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We revisit type IIB supergravity backgrounds with null and spacelike singularities with natural gauge
theory duals proposed in [S. R. Das, J. Michelson, K. Narayan, and S. P. Trivedi, Phys. Rev. D 74, 026002
(2006)] and [S. R. Das, J. Michelson, K. Narayan, and S. P. Trivedi, Phys. Rev. D 75, 026002 (2007)]. We
show that for these backgrounds there are always choices of the boundaries of these deformed AdS5 � S

5

space-times, such that the dual gauge theories live on flat metrics and have space-time dependent
couplings. We present a new time dependent solution of this kind where the effective string coupling
is always bounded and vanishes at a spacelike singularity in the bulk, and the space-time becomes AdS5 �
S5 at early and late times. The holographic energy momentum tensor calculated with a choice of flat
boundary is shown to vanish for null backgrounds and to be generically nonzero for time dependent
backgrounds.
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I. INTRODUCTION

In two previous papers [1,2] three of us proposed gauge
theory duals to a class of time dependent and null back-
grounds of IIB supergravity. These solutions are deforma-
tions of AdS5 � S5 backgrounds with non-normalizable
modes of the metric and the dilaton. The null solutions
and their duals were also proposed in [3,4]. It is thus
natural to conjecture that the dual gauge theory is de-
formed by corresponding sources. Generally, the super-
gravity solutions are singular with spacelike or null
singularities where, of course, supergravity breaks down.
The idea is to investigate whether the dual gauge theory
remains well behaved in this region and possibly provides a
way to continue the time evolution beyond the time where
the supergravity is singular. Other discussions of similar
solutions include [5]. For other approaches to the use of
AdS/CFT correspondence to study time dependent back-
grounds, see [6].

These solutions have an Einstein frame metric of the
form (with the AdS scale RAdS � 1)

 ds2 �
1

z2 �dz
2 � ~g���x�dx

�dx�� � d�2
5 (1)

and a dilaton ��x� together with a 5-form field strength

 F5 � !5 � ?!5: (2)

This is a solution if

 

~R�� �
1
2@��@��; r2� � 0 (3)

where ~R�� is the Ricci tensor for the four dimensional
metric ~g���x�.

In this paper, the S5 part of the metric will remain
unaltered and we will not write this out explicitly.

In these coordinates the boundary is at z � 0, and as
argued in [1,2], it is reasonable to assume that the dual
gauge theory lives on a 3� 1 dimensional space-time with
metric ~g���x� and has a space-time dependent coupling
gYM�x� � e��x�=2. Of particular interest are solutions
where

 ~g ���x�dx�dx� � ef�x���2dx�dx� � d~x2�: (4)

Now, because of the space-time dependence of the cou-
pling constant, the Yang-Mills theory is not conformally
invariant in the sense of conformal coordinate transforma-
tions. However, the theory is still Weyl invariant under
Weyl transformations of the metric and corresponding
transformations of the fields. One might therefore hope
that the overall factor in (4) can be removed by a Weyl
transformation leaving us with a gauge theory on flat space
with space-time dependent coupling. Such a step would be,
however, subtle in the quantum theory because of a pos-
sible Weyl anomaly.

Null solutions with the conformal factor depending on a
single null coordinate are of special interest from several
points of view. First, for such solutions, with f � f�x��
and � � ��x�� the Eq. (3) becomes

 

1
2 �f

0�2 � f00 � 1
2��

0�2: (5)

This means that we have a one function worth of solutions.
We can pick any f�x�� and solve for ��x��. In particular,
we may look for solutions where the dilaton is bounded
everywhere. Indeed an interesting solution is given by
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 ef�x
�� � �tanhx��2 e��x�� � gs

��������tanh
�
x�

2

���������
��
8
p

: (6)

This solution asymptotes to AdS5 � S
5 with string cou-

pling gs at x� ! 	1. Both the metric and the effective
string coupling e� drops to zero at x� � 0 which is the
location of the null singularity. This is good: things appears
to be controlled. What makes this kind of background
appealing is the fact that the Weyl anomaly in the gauge
theory living in the metric (4) identically vanishes for such
null backgrounds. Therefore, we could perform a Weyl
transformation without bothering about the anomaly, and
obtain a dual theory which is on flat space. In this dual
theory, the coupling is always bounded, vanishing at x� �
0. One would expect that the Yang-Mills theory is well
behaved for such profiles. A careful argument along the
above lines was given in [2].

This provides a clean formulation of the problem
in terms of light front evolution. Consider the strong
’t Hooft coupling regime of the gauge theory
 

g2
YM � gs ! 0 N ! 1 g2

YMN � finite and large:

(7)

Then at x� ! �1 we start with a gauge theory in its
ground state. Since the ’t Hooft coupling is large, super-
gravity in AdS5 � S

5 provides an accurate description in
this regime. Now turn on a source leading to x� depen-
dence of the effective coupling, g2

YM ! g2
YMe

��x��. In the
dual supergravity this means that we have turned on a non-
normalizable dilaton mode ��x��. As x� increases, the
system evolves. In the gauge theory side the effective
coupling decreases, but remains large so long as jx�j is
large enough. In this regime, therefore, the supergravity
description remains good and that is what is described by
the supergravity solution. As we approach x� � 0, the
gauge theory coupling becomes weak, becoming exactly
zero at x� � 0. A gauge theory with weak coupling is not
well described by dual supergravity—stringy effects are
important. Indeed, if we look at the evolution on the
supergravity side, and extrapolate the solution to small
x�—where supergravity should no longer be valid—we
encounter a singularity. However, because the gauge cou-
pling is weak, one would imagine that the gauge theory
description remains good—maybe even well approxi-
mated by perturbation theory. This gauge theory then
describes the region which appears to be singular if the
supergravity solution is extrapolated to the regime where it
should not have been in the first place. Because of null
dependence of the coupling, the gauge theory has several
properties which indicate that the theory is actually well
behaved at x� � 0. A null isometry ensures absence of
particle production, and in a light cone gauge the kinetic
terms are standard so that only positive powers of the x�

dependent coupling appear in the nonlinear terms [2].
Since the coupling in fact vanishes at x� � 0 one might

hope that perturbation theory is reliable in this region and
may be even used to extend the time evolution through
x� � 0 to positive x�.

In contrast to the null solutions, the time-dependent
solutions found in [1] do not have such nice features.
These solutions have boundary metrics which are Kasner
cosmologies, e.g.

 

ds2 �
1

z2

�
dz2 � dt2 �

X3

i�1

t2pidxidxi
�

X
i

pi � 1

e��t� � jtj
������������������
2�1�

P
p2
i �

p
:

(8)

The string coupling—and therefore the Yang-Mills cou-
pling—still goes to zero at the spacelike singularity at t �
0, but diverges at early or late times. As we shall see below
it still turns out that the Weyl anomaly of the boundary
theory in these coordinates vanishes. However, because of
the divergence of the Yang-Mills coupling, it is unclear
whether the gauge theory makes sense. Furthermore, as
discussed below, time-dependent backgrounds (unlike null
backgrounds) have curvature singularities at z � 1 for any
time. For the solution (8), at any fixed time t the Ricci
scalar diverges as z2

t3 . At early and late times, however, the
divergence goes away.

While the results stated above are suggestive, there are
several causes for serious concern. The first issue concerns
the choice of boundary described above. In this choice, the
null or spacelike singularity extends all the way to the
boundary. While a Weyl transformation removes this and
brings us to a flat boundary metric, the conformal factor
required is clearly singular: this is certainly an uncomfort-
able situation. Furthermore, both for the null and the space-
like cases, the behavior of the Yang-Mills coupling is
nonanalytic [7], casting serious doubts about a smooth
time evolution through this point. In fact, it turns out that
if the conformal factor ef�x

�� is chosen to vanish at x� � 0
in an analytic fashion, e��x�� has this nonanalytic behavior.
On the other hand if e��x�� is analytic, ef�x

�� becomes
nonanalytic. Finally, the Kasner-like solutions with space-
like singularities do not appear to lead to a controlled dual
theory.

In this paper we take some steps in solving some of these
problems. We show that for the solutions with brane met-
rics conformal to flat space, one can always choose a
foliation such that the boundary is flat. To show this, we
use the well-known fact that in asymptotically AdS space-
times, a Weyl transformation of the boundary theory cor-
responds to a special class of coordinate transformations in
the bulk—the Penrose-Brown-Henneaux transformations.
We find these exact transformations for any null solution of
this kind and for the Kasner solutions described above. For
other time dependent solutions, we find these transforma-
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tions in a systematic expansion around the (new) boundary.
Thus in these new coordinates the boundary theory is
explicitly defined on flat space and the nontrivial feature
is in the time (or null time) dependence of the coupling.
Furthermore, for the null solutions of the type (4), we do
not have to worry about the function f�x�� anymore and
choose the function ��x�� to have a nice analytic behavior
at x� � 0.

We then describe new supergravity solutions with space-
like singularities which asymptote to AdS5 � S

5 at early
and late times. The couplings are bounded everywhere and
vanish at the spacelike singularity. This opens up the
possibility of posing questions about spacelike singular-
ities in the gauge theory dual in a fashion analogous to our
formulation of null singularities. At this time, however, we
are still unable to arrive at such a clean formulation for
spacelike singularities.

We then compute the energy momentum tensors of these
solutions using standard techniques of holographic RG [8–
13]. We find that the energy-momentum tensor vanishes for
all null backgrounds for both foliations. For time-
dependent backgrounds, the trace anomaly vanishes in
the coordinates of (1), while the energy momentum tensor
in the foliation leading to a flat boundary metric is nonzero.
In fact the answer diverges at the time when the coupling
constant vanishes. While a nonzero energy momentum
may be interpreted as particle production, one cannot
attach any significance to the divergence since this happens
at the place where the supergravity description is invalid.

While this paper was being written, [14] appeared on the
archive, which has some overlap with our Sec. II.

II. NULL COSMOLOGIES IN BETTER
COORDINATES

In this section we will rewrite the supergravity solutions
of [1] in new coordinates leading to a choice of the bound-
ary with a flat metric.

A. PBH transformations

It is well known that Weyl transformations in the bound-
ary theory correspond to special coordinate transforma-
tions in the bulk—the Penrose-Brown-Henneaux (PBH)
transformations [15,16]. Any asymptotically AdS space-
time may be written in a standard coordinate system of the
Feffermann-Graham form

 ds2 �
1

��2 d ��2 �
1

��2
~g���x; ���dx�dx�: (9)

Now consider the coordinate transformations [8,17,18]

 ��! ��e���x; ��� x� ! x� � a��x; ��� (10)

which keep this form of metric invariant. For infinitesimal
transformations this is ensured by requiring � to be a
function of x alone, and

 

1

��
@ ��a� � �~g��@��: (11)

The transformation of the metric ~g�� is given by

 �~g���x; ��� � 2��x; ����1� 1
2 ��@ ���~g���x; ���

� r��a���x; ���: (12)

The expression (12) explicitly shows that this transforma-
tion includes a Weyl transformation of the metric ~g��.

Consider now a metric of the form

 ds2 �
1

z2 �dz
2 � ef�x����dx

�dx��: (13)

Our aim is to perform a PBH transformation to remove the
conformal factor ef�x� in the boundary metric. However we
need to do this for finite PBH transformations.

B. Null cosmologies in new coordinates

When the conformal factor f�x� is a function of a single
null coordinate x�, i.e. when the original metric is of the
form

 ds2 �
1

z2 �dz
2 � ef�x

����2dx�dx� � d~x2�� (14)

it turns out that it is easy to figure out the correct finite PBH
transformations. These are given by the following
 

z � wef�y
��=2

x� � y� � 1
4w

2�@�f�

x� � y� ~x � ~y:

(15)

In these coordinates the metric becomes
 

ds2 �
1

w2

�
dw2 � 2dy�dy� � d~y2

�
1

4
w2��f0�2 � 2f00��dy��2

�

�
1

w2

�
dw2 � 2dy�dy� � d~y2 �

1

4
w2��0�2�dy��2

�

(16)

where in the second line we have used (5).
The new coordinates provide a new foliation of the

space-time. The boundary w � 0 is naively the same as
the original boundary z � 0. However, it is well known
that AdS/CFT requires an infrared cutoff in the bulk which
corresponds to a ultraviolet cutoff in the dual gauge theory.
For any such finite cutoff �, the boundary w � � is not the
same as z � �, and becomes flat in the �! 0 limit.
Consequently the dual Yang-Mills theory lives on a flat
space with a x� dependent coupling.

Notice that in these coordinates, there is only one func-
tion ��x�� which we are free to choose. In particular, e�

can be chosen to be bounded and vanishing at x� � 0 in an
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analytic fashion. The proposed dual will then have a
coupling which is bounded and vanishes at x� � 0 in a
smooth fashion.

For such solutions, @�� will, however, diverge at x� �
0. This means that the bulk space-time will be as usual
singular. This may be seen by looking at the behavior of
geodesics as in [1,2]. In the new coordinates, these geo-
desics are

 w � z0F�y�� y� � y�0 �
1

4
z2

0

d
dy�
�F�y��2 (17)

where F�y�� � e�f�y
��=2. The affine parameter along such

geodesics is given by

 � �
Z y� 1

F�y��2
dy�: (18)

It is easy to find functions ��x�� so that the singularity at
y� � 0 is reached in finite affine parameter. For such
solutions F�y�� must diverge at y� � 0 The magnitude
of the tidal acceleration between two such geodesics sepa-
rated along a transverse direction is given by (see equa-
tion (2.10) of [2])

 jaj � �F�y���3F00�y�� (19)

and would diverge as well. The form of the metric (16),
however, shows that this singularity weakens as we ap-
proach the boundary w � 0 leaving a flat boundary metric.

III. KASNER-TYPE SOLUTIONS

Similar considerations apply to time dependent solu-
tions of the form of (8). We will concentrate on solutions
with p1 � p2 � p3 �

1
3 . Redefining the time coordinate,

this solution may be written in the form
 

ds2 �
1

z2

�
dz2 �

2t
3
��dt2 � �dx1�2 � 
 
 
 �dx3�2�

�

e��t� � jtj
��
3
p

: (20)

This solution has a spacelike singularity at t � 0.
Since the boundary metric on z � 0 is conformally flat,

there should be a PBH transformation which leads to a
foliation with a flat boundary. This is indeed true. The
solution for t > 0 becomes

 ds2 �
1

�2

�
d�2 �

�16T2 � 5�2�2

256T4 dT2

�
�16T2 � �2�4=3�16T2 � 5�2�2=3

256T4 ��dx1�2

� 
 
 
 �dx3�2�

�
(21)

where the new coordinates ��; T� are related to the coor-
dinates �z; t� in the region � < 4T by the transformations

 z �
32�T5=2���

6
p

1

16T2 � �2 t � T
�
16T2 � 5�2

16T2 � �2

�
2=3
:

(22)

The dilaton may be written down in new coordinates by
substituting (22) in (20).

It is clear that in this new foliation defined by slices of
constant �, the boundary � � 0 has a flat metric. However
this coordinate system has a coordinate singularity at � �
4T, but may be extended beyond this point.

The arguments in the previous section then indicate that
there is a dual field theory which lives in a flat space-time,
but with a time-dependent coupling which vanishes at T �
0. Unlike the null solutions, the coupling diverges at early
or late times, and we cannot make any careful argument
about the behavior of this dual theory.

As noted in the introduction, these solutions have a
curvature singularity at any finite time, though the singu-
larity goes away at early and late times. The bulk Ricci
scalar is given by

 R 5 � �

�
9z2

4t3
� 20

�
: (23)

In the global geometry the Poincare horizon is a product of
a null plane times a S2. This singularity appears at one
point on this null plane. The rest of the Poincare horizon is
nonsingular.

IV. NEW CLASS OF TIME DEPENDENT
SOLUTIONS

A necessary condition for a well-defined dual theory is
that the coupling should be bounded at all times. This
motivates us to search for new solutions which have space-
like singularities of this type. We will present such solu-
tions in this section.

These solutions are special cases of a class of time-
dependent solutions whose boundary metrics are FRW
universes. The Einstein frame metric1 is given by
 

ds2 �
1

z2

�
dz2 � A�t�

�
�dt2 �

dr2

1� kr2

� r2�d	2 � sin	2d
2�

��
(24)

with k � 0, 	1, and

 ��t� � 	
���
3
p Z dt

A�t�
(25)

where

1These solutions can be derived from a generic ansatz with
diagonal metric, and imposing that the dilaton is a (spatially
homogeneous) function ��t� of time t alone.
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 A�t� � C1 sin�2
���
k
p
t� � C2 cos�2

���
k
p
t�: (26)

The solutions with k � �1 are particularly interesting.
If we choose A�t� � j sinh�2t�j, the dilaton becomes

 e��t� � gsj tanhtj
��
3
p

(27)

so that the coupling is bounded and vanishes at t � 0.
There is a spacelike singularity at t � 0. In the following
we will restrict our attention to the ‘‘big crunch’’ part of the
space-time, i.e. for t < 0. In this case we use A�t� �
j sinh�2t�j.

The boundary metric is in fact conformal to parts of
Minkowski space. This is seen by defining new coordinates
(for t < 0)

 r �
R������������������

�2 � R2
p e�t �

������������������
�2 � R2

q
: (28)

The solution now becomes

 

ds2 �
1

z2

�
dz2 �

��������1�
1

��2 � R2�2

��������
� ��d�2 � dR2 � R2d�2

2�

�

e� �

���������
2 � R2 � 1

�2 � R2 � 1

��������
��
3
p

:

(29)

The t > 0 part of the solution also becomes this metric
after a coordinate transformation obtained by reversing the
sign of t in (28). In these coordinates it is clear that as t!
�1, i.e. �2 � R2 ! 1, the space-time is AdS and e�

asymptotes to a constant.
The coordinate transformation (28) is valid in the region

�2 � R2 > 0, and �2 � R2 � 1 are the two spacelike sin-
gularities. Even though we started with the form of the
metric (24) we could extend the solution beyond part this
part of Minkowski space in the standard manner. In this
extended solution, there are timelike singularities at R2 �
�2 � 1. As is evident, the dilaton shows a singular behav-
ior at the location of these singularities, even though the
value of e� goes to zero. In the following we will be
interested in the solution in the regions ��2 � R2�> 1,
i.e. the space-time described by the metric (24).

Like the Kasner solutions, these solutions generically
have curvature singularities at z � 1. In the big crunch
region, The bulk Ricci scalar is given by

 R 5 � �

�
20� 3

z2

�sinh�2t��3

�
; (30)

where t is as in (24) with A�t� � � sinh�2t� in this t < 0
region of the space-time. The global nature of this singu-
larity is similar to the Kasner-type solution. In particular, at
early times t! �1 there is no such singularity.

We can, therefore, view these backgrounds in the same
way as the null backgrounds. For t < 0 the space-time is
pure AdS5 � S5 in the infinite past. As time evolves one
generates a spacelike singularity at t � 0 which extends to
the boundary defined at z � 0. However, since the bound-
ary metric is conformal to flat space, we can choose a
different foliation by performing a PBH transformation
and choose a boundary which is completely flat. (In this
case, we have not been able to find the exact PBH trans-
formations, but—as detailed in the Appendix—the PBH
transformation may be found in an expansion around the
boundary). The gauge theory defined on this latter bound-
ary is on flat space with a time-dependent coupling con-
stant which vanishes at the location of the bulk singularity.
The source in the gauge theory evolves the initial vacuum
state. On the supergravity side, a (timelike) singularity
develops at z � 1. While we do not have a clear idea of
the meaning of this singularity in the gauge theory it is
reasonable to presume—in view of the usual AdS/CFT
duality—that this should manifest itself in the infrared
behavior. Finally, as the time evolves, the gauge coupling
goes to zero—this manifests itself as a spacelike singular-
ity in the bulk in a region where supergravity itself breaks
down.

The analysis of this dual gauge theory appears to be
more complicated than the dual gauge theory for null
backgrounds. One issue is related to the fact that the gauge
theory Lagrangian has an overall factor of e��. When �
depends only on a null direction, it was shown in [2] that a
choice of light cone gauge, together with a field redefini-
tion, converts the kinetic terms in the action into standard
form for constant couplings. All factors of couplings then
appear in the nonlinear terms as positive powers of e��x��,
which vanish at the location of the bulk singularity. This
allowed us to arrive at some clean conclusions about the
behavior of the gauge theory. In [14] a different gauge
choice was used—this again made analysis of the gauge
theory easier. For time dependent backgrounds, we have
not been able to find a gauge choice and a field redefinition
which leads to a similar simplification. Nevertheless we
expect that the theory is amenable to perturbative analysis
near t � 0 where the gauge coupling becomes weak.

V. THE HOLOGRAPHIC STRESS TENSOR

In this section we use the standard techniques of cova-
riant counterterms [8–12,23] to calculate the holographic
stress tensor. The gravity-dilaton action in five dimensional
space M, with boundary @M is given by,
 

Ibulk � Isurf �
1

16�G5

Z
M
d5x

�������
�g
p

�
R�5� � 12�

1

2
�r��2

�

�
1

8�G5

Z
@M

d4x
�������
�h
p

�: (31)

Where the second term is the Gibbons-Hawking boundary
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term, h�� is the induced metric on the boundary and � is
the trace of the extrinsic curvature2 of the boundary @M.

The above action is divergent. Therefore, one might use
one of the known techniques to regularize such action.
Here we choose to work with the covariant counterterm
method since we are interested in calculating the boundary
energy momentum and its trace. To have a finite action one
can add the following counterterms

 Ict � �
1

8�G5

Z
@M

d4x
�������
�h
p �

3�
R

4
�

1

8
�r��2

� log��0�a�4�

�
(32)

where �0 is a cutoff on the radial coordinate �which has to
be taken to zero at the end of the calculation. R is the Ricci
scalar for h. The term proportional to log��0� is required to
cancel a logarithmic divergence in the action (31).
However this term does not contribute to the renormalized
energy momentum tensor.

Now the total action is given by I � Ibulk � Isurf � Ict.
Using this action one can construct a divergence free stress
energy tensor [9]:

 T�� �
2�������
�h
p

�I
�h��

�
1

8�G5

�
��� ��h�� � 3h�� �

1

2
G��

�
1

4
r��r���

1

8
h���r��2

�
: (33)

Here G�� and r are the Einstein tensor and covariant
derivative with respect to h. In the regime where the
supergravity approximation is valid, the vev of the CFT’s
energy momentum tensor hT��i is related the above stress
tensor by the following equation

 

�������
�~g

p
~g��hT

��i � lim
z!0

�������
�h
p

h��T
�� (34)

where we have used the notation of Eq. (9).
The energy-momentum tensors calculated in the holo-

graphic RG approach correspond to operators in the dual
field theory which are regularized using the specific bound-
ary metric used to perform the bulk calculation.

A. Conformally flat boundary

Let us first consider bulk metrics of the form (1). This
means we use a cutoff defined in terms of the radial
coordinate z. Using the above expression for the stress
tensor, one can easily show that for a any solution with
conformally flat boundary, i.e. of the form of Eq. (4), the
stress tensor vanishes. Let us see how this result is ob-

tained. First, the extrinsic curvature for a solution with a
conformally flat boundary is

 ��� � �h��: (35)

The extrinsic curvature terms in the expression then cancel
with the term proportional with the induced metric. Using
(3) and its contraction, one can see directly that the last
three terms exactly cancel leading to the vanishing of the
stress tensor. As a result, the trace anomaly vanishes.
Comparing this result with the known results in the litera-
ture one finds the following. Our result does not match with
the field theory calculation of trace anomaly in [19]. The
reason is that in this calculation only terms up to quadratic
order in the dilaton were included and all higher orders
have been ignored. But this result agrees with the holo-
graphic anomaly expression calculated in [10] since their
expression contains these terms which are crucial to have a
vanishing anomaly.

B. Flat boundary

We will now consider the energy momentum tensor
which is defined by a choice of foliation which leads to a
flat boundary metric. This is of course a different regulari-
zation and would lead to a different answer which would
give us the energy momentum tensor of the gauge theory
defined on flat space in an appropriate regime.

1. Null solutions

It is easy to check by a direct calculation that for the
solutions with null singularities, the energy momentum
tensor continues to vanish.

2. Kasner-type solutions

Now consider the Kasner-type solution in new coordi-
nates (21). Using the above expression for the holographic
stress tensor, one gets the following

 T�� �
�4

1024�G5T4 diag�9; 13; 13; 13� �O��6�: (36)

The energy momentum tensor of the CFTas in (34) is given
by

 hT��i �
N2

512�2T4 diag�9; 13; 13; 13�; (37)

which has the following nonvanishing trace:

 hT�� i �
3N2

32�2

1

T4 ; (38)

here we have used

 G5 �
�

2N2 : (39)

The trace computed here agrees with the holographic trace

2�ab � �
1
2 �ranb �rbna�, where na in the unit normal

vector to the surface z � constant and pointing to the boundary
@M[22]
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anomaly found in [10]. The nonzero energy momentum
tensor can be possibly interpreted as particle production.

3. FRW solutions

To calculate the energy momentum tensor for the new
FRW solution with k � �1 it is convenient to work with
the following coordinate system. These coordinates allow
the conformal factor to depend only on one coordinate,
while keeping the boundary metric Minkowski. The coor-
dinate transformations are as follows:

 �2 � �2 � R2; r2 �
�� R
�� R

: (40)

This puts the metric in the form
 

ds2 �
dz2

z2 �
1

z2

�
1�

1

�4

�

�

�
�d�2 �

�2

r2 dr
2 �

�2

4

�
r�

1

r

�
2
d�2

2

�
: (41)

The dilaton in these coordinates is given by

 ���� �
���
3
p

ln
�
�2 � 1

�2 � 1

�
: (42)

One can use these coordinates to do a PBH transformations
as explained in the appendix and obtain another form of
this solution with Minkowski boundary. In this form the
stress energy tensor is given by
 

T�� �
�4

4�G5� �T4 � 1�4

� diag�12� 3 �T4; 4� 9 �T4; 4� 9 �T4; 4� 9 �T4�

�O��6� (43)

where the coordinate �T is defined in the appendix. Using
(34) and (39), the energy momentum tensor of the CFT is
given by
 

hT��i �
N2

2�2� �T4 � 1�4

� diag�12� 3 �T4; 4� 9 �T4; 4� 9 �T4; 4� 9 �T4�;

(44)

which has the following nonvanishing trace:

 hT�� i �
12N2

�2

� �T4 � 1�

� �T4 � 1�4
: (45)

Again this trace agrees with the calculation in [10]. Note
that the energy-momentum tensor vanishes at early times.
This reinforces our claim that at early times we have
started with the vacuum state of the dual gauge theory,
with a source which vanishes at �T ! �1. At later times,
the source produces a nonzero energy momentum tensor as
well as a nonzero expectation value of the operator dual to

the dilaton. In other words, the Heisenberg picture state is
the vacuum of the CFT. It is tempting to interpret the
nonzero stress tensor as an effect of particle production.
Once again the stress tensor diverges at the singularity �T �
1. However this is precisely the place where the holo-
graphic calculation cannot be trusted.

The real question is whether the gauge theory is well
behaved in this region. For null backgrounds, this appears
to be so [14,20,21]. For time dependent backgrounds, this
is not clear at the moment, particularly because of bulk
singularities at z � 1 which signify that there are infrared
problems in the gauge theory. These issues are under
investigation.
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APPENDIX: PBH TRANSFORMATIONS

In the coordinates displayed in (23), the spacelike sin-
gularity extends to the boundary. However in the form (29)
the boundary metric is conformal to flat space. This sug-
gests that there should be PBH transformations, which
leads to a flat boundary metric. In the case of FRW solu-
tions however, we have not yet been able to find the exact
PBH transformations. We will show below how to find
these transformations systematically in the neighborhood
of the boundary and obtain them to the order which is
required for our analysis of the energy-momentum tensor
in the next section.

Let us show how can we obtain such coordinate trans-
formation for a solution with a conformally flat boundary
on the following form
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 ds2 �
1

z2 �dz
2 � f�t����dx�dx��: (A1)

We chose the conformal factor to depend only on one
coordinate since this will be sufficient to deal with the
cases under consideration in this work. One can generalize
such a procedure to cases with a general conformal factor
f�x�� and boundaries other than Minkowski. We define the
following coordinate transformations

 t��; T� �
X

n�0;2;::

ai�T��i z��; T� � �
X

n�0;2;::

si�T��i:

(A2)

One can choose a0�T� � T, then expanding all metric
components in �, they have the following form in new
coordinates
 

g�� �
1

�2 �
4

s2
o
�s0s2 � a2

2f� �
4

s3
0

�2s4s2
0 � a

3
2

_fs0

� 2a2
2fs2 � 4a2fa4s0��

2 �O��4�

g�T �
1

s2
0

� _s0s0 � 2a2f�
1

�
�

1

s3
0

� _s2s
2
0 � s2 _s0s0 � 2a2f _a2s0

� 2a2
2

_fs0 � 4fa2s2 � 4fa4s0���O��
3�

gTT �
�f

s2
0

1

�2 �
1

s3
0

�a2s0
_f� 2fs2 � 2 _a2fs0 � _s2

0s0�

�
1

2s4
0

�2s2
0

_fa4 � s2
0

�fa2
2 � 4 _fa2s0s2 � 4 _fa2s2

0 _a2

� 4fs4s0 � 6fs2
2 � 8f _a2s2s0 � 4fs2

0 _a4 � 2fs2
0 _a2

2

� 4 _s2
0s2s0 � 4 _s0 _s2s

2
0��

2 �O��4�

gii �
f

s2
0

1

�2 �
1

s3
0

�2s2f� a2s0
_f� �

1

2s4
0

�2s2
0

_fa4 � s2
0

�fa2
2

� 4 _fa2s0s2 � 4fs4s0 � 6fs2
2��

2 �O��4�: (A3)

To keep the PG form of the metric and to get a Minkowski
boundary, one imposes the following conditions

 g�� �
1

�2 ; g�T � 0; g�� � ���
1

�2 �O�1�;

(A4)

this guarantees the existence of such a coordinate system,
at least, close to the new boundary. These conditions lead
to

 s0�T� � f�T�1=2; s2�T� �
_f�T�2

16f�T�3=2

s4�T� �
_f�T�4

256f�T�7=2
; :: a2�T� �

_f�T�
4f�T�

;

a4�T� � 0:

(A5)

Applying the above procedure to Kasner-type solutions in

(20) with f�t� � 2
3 t, one can obtain the following coordi-

nate transformations

 z��; T� �

������
6T
p

�
3

�
1�

�2

16T2 �
�4

256T4

�
�O��7�;

t��; T� � T �
�2

4T
�O��6�:

(A6)

The metric in these coordinates has a Minkowski bound-
ary and has the following form
 

ds2 �

�
1

�2 �O��
4�

�
d�2

�

�
1

�2 �
5

8T2 �
25

256T4 �
2 �O��4�

�
dT2

�

�
1

�2 �
1

8T2 �
7

256T4 �
2 �O��4�

�
d �x2 (A7)

which agrees with the exact coordinate transformation in
(22) and the metric (21) upon expanding it in powers of �.

Before applying this procedure to calculate the FRW
solution with k � �1 let us use the coordinate system
given in (38).

 �2 � �2 � R2; r2 �
�� R
�� R

: (A8)

This puts the metric in the form
 

ds2 �
dz2

z2 �
1

z2

�
1�

1

�4

�

�

�
�d�2 �

t2

r2 dr
2 �

�2

4

�
r�

1

r

�
2
d�2

2

�
: (A9)

Following the above procedure one can obtain the PG form
of this solution with Minkowski boundary. The coordinate
transformations and the metric are
 

z��; �T� �

���������������
�T4 � 1
p

�
�T2

�
1�

�2

�T2� �T4 � 1�2
�

�4

�T4� �T4 � 1�4

�

�O��7�;

���; �T� � �T �
�2

� �T4 � 1� �T
�O��6�

(A10)

 

ds2 �

�
1

�2 �O��
4�

�
d�2 �

�
1

�2 �
10 �T2

� �T4 � 1�2

�
25 �T4

� �T4 � 1�4
�2 �O��4�

�
d �T2

�

�
1

�2 �
2 �T2

� �T4 � 1�2
�
� �T4 � 8�

� �T4 � 1�4
�2 �O��4�

�

�

� �T2

r2 dr
2 �

�T2

4

�
r�

1

r

�
2
d�2

2

�
: (A11)
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