
line we have used the parametrization (12). This is equiva-
lent to (10) by using

�������
�h
p

� sin	jsj.
Since all we needed in the above discussion is the (0, 4)

supersymmetry (4) of the background, the above discus-
sion goes through unchanged for D1 probes in the D1-D5-P
background in the flat space approximation.

2. D1 probe in D1-D5/D1-D5-P background

We now consider the curved D1-D5-P background, de-
scribed in (50). The specialization to the D1-D5 back-
ground is straightforward (we just need to put rp � 0).
We will show that (12), or equivalently, the condition that
n � @t � @5 is tangent to the world volume, again ensures

3When sin	 is less than zero, the v1 and v2 are not appropri-
ately oriented. Also 	 � 0, because in that case, the determinant
of the induced world-sheet metric would vanish.

4This derivation does not work for left-moving supercharges
where (3) implies �0� � ��5�. Left-moving supercharges are
symmetries for D1 branes that move at the speed of light to the
left [branes whose tangent space includes �1;�1; 0; . . . 0	].
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the appropriate supersymmetry of the probe. For this, we
need to show that (13) is valid in this background. We find
that [see (45)]
 �������
�h
p

� _X � X0 � n � s � x05�g05 � g55	;

�� � 1=�2
�������
�h
p

	��n;�s��

�
1

�g05 � g55	x05
��05x

0
5 � ��0 � �5	�qx

0
q	�:

(14)

To show that �� � � we need

 �0� � ��5�; �g05 � g55	
�1��0�5	� � �: (15)

The first equation is equivalent to

 e0̂
0�0̂� � ��e

0̂
5�0̂ � e

5̂
5�5̂	�: (16)

After explicitly inserting the vielbeins using Eqs. (A2) and
(A3), we are left with

 �0̂� � ��5̂�; (17)

which is equivalent to �0̂�5̂� � �. The second equation of
(15) gives rise to the same condition,

 �0̂�5̂� � �; (18)

by using e0̂
0e

5̂
5 � g05 � g55.

Thus, we have shown that a D1-brane probe moving
such that n � @t � @5 is always tangent to the world
volume, or equivalently satisfying Eq. (12), preserves the
supersymmetry (4).

3. D1 probe in Lunin-Mathur background

We now show that the same condition as in the previous
subsection, namely, that n should be everywhere tangent to
the world volume of the D1 brane [alternatively, that the
D1-brane embedding can be expressed as in (12)], is valid
for supersymmetry of D1 probes in the background (52),
discussed in Sec. II A 3 above. This analysis is fairly
similar to the one above. In this case, Eq. (14) changes to

 

�������
�h
p

� _X � X0 � n � s � x05g55 � x
0
m�g0m � g5m	: (19)

Hence
 

�� � 1=�2
�������
�h
p

	��n;�s��

� �x05g55 � x
0
m�g0m � g5m		

�1

� ��05x
0
5 �

1
2x
0
q���0 � �5	;�q�	�

� �x05g55 � x
0
m��g0m � g5m		

�1��0̂ 5̂x
0
5g55

� x0q��g0q � g5q	 � �q��0 � �5		�	: (20)

Thus, if �0̂ 5̂� � �, as in (4) [which also implies ��0 �

�5	� � 0, using e0̂
0 � e5̂

5], the expression (20) evaluates to
�� � �. For spinors satisfying (4) this also implies �� �
i��, which is the kappa-symmetry projection condition. In
the last step of (20) we have used

 

�05 � g55�0̂ 5̂;
1
2��0 � �5;�m� �

1
2f�0 � �5;�mg � �m��0 � �5	

� �g0m � g5m	 � �m��0 � �5	:

4. D1 probe in global AdS3 � S
3

We will use the description of supersymmetries of the
background as in Sec. II A 4. We will show in this section
that D1 strings with world volumes, to which

 n � @t � @� � @�1
� @�2

(21)

is everywhere tangent, preserve four supercharges.
We will first mention the geometric significance of n.

Let us group the R2;6 (see Sec. II A 4) coordinates into
complex numbers as X�1 � iX0, X1 � iX2, Y1 � iY2,
Y3 � iY4. This defines a complex structure I on R2;6. In
Sec. II A 4, we have defined NAdS as the normal to AdS3 in
R2;2 and NS as the normal to S3 in R4. It is easy to check
that the complex partner of NAdS is I�NAdS	 � �@t � @�,
which generates (twice) the right-moving conformal spin
2hr. Similarly, the complex partner ofNS is I�NS	 � @�1 �

@�2
, which generates (twice) the z component of angular

momentum in the right-moving SU�2	 [out of SO�4	 �
SU�2	 � SU�2	]. The vector n therefore generates
�2�hr � Jr	.

5

Note, first, that n is a null vector (its two components
are, respectively, unit timelike and unit spacelike vectors).
Let ns � K�@� � @�1

� @�2
	 (the purely spatial compo-

nent of n) with the normalization K chosen to give ns unit
norm. Consider a positively oriented purely spatial vector
v2 at a particular point p on the string at constant time. We
may decompose v2 as

 v 2 � sin	ns � cos	u; (22)

where u is some purely spatial unit vector orthogonal to ns.
Let us assume that the string evolves in time so that the
vector n is always tangent to its world volume. It follows
that, at the point P, the world volume of the string is
spanned by n and v2. These two vectors are not orthogonal,
but it is easy to check that, with

 v 1 �
n

sin	
� v2; (23)

fv1; v2g form an orthonormal set, with the first vector time-
like. The D string preserves those supersymmetries of (7)
that satisfy

 

~� v1
~�v2
� � �: (24)

Before proceeding further, let us introduce some termi-
nology. Consider a complex vector u, say X1 � iX2. A

5It is not difficult to check that 2hL � 2jL is generated by the
vector field n0 � �@t � @� � @�1

� @�2
.
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spinor that is annihilated by ~�u is said to have spin ��	
under rotation in the X1-X2 plane, while a spinor annihi-
lated by ~� �u has positive spin (consequently, the spin op-
erator is i~�1

~�2), with similar definitions for the other
directions. Let us now consider constant spinors � whose
spins (eigenvalues under this ‘‘spin’’ operator) in R2;2 and
R4, respectively, are ���	���	 or ���	���	. The spins
in T4 could be either ���	 or ���	—this gives a total of
four spinors, or two sets of complex conjugate pairs of
spinors. We will now demonstrate that any giant graviton
whose world volume tangent space contains the vector (21)
preserves all four of these supersymmetries.

To avoid cluttering the notation below, we define

 

~�AdS � ~� � NAdS; ~�S � ~� � NS;

~�I�NAdS	
� ~� � I�NAdS	; ~�I�NS	 �

~� � I�NS	:
(25)

Now consider

 

A � �~�v1
~�v2
� 1	�1� ~�AdS

~�S	�

�

�
1

sin	
~�n � ~�v2

�
~�v2
�1� ~�AdS

~�S	�� �1� ~�AdS
~�S	�

� �
1

sin	
~�v2

~�n�1� ~�AdS
~�S	�

� �
1

sin	
~�v2

~�I�NS	��1�
~�I�NS	

~�I�NAdS	
	�1� ~�AdS

~�S	��

� �
1

sin	
~�v2

~�I�NS	�1�
~�I�NS	

~�I�NAdS	
	

� �1� ~�I�NS	
~�I�NAdS	

~�AdS
~�S�; (26)

where we have used ~�2
I�NS	

� 1 � �~�2
I�NAdS	

.
It is now relatively simple to check that (26) vanishes

when � is any of the four spinors ���	���	���	,
���	���	���	, ���	���	���	, ���	���	���	.6

Recall that a positive spin is annihilated by ~�S � i~�I�NS	
and by the equivalent AdS expression. Using ~�2

S �

�~�2
AdS � 1 we find

 

~�AdS
~�I�NAdS	

����	�...	 � �i����	�...	;

~�S~�I�NS	��...	���	 � �i��...	���	;

~�AdS
~�I�NAdS	

����	�...	 � �i����	�...	;

~�S~�I�NS	��...	���	 � �i��...	���	;

(27)

from which (24) follows for all the spinors listed above.
We conclude that any D1-brane world volume, to which

the vector n is always tangent, preserves the four super-
symmetries listed above. The same is true of a D5-brane
world volume that wraps the 4-torus.

5. D1-D5 bound-state probe

Now, we consider D5 branes that wrap the 4-torus, and
move so as to keep the vector n tangent to their world
volume at all points, but also have gauge fields on their
world volume. These gauge fields, in a configuration with
nonzero instanton number, can represent bound states of
D1 and D5 branes. Our analysis here is valid for all four
backgrounds considered above.

Consider a D5 brane with a nonzero 2-form Born-Infeld
field strength F, that wraps the S1 � T4. We denote the
world-volume coordinates by 
	 � 
1;2;6;7;8;9 �
f�; 
; z1; z2;
z3; z4g. The embedding of the world volume, as before, will
be denoted by xM�
		 and the induced metric by h	
 �
GMN@	X

M@
X
N . For a nondegenerate world volume

( deth � 0) the tangent vectors @	xM are linearly indepen-
dent and provide a basis for the tangent space at each point
of the world volume. It is clearly possible to introduce an
orthonormal (in the spacetime metric GMN) basis of six
vectors v	̂, related to the @	xM by @	xM � e	̂	v	̂ such that

 GMNvM	̂ vN

̂
� ~�	̂ 
̂:

The invertible matrix e	̂	 defines 6-beins of the induced
metric:

 h	
 � GMN@	X
M@
X

N � GMNe
	̂
	e


̂

vM	̂ vN


̂
� ~�	̂ 
̂e

	̂
	e


̂

:

(28)

Here ~� is 6 dimensional and 	, 
 run over the world-
volume coordinates. We will define below

 �	̂ � vM	̂ �M:

We take v1, v2 to be the same as in the previous subsec-
tions. The other four vectors point along the internal mani-
fold, vi / @

@xi , i � 6, 7, 8, 9.
The condition for branes with world-volume gauge

fields to be supersymmetric was considered in [27,28].
Using the two-component notation for spinors

 � �
�
�1

�2

�
; (29)

the BPS condition is [see Eq. (13) of [28]]

 R�1̂ 2̂ 6̂ 7̂ 8̂ 9̂� � �;

R �
1����������������������������������������

� detf~�	̂ 
̂ � F	̂ 
̂g
q
�

X1
n�0

��1	n

2nn!
�	̂1
̂1...	̂n
̂nF	̂1
̂1

. . .F	̂n
̂n

n�1
3 i
2;

(30)

where we have expressed the world-volume gauge fields in

the local orthonormal frame: F	
 � F	̂ 
̂e
	̂
	e


̂

. Note that

the product in (30) terminates at n � 3 because the indices
6The first and second of these spinors are Q’s, while the third

and fourth of these are complex conjugate S’s.
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are antisymmetrized. From the n � 0 term we find, using
the analysis of the previous subsections, that the condition
(30) can be met only for spinors that obey (4). The spinors
(4) are eigenspinors of 
1. Since i
2 appears in the n � 1
term, this term must vanish. Hence, the gauge fields must
be of the form

 F1̂ 2̂ � 0; F1̂ î � �F2̂ î; Fî ĵ � �k̂ l̂
î ĵ
Fk̂ l̂: (31)

For a gauge field of this kind, the determinant above is
calculated in (75) and

 

����������������������������������������
� detf~�	̂ 
̂ � F	̂ 
̂g

q
� 1�

Fî ĵF
î ĵ

4
:

The n � 2 term gives us the right factor in the numerator to
cancel this, and the n � 3 term vanishes as a virtue of (31).

In the world-volume curved basis, our result implies [see
(9) and (23)] that

 F � F
id
 ^ dx
i � 1

2Fijdx
i ^ dxj; (32)

and is self-dual on the torus, i.e.

 Fij�
ij
kl � Fkl: (33)

For ‘‘wavy instantons’’ where the gauge fields depend on

and the field strength is of the form (32), the Gauss law and
Eq. (33) are enough to guarantee that F solves the equa-
tions of motion [29].

The form of F in (32) is adequate to guarantee super-
symmetry in all four backgrounds considered previously.
For the sake of completeness, we mention that the explicit
embedding of the D5 brane in spacetime is described by
the functions XM��; 
; z1...4	 satisfying

 

@XM��; 
; z1...4	

@�
� nM: (34)

In the coordinate systems that we will discuss, nM is a
constant, and in such a coordinate system we again have

 XM��;
; z1...4	 � XM�
	 � nM�: (35)

Using the value of n (8) in the D1-D5, D1-D5-P, and
Lunin-Mathur geometries, the above equation translates to

 t � �; x5 � x5�
	 � �; xm � xm�
	;

x6 � z1; . . . ; x9 � z4;
(36)

while, in global AdS3 � S3 � T4, using (21), the brane
motion is
 

t � �; � � ��
	 � �; � � ��
	; � � ��
	;

�1 � �1�
	 � �; �2 � �2�
	 � �;

x6 � z1; . . . ; x9 � z4: (37)

We are assuming, in the embedding above, that the brane
wraps the internal manifold only once. The case of mul-
tiple wrapping is identical to the case of multiple brane

probes, each wrapping the internal manifold once, and is
discussed in more detail in Sec. IV C.

The field strength above gives rise to an induced D1
charge, p, on the D5-brane world volume, which is pro-
portional to the second Chern class and is given by

 p �
1

�2�
�����
	0
p
	4

Z
T4

Tr�F ^ F	
2

; (38)

and also to an induced D3 brane charge on the two-cycles
of the T4 (which we denote by C2 below), proportional to
the first Chern class, given by

 p3
C2
�

1

�2�
�����
	0
p
	2

Z
C2

Tr�F	: (39)

This D5-brane configuration with world-volume gauge
fields then represents a D1-D3-D5 bound state. This bound
state has the property that, whenever we wrap a D3 brane
on a two-cycle, we need to put an equal amount of D3
brane charge on the dual two-cycle. It may be surprising
that a probe of this kind, with induced D3 brane charge, is
mutually supersymmetric with the D1-D5 background.

However, this fact may be familiar to the reader from
another perspective. Consider a configuration of Q1 D1
branes, Q5 D5 branes, Q3 D3 branes, and Q03 D30 branes,
wrapping the 5, 56 789, 567, 589 directions, respectively.
Following the standard BPS analysis of, say, Chapter 13 in
[30], the BPS bound for this configuration is

 M 

������������������������������������������������������
�Q1 �Q5	

2 � �Q3 �Q03	
2

q
: (40)

When Q3 � Q03, this bound becomes M 
 Q1 �Q5 and it
may further be shown that this configuration preserves the
same supersymmetries as the D1-D5 system.

Nevertheless, we will not be interested in probes with a
nonvanishing first Chern class in this paper. The AdS/CFT
conjecture requires us to sum over all geometries with
fixed boundary conditions for the fields at 1. When we
consider a D1 or D5 probe, we can reduce the D1 or D5
charge in the background so that the total D1 and D5
charge remains constant at 1. A probe with nonvanishing
p3
C2

will lead to some finite D3 charge at1, and turning on
an anti-D3 charge in the background will render the probe
nonsupersymmetric. So, such probes must be excluded
from a consideration of the supersymmetric excitations
of the pure D1-D5 system. Henceforth, we will set p3

C2
to

zero on all two-cycles C2 of the T4.

III. CHARGE ANALYSIS: D STRINGS

From the Killing spinor analysis above, we conclude
that, in all four different backgrounds we will consider,
D strings that move so as to keep a particular null Killing
vector field tangent to their world volume at each point
preserve four supersymmetries. This means, as we men-
tioned, that given the initial shape of the D string we can
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translate it along the integral curves of this vector field to
generate the entire world volume. In this section, we will
use this fact to explicitly parametrize all supersymmetric
D string probes in terms of their initial profile functions.
We will then use the DBI action to calculate the spacetime
momenta of these configurations and verify the saturation
of the BPS bound.

In the first subsection below, we present a general for-
malism that is applicable to all the examples we consider.
We then proceed to apply this formalism to the extremal
D1-D5 background, the D1-D5-P background, the smooth
geometries of [11], and finally global AdS.

A. Supersymmetric D1 probe solutions

We introduce coordinates � and 
 on the D1-brane
world volume. We use XM�
; �	 to describe the embedding
of the world sheet in spacetime, with t � X0 denoting time.
We will use _XM � @XM

@� and �XM	0 � @XM
@
 . The special null

vector, discussed above, is denoted by nM (see also
Sec. II B). We will always work with the string-frame
metric GMN . This is the metric we use while calculating
dot products. For example, X0 � X0 � GMNX0MX0N . The
Ramond-Ramond 3 form field strength is denoted by
G�3	MNP, and the 2 form potential is denoted by C�2	MN . The
dilaton is �. The induced world-sheet metric is h	
 �
GMN@	X

M@
X
N . In all the cases that we consider in this

section, the NS-NS 2-form is set to zero.
With this notation, the bosonic part of the D1-brane

action is

 S �
Z

Lbraned
d�

� �
1

2�	0
Z
e��

�������
�h
p

d
d��
1

2�	0

�
Z
C�2	MN@	X

M@
XN
�	


2
d
d�; (41)

where

 h � det�h	
� � �X
0 � X0	� _X � _X	 � �X0 � _X	2: (42)

We take ��
 � ��
� � �1. In line with the analysis
presented above, we take our solutions to have the property

 

@XM�
; �	
@�

� nM: (43)

In the examples in this section, we will be using a
coordinate system where nM is constant. When this hap-
pens, we may solve (43) via [see (12) and (37)]

 XM�
; �	 � XM�
	 � nM�: (44)

As we explained above, the set of supersymmetric world
volumes is parametrized by the set of initial shapes XM�
	.

On these solutions, we find

 

�������
�h
p

� jX0 � _Xj: (45)

From the action (41), we can then derive the momenta

 PM �
@Lbrane

@ _XM

�
�e��

2�	0

�
�GMN � e�C

�2	
MN	X

0N � nM
�X0 � X0	

X0 � _X

�
:

(46)

Since these momenta are independent of �, the equations
of motion reduce to
 

�
@Lbrane

@XP
�

�
@�e��GMN	

@XP
�
@C�2	MN
@XP

�

�

�
X0M _XN � _XM _XN

X0 � X0

X0 � _X

�
� 0: (47)

Before we apply this general formalism to specific cases,
we would like to make two comments.

(1) First, as noted above, we find that
�������
�h
p

� �jX0 �
_Xj. Without the absolute value sign, a world sheet

that folds on itself could have zero area. If we now
work out the equations of motion carefully, taking
into account that no such absolute value sign occurs
in the coupling to the RR 2-form, then we find that,
unless X0 � _X maintains a constant sign, our configu-
rations are not solutions to the equations of motion.
Here, we have taken jX0 � _Xj � �X0 � _X. The other
choice of sign would have led to antibranes which
would not be supersymmetric in the backgrounds
we consider.

(2) The world sheet may be parametrized by two coor-
dinates, 
 and �. In many of the examples that we
will consider, the vector n is a constant in our
preferred coordinate system (see Tables I and II).
In such cases, we may take t � �. Now, given the
profile of the string at any fixed �, we can translate
each point on that profile by the integral curves of n,
to obtain the entire world sheet. We may then use 

to label these various integral curves of n.

B. Supersymmetric solutions in the D1-D5 background

Consider Q1 D1 branes and Q5 D5 branes wrapping an
internal T4 with sides of length 2��	0	1=2v1=4 and an S1 of
length 2� that we take to be along x5. Table I describes the
geometry of this background. Notice that the 3-form fluxes
are normalized so that

 

1

2�

Z
S3

G�3	

	0
� 2�Q5;

1

2�

Z
S3�Mint

?10G�3	

	0
� 2�Q1:

(48)

If we take the near-horizon limit of the solution above, we
find the geometry of AdS3 in the Poincare patch, with x5
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identified on a circle. This is nothing but the zero mass
BTZ black hole. Although the probe solutions we present
below are valid in the entire D1-D5 geometry, it will turn
out that quantization of these solutions in Sec. VI is only
tractable when the probe branes are in the near-horizon
region.

The equations of motion (47) reduce, on the solutions of
(44), to

 

@�e��G55 � C
�2	
5t 	

@XP
� 0; (49)

and these are manifestly satisfied since e��G55 � C
�2	
5t �

0.
Table I explicitly lists the solutions (44) and the con-

served charges. The RR 2-form potential in Table I has a
gauge ambiguity (the coefficient b). The canonical mo-
menta P�1;2

, to begin with, depend on b; however, the
momenta ~P�1;2

appearing in both Table I and Table II
(which deals with probe D strings in global AdS) are the
gauge-invariant momenta which figure in the BPS relations
and do not have a gauge ambiguity. This issue is discussed
in detail in Appendix C. Note that the gauge ambiguity is
only in the magnetic part and not in the case of the electric
part. The reason is that it is possible to have a globally
defined electric part of the potential while it is impossible

to do so for the magnetic part (for reasons similar to the
case of the Dirac monopole).

We now apply the general analysis presented above to
obtain Table I.

C. Supersymmetric solutions in the D1-D5-P
background

The D1-D5 system above may be generalized by adding
a third charge using purely left-moving excitations, which
gives the ‘‘D1-D5-P’’ system. The field strengths and
dilaton are exactly as in Table I, but the metric is altered
as follows:

 

ds2 � f��1=2	
1 f��1=2	

5

�
�dt2� dx2

5�
r2
p

r2 �dt�dx5	
2

�
� f1=2

1 f1=2
5 �dr

2� r2�d�2� cos2�d�2
1� sin2�d�2

2		

�
e�

g
ds2

int: (50)

Here r2
p � cpg2P, where P is the quantized momentum

along x5 and cp is a numerical constant which is not
important for our purpose here.

It is easy to repeat the supersymmetry analysis above,
for this background. In particular, we find that

TABLE I. D1-D5 system.

Geometry
ds2�f��1=2	

1 f��1=2	
5 ��dt2��dx5	

2	�f1=2
1 f1=2

5 �dr
2�r2�d�2�cos2�d�2

1�sin2�d�2
2		�

e�
g ds

2
int

e�2� � 1
g2

f5

f1
, f1 � 1� g	0Q1

vr2 , f5 � 1� g	0Q5

r2 , v � V
�2�	4	02

G�3	
	0 � Q5 sin2�d� ^ d�1 ^ d�2 �

2Q1

vf2
1r

3 dr ^ dt ^ dx5

C�2	
	0 � �

Q5

2 �cos2� � b	�d�1 ^ d�2 �
1

gf1	0
dt ^ dx5

BPS condition

E� L � �
R
Ptd
�

R
P5d
 � 0

Null vector tangent to world volume

nM � @
@t�

@
@x5

Solution

t � �x5 � x5�
	 � �r � r�
	

� � ��
	�1 � �1�
	�2 � �2�
	

zaint � zaint�
	

Momenta

Pt �
1

2�	0g �
x0

5

f1
�

����
f5

f1

q
X0�X0
x0

5
�

P5 � �
1

2�	0g �
x0

5

f1
�

����
f5

f1

q
X0�X0
x0

5
�

Pr � �
1

2�	0 �
f5

g r
0�

P� � �
1

2�	0 �
f5r

2� 0

g �

~P�1
� � 1

2�	0 �
f5r2cos2��01

g � Q5	0

2 �cos�2�	 � 1��02�
~P�2
� � 1

2�	0 �
f5r

2sin2��02
g � Q5	0

2 �cos�2�	 � 1��01�

Pza � �
1

2�	0g �g
int
abz

b0 � (internal manifold)
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Pt �
1

2�	0g

��
1�

r2
p

r2

�
x05
f1
�

�����
f5

f1

s
X0 � X0

x05

�
;

P5 � �
1

2�	0g

��
1�

r2
p

r2

�
x05
f1
�

�����
f5

f1

s
X0 � X0

x05

�
;

Pt � P5 � 0:

(51)

The rest of Table I remains valid.

D. Supersymmetric solutions in the Lunin-Mathur
geometries

In this subsection, we describe supersymmetric D-string
probes in the smooth 2-charge geometries of Lunin and
Mathur [11,31]. The geometry is as follows:
 

ds2 �

�������������
H

1� K

s
���dt� Amdx

m	2 � �dx5 � Bmdx
m	2�

�

�������������
1� K
H

s
d~x � d~x�

���������������������
H�1� K	

p
d~z � d~z;

e2� � H�1� K	; C�2	tm �
�Bm
1� K

; C�2	t5 �
1

1� K
;

C�2	m5 �
Am

1� K
; C�2	mn � Cmn �

AmBn � AnBm
1� K

;

dB � � � dA; dC � � � dH�1; (52)

where H � H� ~x	, A � A� ~x	, and K � K� ~x	 are three har-
monic functions that are determined by four ‘‘string-
profile’’ functions Fm�v	 as follows:
 

H�1 � 1�
1

2�

Z 2�Q5

0

dv

jx� F�v	j2
;

K �
1

2�

Z 2�Q5

0

j _Fj2dv

jx� F�v	j2
;

Am � �
1

2�

Z 2�Q5

0

_Fmdv

jx� F�v	j2
:

(53)

We have added 1 to C�2	t5 to be consistent with our con-
ventions where the energy of a probe D string infinitely far
away from the parent stack of D1-D5 branes is zero.
Comparing conventions with Table I, we see that the
parameter g has been absorbed into an additive shift of
the dilaton and is set to 1.

The vector n � @
@t�

@
@x5

is null and we choose our solu-
tions so that this vector is always tangent to the D-string
world volume. We may apply the formalism of Sec. III A
here to obtain

 Pt � �
1

2�	0
�e��GtM � C

�2	
tM	�X

M	0 � nt�;

P5 � �
1

2�	0
�e��G5M � C

�2	
5M	�X

M	0 � n5�;

(54)

where we have defined � � �X0	2

X0� _X
. We now only need to

notice that nt � n5 � 0, e��G55 � C
�2	
t5 � 0, e���Gtm �

G5m	 � �C
�2	
tm � C

�2	
5m	 � 0 to see that the BPS condition

Pt � P5 � 0 is satisfied.
We comment on the relation of these geometries to

global AdS in Sec. III E 1.

E. Supersymmetric solutions in global AdS

We now consider a probe D1 string propagating in
global AdS3 � S

3 �Mint. This geometry is described in
Table II. In particular, the metric is

 ds2 � GMNdxMdxN

� g

������������
Q1Q5

v

s
	0��cosh2�dt2 � sinh2�d�2 � d�2

� d�2 � cos2�d�2
1 � sin2�d�2

2� �

���������
Q1

Q5v

s
	0ds2

int:

(55)

ds2
int is the metric on the internal manifold. g, v,Q1,Q5 are

parameters that determine the string coupling constant,
volume of the internal manifold, and the electric and
magnetic parts of the 3-form RR field strength according
to the formulas summarized in Table II below. We are
following the notation of [32]. We parametrize the internal
manifold using the coordinate z1...4.

In terms of this coordinate system, the Killing spinor
analysis of Sec. II B 4 tell us that probe branes that preserve
the Killing vector

 n �
@
@t
�

@
@�
�

@
@�1

�
@
@�2

(i.e. branes that have n everywhere tangent to their world
volume) will preserve 4 of the background 16
supersymmetries.

We can now proceed as above to obtain Table II.

1. Spectral flow

The global AdS geometry above corresponds to the NS
vacuum of the boundary CFT. The geometries considered
in Sec. III D correspond, on the other hand, to the different
Ramond ground states of this CFT. Now, the NS sector and
Ramond sector in CFT with at least (2, 2) supersymmetry
are related by an operation called spectral flow, where the
Virasoro generators Ln and R-symmetry current modes Jn
change as follows (see, e.g., [33] for a review):

 LNS
n � LRn � J

R
n �

c
24
�n;0; JNS

n � JRn �
c

12
�n;0;

(56)

and the moding of the fermions changes from integral to
half-integral. c is the central charge of the theory which, for
the boundary CFT, is 6Q1Q5.
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Under spectral flow, the NS vacuum maps to the
Ramond vacuum with the smallest possible U�1	 charge
of JR0 � �

Q1Q5

2 . It was shown in [12] that, in the set of
solutions (52), this corresponds to the profile function
F1�v	 � a sin�wv	, F2�v	 � �a cos�wv	, F3�v	 �
F4�v	 � 0. In our conventions, a �

������������
Q1Q5

p
, w � 1

Q5
.

After choosing this profile function, we make the coordi-
nate redefinitions

 x1 � a cosh� sin� cos�1; x2 � a cosh� sin� sin�1;

x3 � a sinh� cos� cos�2; x4 � a sinh� cos� sin�2;

(57)

and take the near-horizon limit (i.e. drop the 1 in the
harmonic functions) to obtain the metric and 3-form field
strength:

 

ds2 �
������������
Q1Q5

p
��cosh2�dt2 � sinh2�dx2

5 � d�
2 � d�2

� cos2��d�1 � dx5	
2 � sin2��d�2 � t	2�

�

������
Q1

Q5

s
dzidzi;

G3 � Q5 sinh�2�	dt ^ d� ^ d�

�Q5 sin�2�	d� ^ �d�1 � dx5	 ^ �d�2 � dt	:

(58)

The dual of the ‘‘spectral flow’’ (56) on the boundary in
supergravity is the coordinate redefinition [12]

 

tNS � tR; �NS � �x5	R; ��1	NS � ��1	R � �x5	R;

��2	NS � ��2	R � tR: (59)

Under this mapping the solution above turns into global
AdS. Moreover, going around the � circle, once in the NS
sector, causes us to also go around the ��1	NS circle to stay
at constant ��1	R. Hence, fermions which are antiperiodic
in the NS sector become periodic in the R sector. One may
also check that the coordinate transformation above takes

 

@
@tR
�

@
@�x5	R

�
@
@tNS

�
@

@�NS
�

@
@��1	NS

�
@

@��2	NS
:

(60)

Thus this mapping maps the null Killing vector n of the
Ramond sector to the special null Killing vector n of the
NS sector. It also takes us from solutions that satisfy E�
L � 0 to solutions that satisfy E� L� �J1 � J2	 � 0.

This one-to-one mapping between global AdS and the
corresponding Lunin-Mathur solution implies that every-
thing that we say below regarding probes in global AdS is
also true (with appropriate redefinitions) for probes in this
Lunin-Mathur geometry.

TABLE II. D branes in global AdS.

Geometry
ds2

	0 � l2��cosh2�dt2 � sinh2�d�2 � d�2 � d�2 � cos2�d�2
1 � sin2�d�2

2� �
�������
Q1

Q5v

q
ds2

int

	0

e�2� � Q5v
g2Q1

, l2 � g���
v
p

������������
Q1Q5

p

G�3	
	0 �

�G�7	
	0 �

dC�2	
	0 � Q5 sin2�d� ^ d�1 ^ d�2 �Q5 sinh�2�	d� ^ dt ^ d�

C�2	
	0 � �

Q5

2 ��cos2� � b	d�1 ^ d�2 � �cosh�2�	 � 1	dt ^ d��

BPS condition

E� L� J1 � J2 � �
R
�Pt � P� � ~P�1

� ~P�2
	d
 � 0

Null vector tangent to world volume

nM � @
@t�

@
@��

@
@�1
� @

@�2

Solution

t � �� � ��
	 � �� � ��
	

� � ��
	�1 � �1�
	 � ��2 � �2�
	 � �

zaint � zaint�
	

Momenta

� �
sinh2��02�cos2��021 �sin2��022 ��

02��02� 1
g	0Q5

gint
abz

a0 zb
0

cos2��01�sin2��02�sinh2��0

Pt �
Q5

2� ���cosh2�� sinh2��0�

P� �
�Q5

2� ����� �
0	sinh2��

~P�1
� �Q5

2� ������
0
1	cos2� � 1

2 �cos2� � 1	�02�
~P�2
� �Q5

2� ������
0
2	sin2� � 1

2 �cos2� � 1	�01�

P� �
�Q5

2� �0

P� �
�Q5

2� � 0

Pza �
�1

2�	0g �g
int
ab z

b0 � (internal manifold)
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2. Bound states

The probe solutions in global AdS above have a salient
feature that we wish to point out. Consider a D string near
the boundary of AdS. Such a string can have finite energy

only if the flux through the string almost cancels its ten-
sion. Hence, it must wrap the � direction, and we can use
our freedom to redefine 
 to set �0 � w. For such a string,
if we take the strict �! 1 limit, we obtain

 E� L �
Q5

2�

Z
�d
 �

Q5

2�

Z �sinh2��02 � cos2��021 � sin2��022 � �
02 �GabXa

0
Xb

0

cos2��01 � sin2��02 � sinh2��0

�
d
 � Q5w: (61)

Thus, we notice that, for strings stretched close to the
boundary, the quantity E� L must be quantized in units
ofQ5. If we wish to have intermediate values of E� L, our
strings are ‘‘bound’’ to the center of AdS. In other words,
the moduli space of solutions with a value of E� L other
than Q5w does not include these long strings. This leads us
to believe that, quantum mechanically, the quantization of
these solutions would lead to discrete states and not states
in a continuum. This expectation is validated by the analy-
sis of [17].

The ‘‘spectral flow’’ operation discussed above tells us
that a similar statement holds in the geometry described by
(58). There, what must be quantized in units of Q5 is the
quantity J1 � J2. On the other hand, if we consider the near
horizon of the D1-D5 geometry [see (121)], which is the
zero mass BTZ black hole, we find that the various mo-
menta become independent of the radial direction. This
means that, in that background, all probes can escape to
infinity. This implies that ‘‘averaging’’ over different
Ramond vacua to obtain the zero mass BTZ black hole
washes out the interesting structure of ‘‘bound states’’ that
we see above.

Returning now to probes in global AdS, those probes
that do not wrap the � direction cannot go to �! 1, yet
their energy shows an interesting � dependence. Consider
the following solution (parametrized byw, �0, �0,�10

, �0):

 

t � �; ��
	 � �0; ��
	 � �0; ��
	 � �0;

�1�
	 � �10
; �2�
	 � w
: (62)

For this solution (using w> 0 which is necessary for
supersymmetry)

 E � Q5wcosh2��0	; L � Q5wsinh2��0	;

P�1
� Q5w; P�2

� 0:
(63)

In this subsector, a given set of charges fixes �0:

 sinh 2�0 �
L
wQ5

: (64)

The fact that the size of the bound state is larger for smaller

w is intuitively obvious; e.g. the size of an electron orbit is
inversely proportional to its mass.

Equation (64) leads to an interesting result. The extremal
BTZ black hole [34] has a horizon radius:

 sinh 2�h � 4MG � 4JG=l: (65)

Using the values of various constants appearing in the
above equation (cf. [35], p. 8),
 

l � 2�	0
���
g
p
�Q1Q5	

1=4V�1=4;

G�1 � 2�Q1Q5	
3=4V1=4=��	0

���
g
p
	;

(66)

we get for the radius of the horizon

 sinh 2�h �
J

Q1Q5
: (67)

We now make the following identifications:

Probe configuration BTZ

L J
w Q1

E lM� 1

We find that the horizon radius (67) exactly coincides
with the size of the bound state, (64), under the above
identifications (the third identification, of energies, follows
from the second one; the extra ‘‘1’’ on the BTZ side owes
to the mass convention used by [34] in which AdS3 space
has mass �1=l).

The above agreement would appear to suggest an inter-
pretation of the BTZ black hole as an ensemble of bound
states of Q1 D-string probes rotating around the center of
the global AdS3 background at a coordinate distance �h,
given by (67). Since the AdS3 background itself is ‘‘made
of’’ Q1 D strings and Q5 D5 branes, the above configura-
tion is well beyond the domain of validity of the probe
approximation,7 and the above interpretation should be
regarded as tentative. Note that probe configurations with
w<Q1 have a size larger than the black-hole radius

7This is similar to the situation with N dual giant gravitons in
AdS5 � S

5 background, at a fixed value of the global radius �.
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 w<Q1 ) �0 >�h; (68)

and, therefore, do not form a black hole.8 The backreacted
geometry corresponding to such probe configurations is
likely to be some smooth nonsingular con-
figuration. The maximum allowed value of w�� Q1	 cor-
responds precisely to a threshold for black-hole formation
(�0 � �h).

3. Classical lower bound of energy

It can be shown (see Appendix B) that, in global AdS,
the set of solutions that we have described above has an
‘‘energy gap.’’

 E � �
Z
Ptd
 
 Q5: (69)

IV. CHARGE ANALYSIS: D1-D5 BOUND-STATE
PROBES

We now consider D5 branes with gauge fields on their
world volume. Supersymmetric probes of this kind were
discussed in Sec. II B 5. The embedding for such branes is
given by (35) and the gauge fields Ai�
	 are of the form
that gives rise to (32),

 F � F
id
 ^ dz
i � 1

2Fijdz
i ^ dzj; (70)

with the self-duality requirement (33)

 Fij � �klijFkl: (71)

In this section we will obtain two results. First, we will
verify the analysis of Sec. II B 5 by a charge analysis and
confirm that the above configurations are indeed super-
symmetric. Next, we will show that the canonical structure
on the space of supersymmetric solutions of the 5� 1
dimensional world-volume theory of coincident D5 branes
is identical to the canonical structure on the set of super-
symmetric solutions to a 1� 1 dimensional theory. For a
probe comprising p D1 branes and q D5 branes, this
effective 1� 1 dimensional theory is the theory of a
D string propagating in the geometries discussed above
but with the internal manifold T4 or K3 replaced by the
instanton moduli space of p instantons in a U�q	 theory on
T4 (orK3). This is similar to the result [16,36,37] (see, e.g.,
[33] for a review) that the world-volume theory of super-
symmetric D5 branes in flat space flows, in the IR, to the
sigma model on the instanton moduli space. However, our
result here is for D5 branes in curved backgrounds (dis-
cussed in Sec. II B 5) and, furthermore, the result holds (as
we will see below) as long as the DBI description is valid
and we do not need to go to the IR fixed point.

A. Classical supersymmetric bound-state solutions

We consider, first, a single D5 brane.9 Our background
has both a 3-form flux G�3	 � dC�2	 and a 7-form flux
G�7	 � �G�3	 � dC�6	. In all the examples we will consider,
it is possible to define a new 2-form C0�2	 such that

 C�6	 � C0�2	 ^ dz1 ^ . . . ^ dz4: (72)

Using this notation, the DBI action becomes
 

S �
Z

Ld
d�
Y
i

dzi

� �
1

�2�	5	03
Z
e��

������������������������
� det�D	
�

q
�

1

�2�	5	03

�Z
C�2	 ^

1

2!
F ^ F

�
Z
C0�2	 ^ dz1 ^ . . . ^ dz4

�
;

D	
 � h	
 � F	
; (73)

where as usual h	
 is the pullback of the string-frame
metric to the world volume, F	
 � @�	A
� is the 2-form
field strength, and A	 is the gauge potential. It is important
to note that we have normalized F unconventionally, which
accounts for the absence of the usual 2�	0 factor. We have
written the action in terms of forms to lighten the notation,
but in indices C�2	 � 1

2C
�2	
MNdX

M ^ dXN .
We will now formally assume that F is of the form (70)

and write

 D	
 �

0 h�
 0 0 0 0
h�
 h

 F
1 F
2 F
3 F
4

0 �F
1 e�=g F12 F13 F14

0 �F
2 �F12 e�=g F14 �F13

0 �F
3 �F13 �F14 e�=g F12

0 �F
4 �F14 �F13 �F12 e�=g

0BBBBBBBB@

1CCCCCCCCA
;

(74)

where we have assumed an internal T4 with a metric
ds2

T4 �
e�
g

P
idz

idzi and the embedding (36) or (37).
The determinant of this matrix is

 ������������
�jDj

p
� ht


�

2 �

FijF
ij

4

�
� ht


�

2 �

jFj2

2

�
;


 �
e�

g
:

(75)

8This is similar to the situation with a star, e.g. the sun, whose
size is larger than its Schwarzschild radius and hence does not
form a black hole.

9We will eventually be interested in the instanton moduli space
only for q > 1 D5 branes since the q � 1 case is rather subtle
[16]. However, we include the calculations for q � 1 here for
simplicity. The generalization to q > 1, which is straightforward,
is left to Sec. IV C.
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Note that

 jFj2dz1 ^ . . . ^ dz4 � F ^ F: (76)

The field strength F is derived from the gauge fields Ai via
F	
 � @�	A
�. Note that the Ai have components only
along the internal manifold. Let us suppose that there are
solutions to (71) characterized by ‘‘moduli’’ �a (the solu-
tions we are interested in exist, actually, for q > 1, so the
calculations in this section and the next are to be under-
stood in a formal sense until we apply these to q > 1 in
Sec. IV C). We can assign 
 dependence to these moduli
consistent with Gauss’s law [29] and supersymmetry, and
thus

 Ai�
	 � Ai��a�
		: (77)

Although the moduli can vary as functions of 
, super-
symmetry implies that they cannot depend on �.

To calculate the momenta, we will need the inverse ofD.
We have listed the relevant components of the inverse in
Appendix A 1. Using these, we find

 

PM �
�L

� _XM

�
�e��

�2�	5	03

� ���������
�D
p D�
 �D
�

2
GMN@
XN

� e�@
X
N
�
C�2	MN

jFj2

2
� C0�2	MN

��

�
�e��

�2�	5	03

���

2 �

jFj2

2

�
GMN �

e�C�2	MNjFj
2

2

� e�C0�2	MN

�
@
X

N �

F
iF

i

 � h

�


2 � jFj
2

2 	

h�

nM

�
;

PAi �
�L
�@�Ai

� �
e��

�2�	5	03
���������
�D
p D�i �Di�

2
�
e��
F
i
�2�	5	03

�
1

�2�	5	03g

@Ai
@�	

@�	

@

: (78)

In the equation above, M, N run over 0 . . . 5. To obtain the
conserved charges of the action (73), we need to integrate
the momenta above over all six world-volume coordinates.
We now proceed to show that a D5 brane that keeps the
vector nM of Sec. II tangent to its world volume at all
points and has a world-volume field strength of the form
(32) is supersymmetric in the four backgrounds that we
have discussed.

1. D1-D5 background

We will discuss the D1-D5 background in some detail.
The calculations required to verify supersymmetry in other
backgrounds are almost identical, so we will be brief in
later subsections.

In the D1-D5 background of Table I,
 

G�3	

	0
� Q5 sin2�d� ^ d�1 ^ d�2 �

2Q1

vf2
1r

3 dr ^ dt ^ dx5;

C�2	

	0
� �

Q5

2
cos2�d�1 ^ d�2 �

1

gf1	
0
dt ^ dx5;

G�7	

	0
�

�
Q1

v
sin2�d� ^ d�1 ^ d�2 �

2Q5

f2
5r

3 dr ^ dt ^ dx5

�
^ dz1 ^ dz2 ^ dz3 ^ dz4;

C�6	

	0
�

�
�Q1

2v
cos2�d�1 ^ d�2 �

1

gf5	
0
dt ^ dx5

�
^ dz1 ^ dz2 ^ dz3 ^ dz4: (79)

With the definition of C0�2	 above, we have

 

C0�2	

	0
�

�
�Q1

2v
cos2�d�1 ^ d�2 �

1

gf5	0
dt ^ dx5

�
:

(80)

Notice that, in the near-horizon limit, we find C0�2	 �
e2�

g2 C�2	.

To check the supersymmetry condition, we explicitly
calculate Pt and P5 using (78).
 

�2�	5	03Pt � �
F
iFi

gx05

�
e��h

�


2 � jFj
2

2 	

x05

� C�2	5t

�

2 �

jFj2

2

�
x05;

�2�	5	03P5 �
F
iF

i



gx05
�
e��h

�
2 � jFj

2

2 	

x05

�

�

2 �

jFj2

2

�
e��G55x05; (81)

where we have used that

 C0�2	5t � 
2C�2	5t : (82)

Using G00 � �G55 and e��G55 � C
�2	
5t � 0 (see Table I),

we see that

 E� L �
Z
�Pt � P5	d�d
dz1 . . . dz4 � 0; (83)

and hence, the BPS relation is satisfied.
If we integrate (78) to obtain the conserved charges, we

see that in the near-horizon limit, where C0�2	 � e2�

g2 C�2	,

the formulas for the energy, angular momentum, and other
charges are almost identical in structure to Table I except
that

 

1

2�	0
!

1

2�	0

�

2v�

1

32�4	02
Z
jFj2d4zi

�
: (84)

Hence, turning on the gauge fields simply renormalizes the
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tension according to the ‘‘instanton number’’ (38).10 This
equation is the precursor to the more general (102).

2. D1-D5-P geometry

The discussion for the D1-D5-P geometry specified by
Eq. (50) is almost identical to the one above. The only
modification is that we fincd
 

�2�	5	03Pt � �
F
iF

i



gx05
�
e��h

�
2 � jFj

2

2 	

x05

� �C�2	5t � e
��G5t	

�

2 �

jFj2

2

�
x05;

�2�	5	03P5 �
F
iFi

gx05

�
e��h

�


2 � jFj
2

2 	

x05

�

�

2 �

jFj2

2

�
e��G55x

0
5:

(85)

In the new background (50), we have e���G55 �G5t	 �

C�2	5t � 0. Hence, the BPS relation follows.

3. Lunin-Mathur geometries

To check the BPS condition for bound-state probes in
the Lunin-Mathur geometries, we need to derive an ex-
pression for C0�2	 which is defined by (72). At first sight,
this may seem a formidable task, but the result is quite
intuitive. In Appendix D 4 we show that C0�2	 is obtained by

taking C�2	 in (52) and performing the substitution H $
1

1�K . So

 

C0�2	tm � �BmH; C0�2	t5 � H; C0�2	m5 � HAm;

C0�2	mn � C0mn �H�AmBn � AnBm	; dB � � � dA;

dC0 � � � d�1� K	: (86)

Now, we only need to notice that C0�2	tM � 
2C�2	tM,
C0�2	5M � 
2C�2	5M, 8M11 and repeat the argument for the
D1-D5 system above to see that Pt � P5 � 0.

4. Global AdS

The analysis with gauge fields turned on in the D5-brane
world volume is almost identical to the analysis in the full
D1-D5 background. Here, we find

 

C0�2	global

	0
�
e2�

g2

C�2	global

	0

��
Q1

2v
�cos2�d�1^d�2��cosh�2�	�1	dt^d��:

(87)

To check the BPS condition, let us use formula (78) to
write down the momenta in the t, �, �1, �2 directions. In
analogy to the analysis for the D string, we define

 �1 �

1
g F
iF

i

 �Q5	0�
2 � jFj

2

2 	�sinh2��02 � cos2��021 � sin2��022 � �
02 � �02	

cos2��01 � sin2��02 � sinh2��0
: (88)

With this definition, we find the momenta
 

�2�	5	03Pt � ��1cosh2��	 �Q5	0�0sinh2��	�
2 � 1
2jFj

2	;

�2�	5	03P� � �1sinh2��	 �Q5	0�0sinh2��	�
2 � 1
2jFj

2	;

�2�	5	03 ~P�1
� �1cos2� �Q5	0�
2 � 1

2jFj
2	�cos2��01 � sin2��02	�

0
2;

�2�	5	03 ~P�2
� �1sin2� �Q5	0�
2 � 1

2jFj
2	�cos2��01 � sin2��02	�

0
1;

Pt � P� � ~P�1
� ~P�2

� 0;

(89)

which verifies the BPS relation.

B. Obtaining an effective 2 dimensional action

The space of supersymmetric solutions above gives us a
description of the supersymmetric sector of the classical
phase space of the world-volume theory defined by the
action (73). Each solution corresponds to a point in this

phase space. Now, the action (73) gives rise to a canonical
symplectic structure on this phase space. This structure
may be encapsulated in terms of a symplectic form. See, for
example, [38] for details of this construction. We will
return to this formalism again in Sec. VI. We will now
show that the classical symplectic structure on the space of
supersymmetric solutions above is identical to the sym-
plectic structure on the space of supersymmetric solutions
of a 1� 1 dimensional theory. This 1� 1 dimensional
theory will be like the theory of the D string studied in
Sec. III but propagating on a different space, where the
internal manifold has been replaced by the instanton mod-
uli space. Furthermore, we will find that the tension of this

10This will become the real instanton number for q > 1 in
Sec. IV C.

11As we mentioned earlier, the conventions of [12] differ
slightly from [32] and g has been absorbed into a shift of �.
So, here 
 � e�.
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string is renormalized by a factor determined by the in-
stanton number.

First consider the gauge fields. Recall that, in (78), we
found that

 pAi �
1

�2�	5	03g

@Ai
@�	

@�	

@

: (90)

The symplectic structure on the manifold of solutions
may be written in terms of the symplectic form:

 � �
Z
�pAi ^ �Aid
d

4zi; (91)

where � is an exterior derivative on the space of all
solutions. �Ai is then a 1-form in the cotangent space at
the point in phase space specified by the function Ai, and
the wedge product is taken in this cotangent space.

The Ai are given as a function of the moduli �a by (77).
We can then rewrite (91) as

 � �
1

�2�	5	03g

Z
�
�Z

d4zi
@Ai
@�a

@Ai
@�b

� 0a
�
^ ��b: (92)

If we define a metric on instanton moduli space,

 ginst
ab �

1

�2�
�����
	0
p
	4

Z
d4zi

@Ai
@�a

@Ai
@�b

; (93)

then this is exactly the symplectic structure of the left-
moving sector [��a	0�
; �	 � _�a�
; �	] of the nonlinear
sigma model on the instanton moduli space defined by

 Sinst �
1

4�	0g

Z
ginst
ab �

_�a _�b � ��a	0��b	0	d
d�: (94)

What about the contribution of the gauge fields to the
spacetime Hamiltonian? From formula (78) and the ex-
pressions in (A1), we see that the gauge field momenta
enter the expression for the spacetime energy only through

 

1

�2�	5	03
Z
d4zid


F
iF
i



g
�

1

2�	0g

Z
d
ginst

ab �
0a� 0b:

This is exactly the Hamiltonian of the ‘‘left-moving’’
sector of the nonlinear sigma model (94).

Finally, we would like to write down an effective action
that generates the symplectic structure above, both in the
D1-D5 system and in global AdS. To do this, first we
formally extend our spacetime, by excising the coordinates
on the internal manifold and including coordinates on the
instanton moduli space. We now define a metric and B field
on this extended space as follows:

 

�m �
XM

�a

 !
;

G1
mn �

e���
2v�
R
d4zi jFj2

8�2�2�	0	2
	GMN 0

0
ginst
ab
g

0
B@

1
CA;

B1 �

�
C0�2	MNv� C

�2	
MN

Z
d4zi

jFj2

8�2�2�	0	2

�
dXM ^ dXN;

H 1
	
 � G1

mn@	�
m@
�

n: (95)

In the equation above, M, N run over 0 . . . 5; a, b run over
the coordinates of the instanton moduli space; m, n run
over both these ranges; and 	, 
 range over 
, �. Now,
consider a sector with a fixed value of the ‘‘instanton
number’’

R
d4zi jFj2

8�2�2�	0	2
[see (38), and also footnote 10].

In this sector, consider the action

 S1
eff �

1

2�	0
Z
�� det�H 1�	1=2d
d��

1

2�	0
Z

B1:

(96)

If we look for supersymmetric solutions to the action
above, we will find that they too have the property that

 

@�m

@�
� nm; (97)

where we have extended the Killing vector field nM of the
previous section to this extended space in the natural way
by setting its components along @

@�a to zero. On these
solutions, the spacetime momenta derived from the action
above reproduce the momenta (78). Together with (92) this
tells us the symplectic structure on supersymmetric solu-
tions to the action (73) is the same as the symplectic
structure on supersymmetric solutions to the action (96).
The superscript 1 above indicates that this analysis is valid
for a single D5 brane. The formula above is very suggestive
and has a natural non-Abelian extension that we now
proceed to discuss.

C. Non-Abelian extensions

The analysis in the last two subsections was valid for a
single D5 brane. It is easy to generalize the salient results
to q D5 branes for q > 1. Again, we consider a sector with
fixed

 p �
1

�2�
�����
	0
p
	4

Z
T4

Tr�F ^ F	
2

: (98)

p is now a bona-fide instanton number. In this sector
consider the following natural extension to the effective
quantities above given by (95):
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�m �
XM

�a

 !
;

Gp;q
mn �

e���q
2v� p	GMN 0

0
ginst
ab
g

0
@

1
A;

Bp;q � �qC0�2	MNv� C
�2	
MNp	dX

M ^ dXN;

H p;q
	
 � Gp;q

mn@	�m@
�n:

(99)

�a span the moduli space of p instantons in a U�q	 theory.
We can define an effective 2 dimensional action for each
such value of p, q as

 Sp;qeff �
1

2�	0
Z
�� det�H p;q�	1=2 �

1

2�	0
Z

Bp;q:

(100)

Remarkably, we have found that we can now apply the
entire machinery of Sec. III (which we developed for D1
branes) to bound states of D1 and D5 branes.

This result takes an especially pretty form in the near
horizon of the D1-D5 and D1-D5-P system and global
AdS. Recall that, for these scenarios,

 C0�2	MN � 
2C�2	MN �
Q1

Q5v
C�2	MN: (101)

The formula (99) then tells us that, in the near horizon of
the D1-D5 system and in global AdS (and in the corre-
sponding Ramond sector, LM geometry), the formulas for
the canonical momenta in Tables I and II are quantitatively
correct with the following substitutions:

(1) The internal manifold is replaced by the instanton
moduli space of p instantons in a U�q	 theory.

(2) The tension of the ‘‘string’’ is renormalized by
Q5 ! pQ05 � qQ

0
1. Here Q05 is the D5 charge of

the background in Tables I and II which must be
taken to be Q5 � q in case the D5 charge of the
probe is q (so that the total charge at the boundary is
kept fixed at Q5). Similarly Q01 � Q1 � p. Thus

 Q5 ! p�Q5 � q	 � q�Q1 � p	: (102)

V. MOVING OFF THE SPECIAL POINT IN MODULI
SPACE

We can generalize the simplest D1-D5 system that we
have been discussing by turning on a bulk anti-self-dual
BNS field in the background geometry.12 This is like turn-
ing on some dissolved D3 brane charge in the background
that we have taken, until now, to have only D1 and D5
charges. We should expect that the BPS solutions we have
been discussing above no longer remain BPS, since a D1 or

a D5 probe is not, in general, mutually supersymmetric
with a D1-D3-D5 bound state (the exception is the system
considered in Sec. II B 5). In this section, we will verify the
expectation above by first performing a Killing spinor
analysis and then by verifying our results using the DBI
action.

A. Killing spinor analysis

The explicit extremal D1-D5 supergravity background
with a nonzero BNS field turned on was calculated in
[39,40]. We will follow [39] here. In addition to this BNS

field and the usual 3-form RR field strength G, this back-
ground also has a 5-form field strength G�5	. This solution
depends on a single parameter ’ that determines the
strength of the anti-self-dual BNS field. The metric, dilaton,
and field strengths (adapted to our conventions regarding
‘‘self-duality,’’ and with 	0 � 1 for simplicity) may be
written as follows:
 

ds2 � �f1f5	
�1=2��dt2 � dx2

5�

� �f1f5	
�1=2�dr2 � r2�d�2 � cos2�d�2

1

� sin2�d�2
2		 � �f1f5	

�1=2Z�1��dx2
6 � dx

2
8	

� �dx2
7 � dx

2
9	�;

e2� �
f1f5

Z2 ;

H � dBNS;

B�2	NS �

�
Z�1 sin�’	 cos�’	�f1 � f5	

�
��5 ��1	 sin’ cos’

�5cos2’��1sin2’

�
�dx6 ^ dx8 � dx7 ^ dx9	;

G�3	 � cos2�’	 ~K�3	 � sin2�’	K�3	;

G�5	 � Z�1 cos’ sin’��f5K
�3	 � f1

~K3	

^ �dx6 ^ dx8 � dx7 ^ dx9	; (103)

where we defined
 

f1 � 1�
�1

r2

f5 � 1�
�5

r2 ;

~K�3	 � �
f01
f2

1

dr^dx0 ^ dx5��5 sin�2�	d� ^d�1 ^d�2;

K�3	 � �
f05
f2

5

dr^dx0 ^ dx5��1 sin�2�	d� ^d�1 ^d�2;

Z� 1�
�1sin2�’	��5cos2’

r2 : (104)

�1, �5 are parameters that determine the charges of the
system according to the formulas in [39]. We alert the
reader that our normalizations for �1, �5 differ from that
paper by a factor of 2.

12Our conventions regarding ‘‘self-dual’’ and ‘‘anti-self-dual’’
are the opposite of [16,37,39].
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We start by calculating the bulk Killing spinors that this
geometry preserves. As explained earlier, the supersym-
metries of the type IIB theory may be written in terms of a
two-component spinor

 � �
�1

�2

� �
; (105)

which satisfies �11� � ��. The dilatino Killing spinor
equation is (see [41] and references therein)

 �
@M��M �

1

12
HMAB�MAB � 
3

�
1

4
e�

X5

n�1

��1	n�1�n� 3	

�2n� 1	!
GA1...A2n�1

�A1...A2n�1 � �n

�
�

� 0; (106)

where �n � 
1 for n even, and �n � i
2 for n odd. The
f
ig, i � 1, 2, 3 are the Pauli matrices.H andG are the NS-
NS and RR field strengths, and � denotes the dilaton. Our
conventions are slightly different from [41] because the
solution of (103) has G7 � �G3 and G5 � � � G5.

The spinors above are defined with respect to a particu-
lar local Lorentz frame. In our case, a convenient basis is
defined by the following 1-forms.
 

et̂ � �f1f5	
��1=4	dt; e5̂ � �f1f5	

��1=4	dx5;

er̂ � �f1f5	
1=4dr; e�̂ � �f1f5	

1=4rd�;

e�̂1 � �f1f5	
1=4r cos�d�1;

e�̂2 � �f1f5	
1=4r cos�d�2; eâ � �f1f5	

1=4Z��1=2	dxa:

Defining spinors with respect to this local Lorentz frame,
we find that the dilatino equation becomes
 �
f�5=4

1 f�1=4
5 f01�r̂

��
1� 2

f1

f5

sin2�’	
	

�
1� �0̂ 5̂ � 
1

� B��6̂ 8̂ � �7̂ 9̂	 � 
3

��
�

�

�
f�5=4

5 f�1=4
1 f05�r̂

�
�

�
1� 2

f1

f5

sin2�’	
	

�
1

� �r̂ �̂ �̂1�̂2 � 
1 � B��6̂ 8̂ � �7̂ 9̂	 � 
3

��
� � 0; (108)

where we defined 	 � cos2�’	 � f1

f5
sin2�’	, B �

����
f1

f5

q
1
	 �

sin�’	 cos�’	 �
�������
f1f5

p
sin�’	 cos�’	

f5cos2�’	�f1sin2�’	
. All products of gamma

matrices above can be simultaneously diagonalized. We
will denote the eigenvalues of �0̂ 5̂, �6̂ 8̂, �7̂ 9̂, �r̂ �̂ �̂1�̂2 by
�n1, �in2, �in3, �n4, respectively. The condition
�11� � �� subjects these to the constraint

Q
n1n2n3n4 �

�1.

Diagonalizing the matrix above is then equivalent to
diagonalizing the two matrices

 M1 � n1
1 � iB�n2 � n3	
3;

M2 � n4
1 � iB�n2 � n3	
3:
(109)

Both these matrices have eigenvalues

�
������������������������������������
1� B2�n2 � n3	

2
p

. In particular, when n2n3 � 1 �
�n1n4, there are eight spinors that simultaneously satisfy
the two equations

 ��0̂ 5̂ � 
1 � B��
6̂ 8̂ � �7̂ 9̂	 � 
3	�

�
f5cos2’� f1sin2’

f5cos2’� f1sin2’
�;

��r̂ �̂ �̂1�̂2 � 
1 � B��
6̂ 8̂ � �7̂ 9̂	 � 
3	�

� �
f5cos2’� f1sin2’

f5cos2’� f1sin2’
�:

(110)

These two equations are consistent with �11� � �� and
satisfy Eq. (108). They also imply �6789� � �.

Hence, we have shown that the background defined by
(103) preserves eight supersymmetries that are parame-
trized by the projection conditions above. Notice that
none of these spinors can be preserved by a probe D1
brane or a probe D5 brane. For arbitrary unit tangent
vectors of the world volume v̂1, v̂2, a probe D1 brane
preserves the spinors that have �v̂1

�v̂2
� 
1 �  . In the

2 dimensional space specified by (105) these spinors are
eigenspinors of 
1. Hence none of them coincide with the
spinors that are preserved in the background above that are
eigenspinors of 
1 � 2iB
3. The same argument works to
show that no probe D5 branes or bound states of D1 and D5
branes can be supersymmetric in this background.

Now, consider the near-horizon limit of the geometry
(103). In this limit, the equation above simplifies dramati-
cally, and it is easy to convince oneself that the only
projection that survives above is �6789� � �. There are
16 spinors that satisfy this equation. Hence, this is consis-
tent with the ‘‘doubling’’ of supersymmetries that is asso-
ciated with the appearance of a conformal symmetry in the
near-horizon limit. One may now naively suspect that in
the near horizon a probe D string could maintain some
supersymmetries.

In the superconformal algebra, there are two types of
supercharges. Conventionally, these are denoted byQ, with
a charge under dilatation of � 1

2 , and S, with a dilatation
charge� 1

2 . Now, to be BPS, a brane must preserve someQ
charges (in the superconformal algebra all primary states,
whether of short representations or not are annihilated by
the S’s). To determine which supercharges areQ and which
are S in the near horizon, we consider the r̂ component of
the gravitino equation in the near-horizon limit.
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The gravitino equation reads

 �
@M�

1

4
wBCM �BC�

1

8
HMAB�AB�
3�

1

16
e�

X5

n�1

��1	n�1

�2n� 1	!
GA1...A2n�1

�A1...A2n�1 �M ��n

�
�� 0; (111)

where wBCM is the spin connection. In the near horizon the r component of this equation is, for the background above,

 

@�
@r
�

1

2r

�
�0̂ 5̂
��5cos2’��1sin2’	
1 �

������������
�5�1
p

cos’ sin’��6̂ 8̂ � �7̂ 9̂	 � �i
2	

�5cos2’��1sin2’

�
� � 0: (112)

If we impose n2n3 � 1 (as the dilatino equation tells us to),
the square bracket on the right has eigenvalues �1.
Somewhat more remarkably, the eigenvalue �1 occurs
when the projection condition (110) is satisfied. This
means that the Q’s in the near horizon are the same as
theQ’s in the bulk. The new supercharges are the S’s. From
the argument above, we now see that a D string or a D5
brane cannot be BPS even in the near horizon. The argu-
ment for global AdS is very similar to the near-horizon
argument above, and instead of repeating it here, we will
proceed to verify our results using a charge analysis.

B. Charge analysis

In this section, we will use the DBI action to verify the
results that we obtained above. For global AdS, we find the
interesting result that there are still solutions to the equa-
tions of motion that preserve the Killing vector n, but these
solutions are no longer BPS.

We start by considering the extremal D1-D5 geometry.
From the formulas in (103), we see that
 

C�2	t5 �
f5cos2’� f1sin2’

f1f5
;

e��G55 �
Z
f1f5

�
f5cos2’� f1sin2’

f1f5
:

(113)

We see that the ratio between the components of the C�2	

field and the metric has been spoilt. This effect is quite
general and is the same as what we should expect if we turn
on a theta angle. Now, the equation of motion (47) for r
receives contributions from the following terms:
(1) XM � x5, XN � x5 and (2) XM � x5, XN � �. Since,
now e��G55 � C

�2	
5t � 0, the only way to force our solu-

tions to obey these equations is to set �x5	
0 � 0. This

confirms the expectation that, in the D1-D5 geometry, the
supersymmetric brane probe solutions vanish if we move
on the moduli space. It is easy to repeat the argument above
to show that the same result also holds true in the D1-D5-P
geometry.

The situation in global AdS is more interesting. When
we take the near-horizon limit of (103) and translate to
global coordinates, we find the metric

 

e��GMNdxMdxN � Q05��cosh2�dt2 � sinh2�d�2

� d�2 � d�2 � cos2�d�2
1

� sin2�d�2
2	 � dz

idzi; (114)

and RR 2-form components
 

C�2	�1�2
� �Q05�1� �

2	
cos�2�	

2
;

C�2	t� � Q05�1� �
2	

cosh�2�	 � 1

2
;

(115)

where
 

Q05 � �5cos2’��1sin2’;

�2 �
2�1sin2’

�5cos2’��1sin2’
:

(116)

The equation of motion for � now receives contributions
from (1) XM � �, XN � � and (2) XM � �, XN � �, while
the equation of motion for � receives contributions from
(1) XM � �1, XN � �1, (2) XM � �2, XN � �2,
(3) XM � �1, XN � �2, and (4) XM � �2, XN � �1.
The identities we need are
 

e��G�� � C
�2	
�t � �2G�� � Q05�

2sinh2�;

e��G�1�1
� C�2	�1�2

�
Q05
2
�1� �2 cos�2�		;

e��G�2�2
� C�2	�2�1

�
Q05
2
�1� �2 cos�2�		:

(117)

The equations of motion are then satisfied if

 sinh2��0 � 0; sin�2�	��01 ��
0
2	 � 0: (118)

The first equation requires us to stay at a constant point in
�. The second equation requires �01 � �02. With these
constraints, one can find solutions of the form (44) to the
equations of motion.

Unfortunately, these solutions do not maintain the BPS
bound. Generalizing the formulas of Table II, we find that
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Pt �
�Q05
2�

�cosh2�; P� �
Q0

5

2��sinh2�;

~P�1
�
Q05
2�

�
�cos2� ��01cos2� �

1� �2

2
cos�2�	�02

�
1� �2

2
�02

�
;

~P�2
�
Q05
2�

�
�sin2� ��02sin2� �

1� �2

2
cos�2�	�01

�
1� �2

2
�01

�
: (119)

Substituting �01 � w � �02, we find that
 

E� L� J1 � J2 � �
Z
�Pt � P� � ~P�1

� ~P�2
	d


� Q05�
2w: (120)

So, the energy of these solutions increases as we move
off the special submanifold in moduli space where the anti-
self-dual NS-NS fluxes and theta angles are set to zero.
Equation (120) tells us how this happens as a function of
the distance in moduli space from the special submanifold.

VI. SEMICLASSICAL QUANTIZATION

The phase space of a theory is isomorphic to the space of
all its classical solutions. Using the Lagrangian, we can
equip this space with a symplectic form that we can invert
to calculate Dirac brackets. Then, by promoting Dirac
brackets to commutators, we can use the set of classical
solutions to canonically quantize the theory. The advantage
of this approach is that it is covariant and that it allows us to
restrict attention to special sectors of phase space by
identifying the corresponding sector of classical solu-
tions.13 This technique has a long history, and the first
published reference to it, known to us, is by Dedecker
[9]. Later, this was studied in [42–46] and then brought
back into use in the 1980s by [38,47]. We refer the reader to
[10] for a nice exposition of this method.

In this section, we will show how this procedure can be
implemented for supersymmetric brane probes propagat-
ing in the near-horizon region of the D1-D5 system. As we
explained earlier, this study has limited physical relevance
because it has been argued that the extremal D1-D5 ge-
ometry is not the dual to any particular Ramond vacuum of
the boundary CFT but should be thought of as an average
over all Ramond vacua. In fact, even classically, we see
that our probes in global AdS have the striking feature that
they are generically bound to the center of AdS. On quan-
tization we would expect these to give rise to ‘‘discrete’’
states. This is in sharp contrast to what we find by quantiz-
ing probes in the extremal D1-D5 background where all the

states that we obtain are at the bottom of a continuum.
Since the Ramond and NS sectors of the boundary theory
are related by ‘‘spectral flow’’ on the boundary, this bol-
sters the argument above that the extremal D1-D5 geome-
try is only an ‘‘average’’ geometry and that we should
really consider probes about the geometries described in
[11–13].

Nevertheless, we include this study as an example of
how these supersymmetric solutions may be quantized. A
detailed study of the quantization of probes in global AdS
is left to [17].

Consider the near-horizon limit of the D1-D5 system.
Let us define y � 	0l2

r where l2 is a constant defined in the
next equation. In the near horizon our background is
 

ds2� l2	0
�
�dt2�dx2

y2 �
dy2

y2 �d!
2
3

�
�

���������
Q1

Q5v

s
ds2

int;

e�2��
Q5v

g2Q1

;

G�3	 �Q5	0 sin�2�	d�^d�1^d�2�
2Q5	

0

y3 dy^dt^dx5;

C�2	 �
�Q5	0

2
cos2�d�1^d�2�

Q5	0

y2 dt^dx5;

l2�
g���
v
p

������������
Q1Q5

p
: (121)

The momentum conjugate to y is

 Py � �
Q5

2�
y0

y2 : (122)

The near-horizon geometry of the background described
above would have been AdS3 in Poincare coordinates, had
the D1 branes and D5 branes not been on a circle. Adding
in the circle identification, we simply get the orbifold of
AdS3 by a (Poincare) shift, i.e. the zero mass BTZ black
hole.

Recall from Sec. IV that we can treat all probes,
D strings, or bound states of p D1 branes and q D5 branes
on the same footing by performing the replacements (102)

 Q5 ! k � p�Q5 � q	 � q�Q1 � p	; Mint !Mp;q;

(123)

where Mp;q is the instanton moduli space of p instantons
in an SU�q	 theory.

The symplectic form, �, on the space of solutions is
given by

 � �
Z
�PM ^ �X

Md
; (124)

where � may be thought of as an exterior derivative in the
space of solutions. Recall the discussion in Sec. II B. Apart
from fixing t � �we can use diffeomorphism invariance to
set

13This is valid only if the symplectic form does not mix a
solution that belongs to this subset with a solution that does not.
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 x5 � w
: (125)

The formula for the spacetime energy becomes
 

E �
k
w

Z d

2�

�
y02

y2 � cos2��021 � sin2��022

� � 02 �
gint
ab�z

a	0�zb	0

kg	0

�

�
Ey � ES3 � Eint

w
: (126)

Since we have fixed both t and x5, the �P5 ^ �x5 �
�Pt ^ �t terms drop out of the symplectic form, which
then becomes
 

� �
Z
��Py ^ �y� �P�1

^ ��1 � �P�2
^ ��2

� �P� ^ �� � �P
int
i ^ �x

i	d


� �y ��S3 ��int: (127)

Now, if we define y � e�, we find that

 �Py ^ �y �
�k
2�

��0 ^ ��; Ey �
k

2�

Z
��0	2d
:

(128)

We can now expand � in modes

 � �
1�����������

2kjnj
p �n expin
: (129)

This leads to the Dirac brackets and Hamiltonian

 f�n; ��ngD:B: � i; n > 0; Ey �
X
n2Z

1

2
nj�nj2:

(130)

We can promote these Dirac brackets to commutators to
get an infinite sequence of harmonic oscillators. We can
think of these oscillators as coming from the left-moving
part of a free boson. Roughly, the antiholomorphic oscil-
lators have been set to zero by supersymmetry. Moreover,
the zero modes that tie the left and right movers together
are also absent from the expression (130).

Now we turn to �S3 . We can map the S3 into an SU�2	
group element using

 g � ei���1��2	=2�
3ei�
2ei���1��2	=2�
3 : (131)

Now, introduce light-cone coordinates on the world sheet
x� � �� 
. Consider the Wess-Zumino-Witten (WZW)
action

 S �
�k
4�

Z
d2xTrf�g�1@Mg	2g � k�SU�2	WZ ; (132)

where �SU�2	WZ is the standard Wess Zumino term for the
SU�2	 model [48]. The symplectic form and energy ob-
tained from the action above by restricting to solutions that
satisfy @�g � 0 coincide with �S3 and ES3 . Roughly

speaking, we have the ‘‘left-moving’’ part of the SU�2	
WZW model.

The quantum WZW model has a current algebra, and
states in its Hilbert space break up into representations of
this algebra. Each representation is identified by its affine
primary �j� [49]. The number of affine primaries is finite
and j 2 f0; 1

2 ; . . . ; k2g. What primaries occur in the spectrum
above? If we consider the limit of large k, the WZW model
describes three free bosons. If we were to quantize three
bosons, Xi�
; �	, using the symplectic form

R
d�Xi	0 ^

dXi, we would project out all right-moving oscillators
and all zero mode motion. This suggests that the only
affine primary in the spectrum is �0�.

We can obtain this result another way by using the fact
that the spectrum of the SU�2	 model comprises the affine
primaries

Pk=2
j�0�j�left � �j�right. Since here we have re-

stricted the right-moving sector to be trivial, the only
left-moving primary that can occur is �0�.

Finally, we turn to the internal degrees of freedom that
correspond to fluctuations on the internal manifold. Just as
above, the symplectic form �int and energy Eint give rise to
the left-moving sector of the nonlinear sigma model on
Mp;q. We will denote this Hilbert space, which corre-
sponds to the holomorphic part of the trivial zero mode
sector of the sigma model on Mp;q by H0�Mp;q	.

To conclude, we have found that the quantization of
D strings in the near horizon of the D1-D5 system yields
the left-moving part of the R� SU�2	 �Mp;q sigma
model defined on a circle of length 2�w. We need to
sum over all w to obtain the physical spectrum.

The theory above is the Ramond sector of the theory of
long strings studied in [16,50,51]. (A closely related theory
was studied in [52–54].) There, it is shown how the R�
SU�2	 theory on the world sheet may be embedded into a
spacetime N � 4 superconformal algebra with central
charge 6�k� 1	. The N � 4 superconformal algebra on
Mp;q carries over to spacetime.

It is important to note that we do not sum over spin
structures in the world-sheet theory. The fermions are al-
ways in the Ramond sector. The second important feature
of the spectrum above is that it is at the bottom of a
continuum of nonsupersymmetric states. We can always
move infinitesimally away from supersymmetry by turning
on the continuous momentum modes of �. This means that
the Hilbert space we obtained above is of measure ‘‘zero’’
in the full quantum theory.

VII. RESULTS AND DISCUSSION

In this paper we studied brane probes in (a) the extremal
D1-D5 background, (b) the extremal D1-D5-P back-
ground, (c) the smooth geometries of Lunin and Mathur
with the same charges as the D1-D5 background, and
(d) global AdS3 � S

3 � T4=K3. In the first three back-
grounds, states that satisfy E� L � 0 preserve the right-
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moving supercharges. The charge ��E� L	 is generated
by the vector @

@t�
@
@x5

and we found that D strings that
maintained this vector tangent to their world volume at
all points preserved all right-moving supersymmetries. The
three backgrounds above preserve eight supersymmetries
and the supersymmetric probes preserve 1

2 of these. In
global AdS3 � S3 � T4=K3, the right-moving BPS rela-
tion is ��E� L� J1 � J2	 � 0. This combination of
charges is generated by the vector @

@t�
@
@��

@
@�1
� @

@�2

and we found that D strings that keep this vector tangent
to their world volume at all points preserve four right-
moving supersymmetries (this makes them 1=4 BPS in
this background). This fact allowed us to parametrize all
supersymmetric D-string probes in these backgrounds by
their initial profiles. This result is summarized in Eq. (44).

D5 branes with self-dual gauge fields on their world
volumes, that preserve the Killing vector above, are also
supersymmetric. These gauge fields correspond to a dis-
solved D1 charge on the D5 world volume, so we inter-
preted supersymmetric probes of this kind as
supersymmetric bound states of D1 and D5 branes. We
found that these bound-state probes could be described in a
unified 1� 1 dimensional framework described by
Eqs. (99) and (100). This allowed us to treat them on the
same footing as D1 branes.

In global AdS, and the corresponding Lunin-Mathur
solution, the probes we found could not escape to infinity
for a generic assignment of charges. This indicates that
upon quantization they give rise to discrete bound states
that contribute to the BPS partition function of string
theory on this background. A detailed investigation of
this is left to [17]. The fact that this structure of classical
bound states is not seen in the extremal D1-D5 geometry
provides further evidence for the argument that this back-
ground is not the correct dual to any Ramond vacuum in
the boundary CFT.

In Sec. V, we showed that these supersymmetric probes
vanished if we turned on an anti-self-dual NS-NS field or
theta angle. This means that the BPS partition function
jumps as we move off the special point in moduli space
where these background moduli are set to zero. This issue
is discussed further in [17]. We note that this result is
similar to the result that the 1

8 and 1
16 BPS partition functions

of N � 4 super-Yang-Mills theory on S3 � R jump as

soon as we turn on a ’t Hooft coupling but are not further
renormalized [55]. Finally, in Sec. VI, we quantized the
supersymmetric probes above in the near horizon of the
extremal D1-D5 geometry to obtain long-string states at
the bottom of a continuum of nonsupersymmetric states.

It would be interesting to find smooth supergravity
solutions that correspond to the probes above. It is possible
that these solutions could be generated by using the profiles
we find in the programme of [11,12]. An ensemble of
energetic spinning probes may be a useful representation
of the BTZ black hole. An indication of this was seen in
Sec. III. Now, in the probe approximation, we can have
many probes moving in AdS3 that are simultaneously
supersymmetric. In global AdS our analysis indicates that
these probes would all be bound to AdS and hence exist at a
finite distance determined by their charges. If these probes
have large values of p, q, they have many internal degrees
of freedom that could give rise to a macroscopically mea-
surable degeneracy. This suggests the interesting possibil-
ity that there may be multi-black-hole solutions in global
AdS3 � S3 � T4=K3. Similar ideas have been proposed by
de Boer et al. [56] and Sundborg [57].
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APPENDIX A: MISCELLANEOUS TECHNICAL
DETAILS

1. Inverse of the Born-Infeld matrix

The matrix D in (74) is simple to invert. We will only be
interested in the first row and column, so we list those
below:

 ������������
�jDj

p
D�	 �

�
�

F
iF

i

� h

�


2� 1
2 jFj

2	

h�

;
2�

1

2
jFj2;�
F
1�F12F
2�F13F
3�F14F
4;F12F
1�
F
2

�F14F
3�F13F
4;F13F
1�F14F
2�
F
3�F12F
4;F14F
1�F13F
2�F12F
3�
F
4

�
;

������������
�jDj

p
D	� �

�
�

F
iF

i

� h

�


2� 1
2 jFj

2	

h�

;
2�

1

2
jFj2;
F
1�F12F
2�F13F
3�F14F
4;F12F
1�
F
2

�F14F
3�F13F
4;F13F
1�F14F
2�
F
3�F12F
4;F14F
1�F13F
2�F12F
3�
F
4

�
: (A1)
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2. Vielbeins

In this subsection, we list our vielbein conventions for
the backgrounds considered above.

a. D1-D5

The metric is given in Table I. The vielbein is defined by

 et̂ � �f1f5	
��1=4	dt; e5̂ � �f1f5	

��1=4	dx5;

er̂ � �f1f5	
1=4dr; e�̂ � �f1f5	

1=4rd�;

e�̂1 � �f1f5	
1=4r cos�; e�̂2 � �f1f5	

1=4r sin�;

ea �
e�=2���
g
p dza:

(A2)

b. D1-D5-P

The metric is given in Eq. (50). The vielbein is defined
by
 

et̂ � �f1f5	
�1=4

��
1�

r2
p

r2

�
1=2
dt�

r2
p

r2�������������
1�

r2
p

r2

q dx5

�
;

e5̂ � �f1f5	
�1=4

�
1�

r2
p

r2

�
�1=2

dx5; er̂ � �f1f5	
1=4dr;

e�̂ � �f1f5	
1=4rd�; e�̂1 � �f1f5	

1=4r cos�;

e�̂2 � �f1f5	
1=4r sin�; ea �

e�=2���
g
p dza: (A3)

c. Lunin-Mathur

The metric is given by (52). The vielbein is defined by
 

et̂ �
�

H
1� K

�
1=4
�dt� Aîdx

î	;

e5̂ �

�
H

1� K

�
1=4
�dx5 � Bîdx

î	;

em̂ �
�

H
1� K

�
�1=4

dxm̂;

eâ � fH�1� K	g1=4dxâ:

(A4)

d. Global AdS

The metric is defined in Table II. The vielbein is defined
by

 et̂ � l cosh�dt; e�̂ � l sinh�d�; e�̂ � ld�;

e�̂1 � l cos�; e�̂2 � l sin�; eâ �

���������
Q1

Q5v

s
dza:

(A5)

APPENDIX B: PROOF OF THE CLASSICAL
ENERGY BOUND

We will use the notation
 

�0 � w; �01 � w1; �02 � w2; x � sinh2�;

s � sin2�; A2 � �02 � � 02 � X02: (B1)

In general, these quantities depend on 
.
Note that

 E �
Q5

2�

Z
d
f; (B2)

where
 

f �
asx� a1x� a2s� b

c1x� c2s� d
;

a � w2
2 � w

2
1 � w�w2 � w1	;

a1 �A2 � w2 � w2
1 � ww1;

a2 � w2
2 � w

2
1; b �A2 � w2

1;

c1 � w; c2 � w2 � w1; d � w1:

(B3)

The variables �s; x	; 0 � s � 1; 0 � x <1 span the
rectangle ABCD, where
 

A � �s; x	 � �0; 0	; B � �1; 0	;

C � �1;1	; D � �0;1	:
(B4)

It is possible to prove that a function f of the form (B3)
attains its minimum (with respect to the variables s, x) at
one of the four vertices A, B, C, or D.

Hence the minimum value of f is

 fmin � minffA; fB; fC; fDg: (B5)

We will assume that thew’s (w;w1; w2) are non-negative
(consistent with supersymmetry as discussed in the pre-
vious subsections). We will also assume that not all w’s are
simultaneously zero (so that the induced metric in (42) is
nonsingular); A2 can be zero or nonzero.

In the generic case when the w’s (w;w1; w2) as well as
A2 are nonvanishing, the values of f at the four vertices
are
 

fA �
b
d
� w1 �

A2

w1
;

fB �
a2 � b
c2 � d

� w2 �
A2

w2
;

fC �
a� a1

c1
�

3w
4
�

1

w

�
A2 �

�
w2 �

w
2

�
2
�
;

fD �
a1

c1
�

3w
4
�

1

w

�
A2 �

�
w1 �

w
2

�
2
�
:

(B6)

Note that for w, w1, w2, A2 all nonvanishing,
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 fA 
 w1; fB 
 w2; fC 

3
2w2; fD 


3
2w1:

(B7)

The minimum value of fC is obtained for w � 2w2, and
that of fD is obtained for w � w1.

In the above discussion we worked at a fixed 
. Ifw, w1,
w2, A2, s, x are independent of 
, the above bounds (B5)
and (B7) for the function imply similar bounds for �Pt
[see (B2)]. Thus, suppose that the minimum value of f is
fA. In that case we get

 E 
 w1Q5: (B8)

Now since w1 � �01 > 0 is independent of 
, it has to be a
positive integer, since
 Z 2�

0
d
w1 � �1�
 � 2�	 ��1�
 � 0	 � n12�;

n1 2 Z�: (B9)

Note that we are considering all w’s to be positive at the
moment.

Thus (B8) is consistent with the bound (69) we found in
the special cases.

The special cases in which some of the quantities w, w1,
w2, A2 vanish can be understood as limits of (B6) or can
be dealt with separately. The conclusion about the bound
remains the same.

Dependence on
.—In the most general case,w,w1,w2,
A2, s, x depend on 
. It can be shown that even in this
case the bound (69) for �Pt is satisfied. As an example,
suppose that the minimum value of f occurs at the point A
for some subset I1 of 0 � 
< 2� and the minimum
switches toB in the remaining part I2 of 0 � 
< 2�. Thus
 

E
Q5=�2�	



Z
I1
d
w1 �

Z
I2
d
w2 


Z
I1�I2

d
w1 � 2�n1

(B10)

since by hypothesis w2 >w1 in I2. Here n1 is the integer
winding number of the string around �1.

Summary

We have proved in this section that the classical energy
of an arbitrary supersymmetric configuration satisfies the
lower bound (69). The essential reason why the bound
exists, as clear from the proof above, is that supersymmetry
allows only non-negative winding of the string along �1,
�2, �. Furthermore, we do not allow all the winding
numbers to be zero simultaneously (so that det h remains
nonzero).

APPENDIX C: GAUGE-INVARIANT NOETHER
CHARGES

In this section, we address the issue of the apparent
dependence of the Noether charges in Table II on the gauge
choice of the 2-form potential B.

Note that, like in the case of the Dirac monopole poten-
tial Ai on S2, the magnetic part of the 2-form potential B,

 

Bmag

	0
� �

1

2
Q5�cos2� � b	d�1 ^ d�2;

b � constant;

cannot be globally defined with a fixed value of b on S3.
For B to be nonsingular, we must have b � �1 in a
neighborhood of � � �=2, and b � 1 in a neighborhood
of � � 0.

In an overlap of such neighborhoods, we have an ambi-
guity in the choice of b, and we must ensure that Noether
charges and BPS relations are gauge invariant.

We find below that the BPS relations are indeed written
in terms of gauge-invariant Noether charges (obtained
from the ‘‘gauge-invariant momenta’’ ~P below) which
are defined as follows.

 

E� L� J1 � J2 � �
Z
d
�Pt � P� � ~P�1

� ~P�2
� � 0;

~P�1
:� P�1

�
�b� 1	Q5

4�
�02 �

�
P�1
�

1

2�	0
C�2	�1�2

�02

�

�
Q5

4�
�cos2� � 1��02;

~P�2
:� P�2

�
�b� 1	Q5

4�
�01 �

�
P�2
�

1

2�	0
C�2	�1�2

�01

�

�
Q5

4�
�cos2� � 1��01: (C1)

Here the expressions in fg are the so-called ‘‘mechanical
momenta’’ (cf. pi � Ai) which are also gauge invariant, but
are different from the ones ( ~P) entering the BPS relation.

Derivation of the gauge-invariant ‘‘momenta’’ from a
Bogomol’nyi relation

We will consider the Bogomol’nyi bound for D1 branes
in global coordinates. Consider the following motion of the
D1 brane (this is sufficiently general for our purposes
here):

 t � �; � � �; � � const; � � const;

�1;2 � w1;2
��1;2��	:
(C2)

We will show that the Bogomol’nyi bound involves the
‘‘gauge-invariant momenta’’ ~P�1;1

, thus justifying their
definition which we introduced above.

We list below, for such motion, the Lagrangian, the
canonical momenta, and the canonical Hamiltonian,

GAUTAM MANDAL, SUVRAT RAJU, AND MIKAEL SMEDBÄCK PHYSICAL REVIEW D 77, 046011 (2008)
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 c � cos�; s � sin�; v � w2
_�1 � w1

_�2;

� � Q5=�2�	; 
 � c2w2
1 � s

2w2
2;

� � 
� c2s2v2; L � ��
� ����

�
p
�

1

2
v�cos2� � b	

�
;

P�1
� �w2

�
vc2s2����

�
p �

1

2
�cos2� � b	

�
;

P�2
� �w1

�
�
vc2s2����

�
p �

1

2
�cos2� � b	

�
; Hcan �

�
����
�
p :

(C3)

It is easy to see that the momenta satisfy a constraint:

 w1P�1
� w2P�2

� 0: (C4)

In the expression for the canonical Hamiltonian (C3), �
depends on the velocity combination v which is to be
expressed in terms of the (constrained) momenta P�1

, P�2
.

The gauge-invariant momenta, (C1), are given by
 

~P�1
� P�1

�
�
2
w2�b� 1	 � �w2s2

�
vc2����

�
p � 1

�
;

~P�2
� P�2

�
�
2
w1�b� 1	 � �w1c

2

�
�
vs2����

�
p � 1

�
:

(C5)

We now proceed with our analysis of the Bogomol’nyi
relation.

(i) Case: One of w1, w2 vanishes.
We have written the constraint equation (C4) for w1,
w2 nonzero. The analysis becomes significantly sim-
pler when either of them vanishes. We will consider
the case w1 � 0. Equation (C4) becomes

 

~P�2
� 0�� P�2

	: (C6)

The expressions for the other momentum and the
canonical Hamiltonian are

 

~P�1
� �sw2

�
c2 _�1��������������������

1� c2 _�2
1

q � s
�
;

Hcan � �sw2
1��������������������

1� c2 _�2
1

q :

(C7)

Eliminating _�1 between ~P�1
, Hcan, we get

 

�
Hcan

�w2

�
2
� s2 �

1

c2

� ~P�1

�w2
� s2

�
2

� 2
~P�1

�w2
� 1�

1

c2

� ~P�1

�w2
� 1

�
2
: (C8)

In a sector with a given gauge-invariant ‘‘charge’’
~P�1

, the minimum value of Hcan is obtained for

 

~P�1

�w2

� 1; (C9)

where

 Hcan;BPS � �w2 � ~P�1
: (C10)

Note that it is the gauge-invariant ~P�1
that appears in

the BPS relation, as promised.
The case w2 � 0 can be similarly computed. Again,
it is the gauge-invariant ~P�2

that appears in the BPS
relation.

(ii) Case: Both w1, w2 are nonzero.
We define a canonical transformation

 � � w2�1 � w1�2; � �
�2 ��1

w2 � w1
;

p �
P�1
� P�2

w2 � w1
; P � w1P�1

� w2P�2
:

(C11)

The constraint, encountered in (C4), becomes P �
0. The gauge transformation generated by the con-
straint can be fixed by putting � � 0. Note that,
although � is not a periodic coordinate, the con-
straint � � 0 is well defined. We have assumed
here w1 � w2; the case w1 � w2 can be dealt with
similarly by an appropriate canonical
transformation.
We denote v � _�. From (C3) we get

 p � �
�

c2s2v������������������������

� c2s2v2

p �
1

2
�b� cos2�	

�
;

H � �

������������������������


� c2s2v2
p :

(C12)

The Bogomol’nyi bound must be saturated when
v � w2 � w1 (which follows from _�1 � _�2 � 1).
When we substitute this in the above equation, we
get
 

H � �w2 � w1	p
0;

p0 :� p�
�
2

�
b�

w2 � w1

w2 � w1

�
:

(C13)

The top line is the BPS relation and the second line
defines the gauge-invariant momentum. The defini-
tion of p0 agrees with the gauge-invariant momenta
(C5), in the sense that if we replace P�i

by ~P�i
in the

definition of p in (C11) we recover the expression
for p0 as given above.
This proves the expression for the gauge-invariant
momenta (C1) for nonzero w1, w2.

APPENDIX D: KILLING SPINOR EQUATIONS FOR
D1-D5 SYSTEMS

In this appendix, we write down and solve Killing spinor
equations for the naive D1-D5 system. The general Killing
spinor equations are shown in Appendix D 1. We then
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proceed to write down and solve the dilatino equation, both
in the bulk and in the near-horizon limit, in Appendix D 2
a. The gravitino equation is similarly written down and
solved in the bulk and in the near-horizon limit in
Appendix D 2 b.

We then go on to investigate what happens when we add
momentum to the D1-D5 system in Appendix D 3. Finally,
we write down and solve the dilatino Killing spinor equa-
tion for the Lunin-Mathur geometries in Appendix D 4.

Although the results we derive below are quite well
known, we found it surprisingly difficult to find their
explicit derivations in the supergravity literature. So, we
hope that these explicit calculations will be useful for the
reader. The reader may also find Refs. [21,22,25,28,41,58]
useful.

1. Killing spinor equations

In this section, we write down the Killing spinor equa-
tions for type IIB string theory. Consider a type IIB two-
component spinor

 � �
�1

�2

� �
; (D1)

which satisfies �11� � ��. The dilatino Killing spinor
equation is
 �
@M��M �

1

12
HMAB�MAB � 
3

�
1

4
e�

X5

n�1

��1	n�1�n� 3	

�2n� 1	!
GA1...A2n�1

�A1...A2n�1 � �n

�
�

� 0; (D2)

where �n � 
1 for n even, and �n � i
2 for n odd. The
f
ig, i � 1, 2, 3 are the Pauli matrices.H andG are the NS-
NS and RR field strengths, and � denotes the dilaton.
Similarly, the gravitino Killing spinor equation is
 �
@M�

1

4
wBCM �BC�

1

8
HMAB�AB�
3

�
1

16
e�

X5

n�1

��1	n�1

�2n� 1	!
GA1...A2n�1

�A1...A2n�1 �M ��n

�
�� 0:

(D3)

Throughout this appendix, we will find it useful to divide
the coordinates M � 0; . . . ; 9 into � � 0, 5 (x0 and x5),
m � 1, 2, 3, 4 �r; �;�1; �2	, and a � 6, 7, 8, 9 (the torus
directions). We also need to define r2 � xmx

m.

2. The D1-D5 system

a. The dilatino equation

In this section, we write down the dilatino equation for
the D1-D5 system, and solve it to find the corresponding
projection conditions. We do this both in the bulk and in the
near-horizon limit. This system is defined by the following

metric, dilaton, and RR background14:
 

ds2 �
1����������
f1f5

p dx�dx� �
����������
f1f5

p
dxmdxm �

�����
f1

f5

s
dxadxa;

e2� �
f1

f5
;

G�3	 � �
f01
f2

1

dr ^ dx0 ^ dx5 �Q5 sin�2�	d� ^ d�1 ^ d�2;

G�7	 � Q1 sin�2�	d� ^ d�1 ^ d�2 ^
Y

d�a

� f05f
�2
5 dr ^ dx0 ^ dx5 ^

Y
d�a; (D4)

where we used the definitions

 f1 � 1�
Q1

r2 ; f5 � 1�
Q5

r2 : (D5)

Hence, the dilatino equation (D2) in the bulk is
 

�f�5=4
1 f�1=4

5 f01�r̂�1� �0̂ 5̂ � 
1	

� f�5=4
5 f�1=4

1 f05�r̂��1� �r̂ �̂ �̂1�̂2 � 
1	�� � 0

) �6̂ 7̂ 8̂ 9̂� � ��; �0̂ 5̂ � 
1� � �: (D6)

Note that we find the expected projection conditions (1)
and (2) for this background.

We now want to investigate what happens to the dilatino
equation (D6) in the near-horizon limit r! 0. In this limit,
Eqs. (D5) become

 f1 !
Q1

r2 ; f5 !
Q5

r2 : (D7)

Consequently, some terms in (D6) cancel, and we are left
with

 ��r̂ 0̂ 5̂ � ��̂�̂1�̂2� � 
1� � 0) �6̂ 7̂ 8̂ 9̂� � ��; (D8)

which is the dilatino equation in the near-horizon limit.
Note that one of the projection conditions has dropped out;
i.e. we get the expected doubling of supersymmetries in the
near-horizon geometry.

b. The gravitino equation

In this section, we find and solve the gravitino equation
for the background (D4). We will again do this both for the
bulk and in the near-horizon limit, beginning with the bulk.
First, note that we can define the vielbeins

14Note that, to avoid cluttering the notation, here we are using a
form of the metric and the dilaton in which constant factors have
been scaled away. This convention is used throughout
Appendixes D and E.
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 e�̂ � �f1f5	
�1=4dx�; em̂ � �f1f5	

�1=4dxm;

eâ �
�
f1

f5

�
�1=4

dxa:
(D9)

Thus, the corresponding spin connections are
 

w�̂ n̂ � �
1

4r
�f1f5	

�3=2�f1f5	
0�xndx��;

wm̂ n̂ � �
1

4r
�f1f5	

�1�f1f5	
0�xndxm � xmdxn�;

wâ n̂ � �
1

4r
f�1

1 f�1=2
5

�
f1

f5

�
0
�xndxa�:

(D10)

To simplify the notation, we have defined r2 � xmx
m.

Using these spin connections and the background (D4) in
the gravitino equation (D3), we get
 �

D
DxM

�
1

8
f1=2

1 f�1=2
5 �f01f

�7=4
1 f�1=4

5 �r̂ 0̂ 5̂

� �f1f5	
�3=4f05��̂�̂1�̂2��M � 
1

�
� � 0

) @M� � 0; (D11)

which is the gravitino equation in the bulk. Note that �r̂ �
�m̂ xm

r . Because of cancellation of terms, we conclude that
the Killing spinor � is just a constant expressed in terms of
vielbeins corresponding to Cartesian coordinates.

We now want to investigate what happens to the bulk
gravitino equation (D11) in the near-horizon limit r! 0.
In this limit, the spin connections (D10) become

 w�̂ n̂ ! �Q1Q5	
�1=2�xndx��;

wm̂ n̂ !
1

r2 �x
mdxn � xndxm�; wâ n̂ ! 0:

(D12)

Inserting these spin connections and the background (D4)
into Eq. (D3), we now find the gravitino equation in the
near-horizon limit,
 �
D
DxM

�
1

4
�Q1Q5	

�1=4��r̂ 0̂ 5̂ � ��̂�̂1�̂2��M � 
1

�
� � 0

) @a� � 0: (D13)

As a consistency check, the gravitino equation (D13) is
indeed equivalent to Mikhailov’s equation (E22). For the
torus coordinates, there is again a cancellation making the
spinor � constant in those directions.

In the near-horizon limit, where we find an AdS3 � S3

structure, it is convenient to move to ‘‘polar’’ coordinates:
�r; x0; x5	 for the AdS3 and ��;�1; �2	 for the S3. In this
basis, the Killing spinors do have a nontrivial dependence
on these six coordinates.

We therefore want to find this dependence by solving the
gravitino equation (D13). We proceed as follows. The S3

and �r; x0; x5	 parts can be analyzed separately. In fact, the
S3 part is identical to (E6) in Appendix E 3 and can be

solved, as detailed in that section. The final solution to that
part is given by Eq. (E12).

The �r; x0; x5	 part is

 

�
@
@r
�

1

2r
�0̂ 5̂

�
� � 0;

�
@

@x0 � rD
�
� � 0;�

@
@x5
� rD

�
� � 0;

(D14)

where we defined

 D � 1
2�Q1Q5	

�1=2��0̂ r̂ � �5̂ r̂	: (D15)

The split signs correspond to eigenvalues of 
1, i.e. 
1� �
��. As a consistency check, it can be verified that these
three operators commute. They can be solved analogously
to the S3 part, using the relation

 exp
�
�
�
2

�0̂ 5̂

�
r��0̂ � �5̂	 exp

�
�
�
2

�0̂ 5̂

�
� re����0̂ � �5̂	; (D16)

to move factors of the type exp�� �
2 �0̂ 5̂� through the D.

The solution to (D14) is
 

��r;x0; x5	 �M1�r;x
0; x5	�0;

M1�r;x0; x5	 � exp��1
2 ln�r	�0̂ 5̂�

� exp��1
2�Q1Q5	

�1=2�x0� x5	��
0̂ r̂��5̂ r̂	�;

(D17)

where �0 is a constant spinor on �r; x0; x5	. Hence, the full
solution to (D13) is obtained by combining the S3 solution
(E12) with the �r; x0; x5	 solution (D17), i.e.
 

��r; x0; x5; �; �1; �2	 � M1�r; x0; x5	M2��;�1; �2	�0

M2��;�1; �2	 � exp��1
2���̂1�̂2�

� exp��1
2��2 ��1	�

�̂�̂2�; (D18)

where �0 is a constant spinor on r, x0, x5, S3, and
M�r; x0; x5	 is already defined in (D17). Note that half of
the spinors which satisfy (D6) are still constants in viel-
beins corresponding to Cartesian coordinates, as in (D11).
The reason is that the projection �0̂ 5̂ � 
1� � �� makes
the x0, x5 dependence drop out.

3. The D1-D5-P system

In this section, we investigate the D1-D5-P system, i.e.
the D1-D5 system with momentum p added. The back-
ground is, in fact, almost identical to (D4), only the metric
is changed to (50) which can be rewritten as
 

ds2 � ��Adt� Bdx5	
2 � C2dx2

5 �
����������
f1f5

p
dxmdxm

�

�����
f1

f5

s
dxadxa; (D19)
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where we defined
 

A � �f1f5	
�1=4

�������������
1� K
p

;

B � �f1f5	
�1=4K=

�������������
1� K
p

;

C � �f1f5	
�1=4=

�������������
1� K
p

;

(D20)

where K � r2
p=r2. As can be verified using (D4) and (D19)

in (D2), the dilatino equation remains of the form (D6).
To obtain the gravitino equation, we again use vielbeins

(D9) and corresponding spin connections (D10). However,
in the t and x5 directions, we instead use

 et̂ � Adt� Bdx5; ex̂ � Cdx5: (D21)

The relevant new spin connections are
 

!x̂m̂ �
xm

r
�f1f5	

�1=4��Aet̂ � C0=Cex̂�

�
xm

r
�f1f5	

�1=4��A�Adt� Bdx5	 � C0dx5�;

!x̂ t̂ � �f1f5	
�1=4A

xm

r
em̂ �Adr;

!t̂ m̂ �
xm

r
�f1f5	

�1=4�A0=Aet̂ �Aex̂�

�
xm

r
�f1f5	

�1=4�A0=A�Adt� Bdx5	 �ACdx5�;

(D22)

where we defined

 A �
1

2

AB0 � A0B
AC

�
K0

1� K
: (D23)

Using (D4), (D10), (D19), and (D22), we can now obtain
the M � x5 component of the gravitino equation (D3),
which is D̂5� � 0, where
 

D̂5 � @5�
1

8

�f1f5	
�1=2�������������

1�K
p

��
�f1f5	

0

f1f5
� 2K0

�
�x̂ r̂

�

�
2K0 �K

�f1f5	
0

f1f5

�
�t̂ r̂

�
�f1f5	

0

f1f5
��r̂ t̂�K�r̂ x̂	 �
1

�

� @5�
1

8

�f1f5	
�1=2�������������

1�K
p

�
�f1f5	

0

f1f5
�x̂ r̂�1��0̂5̂ �
1	

�K
�f1f5	

0

f1f5
�t̂ r̂�1��0̂5̂ �
1	� 2K0�x̂ r̂�1��0̂ 5̂	

�
:

(D24)

Hence, using the additional constraint

 �0̂ 5̂� � �� (D25)

in addition to the ones obtained in Eq. (D6), we find that

 @5� � 0:

Similarly, using (D6) and (D25), the M � t component of
the gravitino equation becomes

 @0� � 0:

However, the M � m (m � 1, 2, 3, 4) component leads to

 

�
@r �

1

4

K0

�1� K	
�0̂ 5̂

�
� �

�
@r �

1

4

K0

�1� K	

�
� � 0;

(D26)

using (D25), so the spinor must have a nontrivial depen-
dence on r,

 ��r	 � �1� K	�1=4�0: (D27)

For the remaining components, the gravitino equation just
reduces to @M� � 0. Hence, the full Killing spinor is just
given by (D27), with �0 a constant with respect to the
vielbeins (D9) (except the x0 and x5 directions) and
(D21) (except the t and x directions).

4. Lunin-Mathur geometries

In this section, we write down and solve the dilatino
Killing spinor equation for the Lunin-Mathur geometries.
This serves to verify that these geometries do preserve the
same supersymmetries as the naive D1-D5 geometry.

Using the metric in (52), we may first define a vielbein in
terms of the following orthonormal 1-forms:

 

et̂ �
�

H
1� K

�
1=4
�dt� An̂dx

n̂	;

e5̂ �

�
H

1� K

�
1=4
�dx5 � Bn̂dxn̂	;

em̂ �
�

H
1� K

�
�1=4

dxm̂;

eâ � fH�1� K	g1=4dxâ:

(D28)

The field strength may now be computed in terms of the
RR 2-forms given in (52), and we find

 

G�3	 � dC�2	

�

�
H

1� K

�
3=4
�n̂
m̂ l̂ p̂

@nH�1em̂ ^ el̂ ^ ep̂

�

�
1� K
H

�
1=4
@n

1

�1� K	
et̂ ^ e5̂ ^ en̂

�
1

1� K
��@mBne

5̂ � @mAne
t̂	 ^ en̂ ^ em̂: (D29)

Notice that under Poincare duality
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 G�7	 � �10G�3	

�

��
H

1� K

�
3=4
�n̂
m̂ l̂ p̂

@nKem̂ ^ el̂ ^ ep̂

�

�
1� K
H

�
1=4
@nHet̂ ^ e5̂ ^ en̂ �H��@mBne5̂

� @mAnet̂	 ^ en̂ ^ em̂
�
^ dx6 ^ dx7 ^ dx8 ^ dx9:

(D30)

This justifies the result (86) for C0�2	 (recall by definition
G�7	 � dC0�2	 ^ dx6 ^ . . . ^ dx9) which we claimed was
obtained by interchanging H $ 1

1�K in C�2	.
Now, substituting the result (D29) into the dilatino equa-

tion (D2), we find that it becomes
 

H1=4�1� K	�5=4�@mK	�1� �0̂ 5̂ � 
1��

�H5=4�1� K	�1=4���@mH
�1	�m̂

� ��4dH�1	mnp�m̂ n̂ p̂ � 
1��

�H3=4�1� K	�3=4�0̂��m̂ n̂�@mBn	

� �m̂ n̂ 0̂ 5̂�@mAn	 � 
1�� � 0; (D31)

which is satisfied when, in addition to the properties of the
metric (52), we use the projections

 �6̂ 7̂ 8̂ 9̂� � �; �0̂ 5̂ � 
1� � �: (D32)

This confirms the result we quoted in Section II.

APPENDIX E: KILLING SPINOR EQUATIONS IN
GLOBAL ADS

In this appendix, we analyze the Killing spinor equations
in global AdS. In Appendixes E 1 and E 2, we write down
the dilatino and gravitino equations, respectively. We pro-
ceed to solving the gravitino equation in Appendix E 3.
Finally, we compare the results to those of Mikhailov in
Appendix E 4.

1. The dilatino equation

In this section, we will find the dilatino equation and the
corresponding projection conditions in global AdS. The
background we are working with is defined by the follow-
ing metric, dilaton, and the 3-form RR field strength:
 

ds2 � �Q1Q5	
1=2��cosh2��	dt2 � sinh2��	d�2 � d�2�

� �Q1Q5	
1=2�d�2 � cos2��	d�2

1 � sin2��	d�2
2�

� ds2
T4

e2� �
Q1

Q5
;

G�3	 � �Q5 sinh�dt ^ d� ^ d��Q5 sin�2�	d� ^ d�1

^ d�2: (E1)

Using this in Eq. (D2), we find the dilatino equation

 ���̂ t̂ �̂ � ��̂�̂1�̂2� � 
1� � 0) �6̂ 7̂ 8̂ 9̂� � �: (E2)

Note that it implies the usual torus projection.

2. The gravitino equation

In this section, we want to find the gravitino equation in
the global AdS background (E1). We begin by defining the
vielbeins
 

et̂ � �Q1Q5	
�1=4 cosh��	dt;

e�̂ � �Q1Q5	
�1=4 sinh��	d�;

e�̂ � �Q1Q5	
�1=4d�;

e�̂ � �Q1Q5	
�1=4d�;

e�̂1 � �Q1Q5	
�1=4 cos��	d�1;

e�̂2 � �Q1Q5	
�1=4 sin��	d�2:

(E3)

Thus, the corresponding nonvanishing spin connections are

 wt̂ �̂ � sinh��	dt; w�̂ �̂ � cosh��	d�;

w�̂1�̂ � � sin��	d�1; w�̂2�̂ � cos��	d�2:
(E4)

Using the background (E1) and the spin connections (E4)
in Eq. (D3), we find the gravitino equation

 

�
D
DxM

�
1

4
�Q1Q5	

�1=4���̂ t̂ �̂ � ��̂�̂1�̂2��M � 
1

�
� � 0:

(E5)

As a consistency check, the gravitino equation (E5) is
indeed equivalent to Mikhailov’s equation (E22). We
show how to solve the gravitino equation (E5) in
Appendix E 3.

3. Solving the gravitino equation

In this section, we show how to solve the gravitino
equation (E5). We proceed as follows. In fact, the S3 and
AdS3 parts split, and can be analyzed separately. We begin
with the S3 part, which is

 

�
@
@�
�

1

2
��̂1�̂2

�
� � 0;

�
@
@�1

� A
�
� � 0;�

@
@�2

� A
�
� � 0;

(E6)

where we defined

 A � 1
2 sin��	��̂ �̂1 � 1

2 cos��	��̂�̂2 : (E7)

As a consistency check, it can be verified that these three
operators commute. The split signs correspond to eigen-
values of 
1, i.e. 
1� � ��. The first equation of (E6)
implies that
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 ���;�1; �2	 � exp��1
2���̂1�̂2����1; �2	: (E8)

The second equation of (E6) then implies that

 ���1; �2	 � exp��1
2�1��̂�̂2����2	; (E9)

where we used the relation
 

exp��1
2���̂2�̂1��cos��	��̂�̂2 � sin��	��̂ �̂1	

� exp��1
2���̂2�̂1� � ��̂�̂2 (E10)

to move the factor exp�� 1
2 ���̂1�̂2� through the A. The

third equation of (E6) similarly implies that

 ���2	 � exp��1
2�2��̂�̂2�0�; (E11)

where �0 is a constant spinor on S3. So the solution to (E6)
is

 ���;�1; �2	 � exp��1
2���̂1�̂2� exp��1

2��2 ��1	�
�̂�̂2��0:

(E12)

We now proceed to the AdS3 part, which is

 

�
@
@�
�

1

2
�t̂ �̂

�
~� � 0;

�
@
@t
� B

�
~� � 0;

�
@
@�
� B

�
~� � 0;

(E13)

where we defined

 B � 1
2 sinh��	��̂ t̂ � 1

2 cosh��	��̂ �̂: (E14)

Again, we can verify that these three operators commute.
We now make the change of variables defined by

 � � i�; t � i�1; � � �2; (E15)

which turn (E13) into

 

�
@
@�
�

1

2
��̂1�̂2

�
~� � 0;

�
@
@�1

� C
�

~� � 0;�
i
@
@�2

� C
�

~� � 0;
(E16)

where we defined

 C � 1
2 sin��	��̂ �̂1 � 1

2 cos��	��̂�̂2 : (E17)

This system of equations can be analyzed analogously to
the S3 case, and we find the solution

 

~���; t; �	 � exp��1
2��t̂ �̂� exp��1

2��� t	�
�̂ �̂�~�0; (E18)

where ~�0 is a constant spinor on AdS3. Thus, the full
solution to (E5) is
 

���;�1; �2; �; t; �	 � ���;�1; �2	~���; t; �	

� exp��1
2���̂1 �̂2�

� exp��1
2��2 ��1	�

�̂ �̂2�

� exp��1
2��t̂ �̂�

� exp��1
2��� t	�

�̂ �̂��0; (E19)

where �0 is a constant spinor on AdS3 � S3.

4. Comparison to Mikhailov

In this section, we compare our gravitino equations to
those of Mikhailov [26]. In particular, Mikhailov writes
down the general form of the equation a spinor in global
AdS3 � S3 must satisfy as

 

�
D
Dxp

�
1

2

@f
@R

�p�0̂�1̂�2̂

�
��� � 0; (E20)

where p � 0, 1, 2 and 0, 1, 2 are the three coordinates on
either AdS3 or S3. The spinor ��� is defined by requiring
that 
1��� � ����. Equation (E20) presupposes an em-
bedding in a higher dimensional space. In more detail, we
can embed M � S3 or AdS3 in N � R4 or R2;2 as
 

ds2
N � dR2 � e2f�R	ds2

M � dR2 � R2d�2
M;) 2f�R	

� log�R2	 )
@f
@R
�

1

R
; (E21)

where R is a radial coordinate in N. For us, R2 �

�Q1Q5	
1=2, which means that Eq. (E20) becomes

 

�
D
Dxp

�
1

2
�Q1Q5	

�1=4�0̂�1̂�2̂�p

�
��� � 0: (E22)

Mikhailov’s equation (E22) is indeed equivalent to (D13)
and (E5).
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