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We use the low energy effective U�1�r action on the Coulomb branch of N � 4 super Yang-Mills
theory to construct approximate field configurations for solitonic dyons in these theories, building on the
brane-prong description developed in P. C. Argyres and K. Narayan, J. High Energy Phys. 03 (2001) 047.
This dovetails closely with the corresponding description of these dyons as string webs stretched between
D-branes in the transverse space. The resulting picture within these approximations shows the internal
structure of these dyons (for fixed asymptotic charges) to be moleculelike, with multiple charge cores held
together at equilibrium separations, which grow large near lines of marginal stability. Although these
techniques do not yield a complete solution for the spatial structure (i.e. all core sizes and separations) of
large charge multicenter dyons in high rank gauge theories, approximate configurations can be found in
specific regions of moduli space, which become increasingly accurate near lines of marginal stability. We
also discuss string webs with internal faces from this point of view.
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I. INTRODUCTION

Understanding the internal structure of solitonic states in
string theories and their low-energy limits is an interesting
and important question. In other words, for a localized
soliton, given asymptotic quantum numbers (as seen by a
distant observer), we would like to understand what inter-
nal structure one could associate with the soliton. This is
often notoriously difficult in the regimes of most interest,
even in supersymmetric theories. A key system exemplify-
ing these difficulties is a black hole: given the large
Bekenstein-Hawking entropy, it is tempting to imagine a
rich internal structure that is ‘‘fuzzy’’ on approximately
horizon size. A somewhat simpler but still fairly rich
system in this context constitutes charged solitonic states
in supersymmetric non-Abelian gauge theories, which also
helpfully admit realizations in terms of D-brane
constructions.

It is well known that there exist 1
4 -BPS dyonic states in

N � 4 SU�N� super Yang-Mills (SYM) theories [1–13]
(see e.g. [14] for a recent review), represented as string
webs [15–17] in brane constructions of these theories.
These states can be labeled by their charges with respect
to the long-range fields, i.e. the U�1�N Abelian subsector
[for convenience, we regard these as states in U�N� theo-
ries Higgsed to U�1�N uncharged under an overall U�1�].
Unlike 1

2 -BPS states (whose charges are ‘‘parallel’’ or
mutually local), the electromagnetic and scalar forces be-
tween the constituent charge centers of a 1

4 -BPS state do
not precisely cancel except at specific equilibrium separa-
tions (i.e. there is a nontrivial potential for the dynamics of
the charge cores). There is a rich structure of the decay of
these 1

4 -BPS states across lines of marginal stability (LMS)
in the moduli space (Coulomb branch) of these theories.
For instance, for a simple 2-center 1

4 -BPS bound state, the

Abelian approximation shows that the spatial size of the
state (i.e. the separation between the two charge centers) is
inversely proportional to the distance from the LMS [10–
13]. Thus as one approaches the LMS, the separation
between the centers grows and the two charges become
more and more loosely bound until they finally unbind at
the LMS. In terms of the density of states, we have a stable
1-particle state on one side of the LMS, which decays into
the 2-particle state continuum as we cross the LMS. On the
other side of the LMS, the 1-particle state does not exist,
and we only have the 2-particle continuum. The field
theory construction of these N � 4 string web states
dovetails beautifully with ‘‘brane-prong’’ generalizations
(see e.g. [8,11,12]) of the ‘‘brane spike’’ [18]: these prongs
in turn can be interpreted as string webs stretched between
D-branes.

We expect that this picture holds for more general multi-
center bound states too, i.e. near lines of marginal stability,
some of these states become loosely bound. Then the
internal structure in spacetime of these dyonic states can
be described from the point of view of the low energy
Abelian U�1�N effective gauge theory (i.e. the non-Abelian
microscopic physics becomes unimportant) as ‘‘molecule-
like,’’ consisting of several solitonic charge centers bound
together by electromagnetic and scalar forces, qualitatively
somewhat similar to that of the split attractor black hole
bound states of Denef et al [19,20] in N � 2 string
theories. In this paper, we make some modest attempts to
make precise these general expectations, building on the
construction in [11].

It is clear that as a function of the moduli values, a
typical solitonic dyon (for fixed asymptotic charges) can
have a complicated internal structure, potentially hard to
pin down especially for large charge in a high rank N � 4
gauge theory Higgsed to U�1�r at the generic point in
moduli space. It is therefore interesting to ask if we can
use D-brane constructions to glean insights into the inter-*narayan@cmi.ac.in
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nal structure of dyons, perhaps focussing on specific re-
gions of moduli space where Abelian approximations are
reliable. Towards this end, we will analyze, in what fol-
lows, the spatial moleculelike structure of these states as it
varies on the moduli space, in part using its limiting
description as loosely bound configurations near decay
across lines of marginal stability. While the decay of
such a state into a 2-body endpoint admits an increasingly
accurate description near the LMS, for a general �n;m�0
dyon [where the subscript 0 refers to some U�1� that these
charges refer to], there are several 2-body decay endpoints
(corresponding to multiple lines of marginal stability)
depending on how we fix moduli values at charge cores
and how we break up the dyon charges into constituents.
Typically each constituent is itself a composite with further
internal structure. Obtaining a description of such a state
turns out to be easier if we take recourse to the brane
construction: starting with a dyon of large charge which
corresponds to a complicated string web, we decompose
the web into smaller subwebs representing constituent
dyons and so on (sort of reminiscent of wee-partons in a
hadron). This typically corresponds to a (nested) configu-
ration in spacetime with multiple charge cores. The (ap-
proximate) internal structure of the parent dyon resulting
from this treelike process becomes increasingly reliable in
regions of moduli space exhibiting a hierarchy of scales
which enables the constituent dyons (at a given level in the
tree) to be pointlike and widely separated within their
parent dyons (immediately above in the tree). The structure
of these states becomes increasingly more complicated as
their charges (or alternatively the number of branes)
increase.

We then use these techniques to study the internal struc-
ture of dyons corresponding to string webs with internal
faces.

We first review SU�3� dyons/webs in Sec. II, and then
describe transitions in the dyon internal structure as we
move on the moduli space in Sec. III. In Sec. IVA, we
describe SU�4� dyon/web configurations, while Sec. IV B
and IV Cdescribes more general dyon/web states of higher
charge. Section V discusses webs with internal faces.
Finally we discuss a few issues in Sec. VI, in particular,
pertaining to how reliable these configurations are. An
appendix reviews the basic framework we use here.

II. STRING WEBS FROM FIELD THEORY

We give here a brief description of the construction of
string web dyon states in SU�N� SYM theories from their
low energy U�1�N [Higgsed from U�N�, with an overall
decoupled U�1�] effective theories, in part making trans-
parent their corresponding D3-brane constructions (this
mainly follows [11,12]). The general field theory strategy
is to extremize the energy functional and construct 2N
first-order Bogomolny equations which relate the electric
and magnetic fields linearly to gradients of the scalar fields,

which can then be solved subject to certain charged source
boundary conditions, such that the resulting solutions ex-
tremize the mass of the charged states in question. The
scalar field configurations obtained thus are maps
�Xi�~s�; Yi�~s��, i � 1; . . . ; N, from spacetime to the moduli
space of the gauge theory. These approximate solutions to
the U�1�N theory become more and more exact in the
vicinity of lines of marginal stability and give a construc-
tive answer to the question of the existence and stability of
these states. They describe string webs on the moduli space
of the field theory, which can then be shown to ‘‘fold’’ into
string webs stretching between D-branes in transverse
space. The minimax problem involved in the field theory
construction is straightforward but not simple, especially
for higher rank theories. However, in known examples, it
effectively reproduces brane-prong configurations (gener-
alizations of 1

2 -BPS brane spikes [18]) that can be written
down relatively simply and intuitively: it is these effective
brane-prong field theory configurations that we will find
useful here.

SU�3� dyons and webs: mostly a review

For simplicity and ease of illustration, we describe
1
4 -BPS string web dyon states in SU�3� SYM theory (along
the lines discussed at length in [11,12], and reviewed
briefly in the appendix), arising as the low energy theory
on three noncoincident D3-branes, Higgsing U�3� !
U�1�3 [with an overall decoupled U�1�]. This is mainly a
review (but presented slightly differently from [11]), meant
to set our notation for what follows.

Let us first recall that 1
2 -BPS states are only charged with

respect to a single (relative) U�1�. Thus the electric/mag-
netic charge vectors of a 1

2 -BPS charge �p; q� state are

 Qe � p� � p�e1 � e2�; Qm � q� � q�e1 � e2�;

(1)

where we have defined simple roots � � e1 � e2, � �
e2 � e3 with �2 � �2 � 2, � � � � �1, and ei, i � 1, 2,
3 are the (orthonormal) roots of U�1�3, with ei � ej � �ij.
There of course exist 1

2 -BPS states charged under different
U�1�’s as well. Labelling these states by their charges with
respect to U�1�2 [the total charge is zero, decoupling the
overallU�1�], and writing the charge vectors in terms of the
ei basis of U�1�3 makes transparent the connection to the
brane constructions of these states. For example, the above
1
2 -BPS state can be interpreted as a �p; q� (oriented) string
stretched between two D3-branes, with the two D3-branes
carrying pointlike dyons of charge �p; q� and ��p;�q�
respectively. As an example, the scalar field configuration
(for the two scalars of the 2 D-branes) representing say an
electric charge (1,0) in a U�1�2 theory is

 X1 �
e

j ~s� ~s0j
� X0; X2 � �

e
j ~s� ~s0j

� L; (2)
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where e is the unit of electric charge, and the two D3-
branes are located at X � �X0 and X � L. For magnetic
charges, we have say X1 �

g
j~s�~s0j

� X0, with g the unit of
magnetic charge. The two separate brane spikes join at ~s!
~s0, where X1, X2 ! X00: regulating the divergence in this
Abelian approximation,1 this gives

 e�~s0; ~s0
� X0 � X00 � �e�~s0; ~s0

� L) e�~s0; ~s0
�
L� X0

2
;

(3)

where �~s0; ~s0
is the (approximate) inverse core size. This

gives the location of gluing on the moduli space as X00 �
L�X0

2 , which is the midpoint of the line joining the two
branes, corresponding to the singularity of enhanced U�2�
gauge symmetry. For the magnetic charge or monopole,
this agrees with our expectation that the non-Abelian fields
are nontrivial inside the monopole core [(roughly given by
the Higgs vacuum expectation value (vev)], which via the
scalar configurations is located at �X; Y� � �X00; 0� on the
moduli space. In the Abelian description here, these are
approximated as Dirac monopoles.

Analyzing the energy2 of this state to compare with the
mass 1

�0 �l� x0� � �L� X0� of a fundamental string of
tension 1

�0 stretched between the D-branes (and a similar
analysis for a D-string) shows that we must set

 e � gs; g � 1 (4)

(the numerical factors are not important for what follows.)
This makes intuitive sense: at weak coupling (small gs �
g2
YM), we see as expected that the fundamental string

ending on the brane at ~s � ~s0 causes only a small defor-
mation to the brane world volume (as shown by say X1)
away from ~s0, where we see a sharp spike. However the D-
string is not a small perturbation as reflected by the gs
independence of the magnetic charge unit g. In spacetime,
this implies that the monopole core size is O� 1

L�X0
�, i.e. set

by the Higgs expectation value, while the electric charge
core size isO� gs

L�X0
�: thus for small gs, electric charge cores

can be regarded as pointlike.
In contrast to 1

2 -BPS states, 1
4 -BPS states in SU�3� SYM

theory are charged under both U�1�’s. The electric and
magnetic charge vectors of the generic SU�3� web labeled

as ��p1 � p2; q1 � q2�; ��p1;�q1�; ��p2;�q2�� are
 

Qe � p1:�� p2:��� ��

� �p1 � p2�e1 � ��p1�e2 � ��p2�e3;

Qm � q1:�� q2:��� ��

� �q1 � q2�e1 � ��q1�e2 � ��q2�e3:

(5)

From the expressions in terms of the ei’s, it is straightfor-
ward to interpret this as a string web (see Fig. 1), with
�p1 � p2; q1 � q2�; �p1; q1� and �p2; q2� strings constitut-
ing the three legs ending on three D3-branes. Regarding
outgoing charge from a charge center as positive, the dyon
charges on the three D3-brane world volumes are �p1 �
p2; q1 � q2�, ��p1;�q1�, and ��p2;�q2�.

The field theory description shows that one can think of
this state as a charge �p1 � p2; q1 � q2� dyon, spatially
consisting of two constituent charge centers �p1; q1�,
�p2; q2�, separated by a distance inversely proportional to
the distance from the LMS. Then as one approaches the
LMS, the 1

4 -BPS state [represented as �Qe;Qm�] decays as

 �p1:�� p2:��� ��; q1:�� q2:��� ���

! �p1�; q1�� � �p2��� ��; q2��� ���; (6)

into the two constituent 1
2 -BPS dyons of charge �p1; q1�

and �p2; q2� representing the two separate 1
2 -BPS �p1; q1�

and �p2; q2� strings. Here we describe the simplest such
configuration �1; 1� � ��1; 0� � �0;�1�. The configura-
tion of scalars Xi, Yi, i � 0, 1, 2 describing this string
web (Fig. 1) is

 

X0 �
e

j ~s� ~s1j
� X0

0 ; Y0 �
g

j ~s� ~s2j
� Y0

0 ;

X1 � �
e

j ~s� ~s1j
� X0

1 ; Y1 � 0;

X2 � 0; Y2 � �
g

j ~s� ~s2j
� Y0

2 :

(7)

From the D-brane point of view, the interpretation is clear
(see Fig. 1): Xi, Yi represent scalars of the three D-branes
i � 0, 1, 2, with world volumes parametrized by ~s, so that
this configuration �Xi� ~s�; Yi� ~s�� describes brane-prong de-
formations of the three brane world volumes. We have the
boundary conditions on the scalars:

 

~s! 1: �X0; Y0� ! ��X0
0 ;�Y

0
0�; �X1; Y1� ! �X0

1 ; 0�;

�X2; Y2� ! �0; Y
0
2�;

~s! ~s1: �X0; Y0� ! �X
00
1 ; 0�  �X1; Y1�;

~s! ~s2: �X0; Y0� ! �0; Y
00
2 �  �X2; Y2�;

(8)

Defining the inverse core separations and core sizes �ij 	
0

1Note that these are approximate solutions in this Abelian
framework: e.g. the two sides X1�~s� and X2�~s� do not join
smoothly. Note also that the Bogomolny bound equations for
the BPS sector from the full nonlinear Born-Infeld action are the
same as the ones from this leading order approximation
(although their masses might differ by numerical factors). That
these effective actions are insufficient is not surprising, since
near a charge core, the field strengths are not slowly varying. In
this region, new physics (higher derivative contributions, non-
Abelian physics, etc.) enters.

2A field theory vev X and its corresponding coordinate length
in transverse space x are related as X � x

�0 , as can be seen from
e.g. the D-brane DBI action.
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 �ij 

1

j ~si � ~sjj
; i � j; �ii �

1

�i
; (9)

for some cutoffs �i on the charge core sizes, we obtain the
following constraints on the existence of a solution to the
above system within the U�1�N approximation:

 

~s! ~s1: X00
1 � e�11 � X

0
0 � �e�11 � L1;

0 � g�12 � Y
0
0 ;

~s! ~s2: 0 � e�12 � X0
0 ;

Y00
2 � g�22 � Y0

0 � �g�22 � Y0
2 ;

(10)

giving

 X00
1 �

X0
1 � X

0
0

2
; Y00

2 �
Y0

2 � Y
0
0

2
;

e�11 � X0
1 � X

00
1 �

X0
1 � X

0
0

2
;

g�22 � Y0
2 � Y

00
2 �

Y0
2 � Y

0
0

2
; e�12 � X0

0 :

(11)

This thus solves for the charge core sizes ��1
ii and the

separation between the charge core centers

 r12 �
1

�12
�
gs
X0

0

; (12)

and further gives also the constraint [since �12 appears in
both lines of (10)]

 

e
g
Y0

0 � X0
0 : (13)

Clearly a solution with these charges exists only if the
physical core separation r12 > 0, i.e. only for X0

0 , Y0
0 > 0,

i.e. on one side of the line of marginal stability, which
passes through the junction at �X; Y� � �0; 0�. Note that r12

is inversely proportional to the length of the shortest leg
[i.e. the (1,1)-string] of the string web. As X0

0 ! 0, we see
that �12 � �ii, i.e. we have two widely separated pointlike
charge cores. In more detail, the Abelian approximation is
good when r12 � r11, r22, i.e. in the region of moduli
space where X0

0 
 X0
1 and X0

0 

e
g Y

0
2 . In this region, the

U�1�3 approximation neglecting the microscopic non-
Abelian physics of the charge cores becomes increasingly
good, and this moleculelike description in terms of point-
like dyon constituents is reliable. Furthermore, the single
U�1� from brane-0 with only charge boundary conditions
from branes-1,2 yields an increasingly good description of
the spatial structure of the dyon-web (see Fig. 1).

In terms of the brane-prong interpretation, we see that
the ~s1 leg of the prong from brane-1 joins the correspond-

ing leg from brane-2 at the location �
X0

1�X
0
0

2 ; 0� of the charge
core ~s1, while the ~s2 leg of the prong from brane-1 joins the

corresponding leg from brane-3 at the location �0;
Y0

2�Y
0
0

2 � of
the charge core ~s2. Note that the existence and structure of
the dyon configuration is closely tied to the geometry of the
D-branes in transverse space, e.g. �11 > 0 ���! X0

1 >X00
1

and so on.
The cutoff sizes ( 1

�ii
) also shows that the charge cores

are located at the enhanced SU�2� symmetry points

�X00
1 ;0� � �

X0
1�X

0
0

2 ;0� � 1
2 ��X

0
1 ;0�� ��X

0
0 ;0�� and �0; Y00

2 � �

�0;
Y0

2�Y
0
0

2 � on the SU�3� moduli space. At these locations,
there are light non-Abelian fields which must be included
into the low energy effective action for a nonsingular
description. Clearly, there is also a symmetric point
X0

1 � X0
0 �

e
g Y

0
0 �

e
g Y

0
2 in moduli space where the core

Brane prongs

s1

s2

2

3

X

Ys

(−X00,−Y00)

(0,Y20’)

(X10’,0)

gluing region
near core

(0,Y20’)

(X10’,0)

1

2

0

0

Spacetime
  picture

s1 s2

α 12
−1

(0,Y20)

(X10,0)

(0,Y20)

(X10,0)(−X00,−Y00)

String web (transverse space)

FIG. 1 (color online). Field theory brane-prong construction of a SU�3� string web. ~s parametrizes world volume/spacetime. The
gray circles are the D-brane locations while the black circles show the locations where the brane-prongs glue onto each other at the
charge cores ~s1; ~s2.
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sizes are comparable to their relative separations so that the
charge centers effectively coalesce.

III. SU�3� DYONS: MODULI SPACE TRANSITIONS
IN INTERNAL STRUCTURE

Now we discuss what seems to be a generic feature of
these field theory dyons: this is the fact that the apparent
internal structure of these SU�3� dyons undergoes transi-
tions as we move around on the moduli space. It is easiest
to describe this in a specific example: consider the �1; 1� �
��1; 0� � �0;�1� string web (Fig. 2). Keeping explicitly
the charges with respect to all of the U�1�’s in the theory,
the asymptotic charges of this dyon at spatial infinity can
be read off from the charge vectors �Qe;Qm� in (5) as

 f�1; 1�0��1; 0�1�0;�1�2g; (14)

where the subscript labels the U�1� to which the charge
values refer.

Consider the region in moduli space where X0
0 , Y0

0 

X0

1 , Y0
2 : here the (1,1) leg of the web is short and the

corresponding field configuration is described in (7), with
the core sizes and separations given in (11). As we have
seen, the internal structure of the dyon in this region can be
essentially thought of as consisting of two charge cores of
charges

 X0
0 ; Y

0
0 
 X0

1 ; Y
0
2 : f�1; 0�0��1; 0�1g; f�0; 1�0�0;�1�2g:

(15)

Now consider the region in moduli space where Y0
2 
 X0

0 ,
Y0

0 , X0
1 , i.e. the (0,1) leg of the web is short. It is straightfor-

ward to study the spatial structure from constructing a
similar field configuration as before. We then find that
the dyon can now be thought of as consisting of two cores
of charges

 

Y0
2 
 X0

0 ; Y
0
0 ; X

0
1: f��1;�1�2�1; 1�0g; f�1; 0�2��1; 0�1g:

(16)

Similarly, the region X0
1 
 X0

0 , Y0
0 , Y0

2 in moduli space
where the (1,0) leg of the web is short shows the dyon
constituents to have charges

 

X0
1 
 X0

0 ; Y
0
0 ; Y

0
2 : f��1;�1�1�1; 1�0g; f�0; 1�1�0;�1�2g:

(17)

In going from one of these regions to another in moduli
space, one does not cross any line of marginal stability:
clearly the dyon exists and is stable in these transitions.
Furthermore it is clear that there is no violation of charge
conservation since the charges at spatial infinity are un-
changed throughout. What is happening in the process of
transiting between any two of these regions in moduli
space is simply charge rearrangement. In the region where
say the web leg ending on D-brane a is shortest, i.e. where
D-brane a is closest to the LMS, the charges with respect to
this U�1�a break up into constituents, and similarly in the
other regions of moduli space.3

Let us look more closely at the transition between say
the region X0

0 , Y0
0 
 X0

1 , Y0
2 , and X0

1 
 X0
0 , Y0

0 , Y0
2 . From

the web, it is clear that we extend the (1,1) leg and shrink
the (1,0) leg, while correspondingly in spacetime, the size
1
�11

of one of the cores increases with the core separation 1
�12

decreasing. At some intermediate point X0
1 � X0

0 , we have
1
�11
� 1

�12
: from (11), we see that this point, where X00

1 � 0,
corresponds to the singularity of enhanced SU�2� symme-
try on the SU�3� moduli space. This is not surprising since
we expect that the non-Abelian degrees of freedom become
light and cannot be neglected when the dyon constituents
approach each other. The Higgs vev hierarchies are differ-
ent on either side of the transition.

Analyzing the other transitions shows similar structure:
transitions in the internal structure pass through singular-
ities of enhanced symmetry in the moduli space.

IV. SU�N�: GENERAL �n;m� DYON-WEB STATES

Now let us try to understand the internal structure of
more general dyons: for concreteness, we consider a dyon
whose charge with respect to some U�1� is �n;m�0 [where
the subscript 0 refers to the U�1�0 regarding which this
charge is defined], and study the corresponding field con-
figuration, which should then give insights into the internal
structure.

This state (unless 1
2 -BPS), will typically exhibit a rich

structure of decay across one or more lines of marginal
stability, where it becomes loosely bound. The field con-
figuration describing this can be written down reliably in

FIG. 2. The shape of the SU�3� string web in the three regions
of moduli space, with the moduli values as shown in Fig. 1.

3It is worth recalling something similar in e.g. Seiberg-Witten
theory [21]: the W-boson of charge (2,0), elementary at weak
coupling, is best described as a string-web-like configuration (in
the D-brane construction via F theory [22]), a bound state of the
monopole [charge (0,1)] and dyon [charge �2;�1�], that decays
across the line of marginal stability in the strong coupling region.
A description of this decay in spacetime appears in e.g. [11]
(using equilibrium scalar configurations as here) and [13] (using
the long-range forces between the constituents).
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the vicinity of the simultaneous location (coincidence) of
the various lines of marginal stability at which this state
can decay. A simple and intuitive way to obtain the field
configuration without ‘‘deriving’’ it rigorously is to note
that ultimately this state comprises and therefore decays
into n (1,0) strings and m (0,1) strings. Far from any LMS,
we expect that the �n;m�0 dyon is pointlike so that the part
of the scalar field configuration stemming from U�1�0 is

 X0 �
ne

j ~s� ~s0j
� X0

0 ; Y0 �
mg
j ~s� ~s0j

� Y0
0 ; (18)

i.e. a single spike emanating from ~s � ~s0, representing the
�n;m� string beginning on a D-brane located at
��X0

0 ;�Y
0
0�, and ending on a stack of D-branes located

at approximately �X0
av; Y

0
av�. However, as we move on the

moduli space to split up the D-brane stack at �X0
av; Y

0
av� (on

the Coulomb branch), the �n;m�0 dyon constituents break
up and begin to separate, revealing some internal structure.
In other words, the charge core at ~s0 gets resolved into
multiple distinct charge cores within as the single D-brane
stack at �X0

av; Y0
av� splits to a multicenter solution on the

Coulomb branch. Each core is charged with respect to
U�1�0 as well as one or more otherU�1�’s: this corresponds
to the fact that each constituent string (or string web) is
stretched between two or more D-branes, thus carrying
charge under the corresponding U�1�’s. Clearly we can
split up the D-brane stack in many distinct ways: this leads
to correspondingly distinct internal structures for the
�n;m�0 dyon, depending on how we split up the �n;m�
charge.

As an example, consider say a dyon of charge �5; 3�0.
With no splitting, i.e. with a single stack at �X0

av; Y
0
av�, we

have a 1
2 -BPS state in effectively an SU�2� theory, corre-

sponding to the (5,3) string stretched between the D-
branes. Now split the �X0

av; Y0
av� stack into two: depending

on how we break up the (5,3) charge into two, we get
different string webs with three legs in a SU�3� theory.
Similarly starting with the �n;m� dyon/string emanating
from the D-brane at ��X0

0 ;�Y
0
0�, and splitting up the

�X0
av; Y

0
av� stack into say k centers on the Coulomb branch

gives distinct string webs with k� 1 legs in a SU�k� 1�
theory, depending on how the �n;m� charge is broken up
into constituents. In other words, for each leg of the string
web in transverse space, we have a charge core in space-
time. Assuming the final elementary constituents to be only
(1,0) and (0,1) charges, we can split an �n;m� dyon/string
into irreducible string webs at most in an N � 4 SU�n�
m� 1� gauge theory.

Such a maximally split �n;m�0 dyon state corresponds to
the charge vectors

 Qe � ne0 �
Xn
i�1

��1�eEi ; Qm � me0 �
Xm
i�1

��1�eMi
;

(19)

in an N � 4 SU�n�m� 1� gauge theory.4 The endpoint
charges at each ek shows that this state represents a string
web with n�m� 1 legs carrying charges
 

f�n;m�0; ��1; 0�E1
; ��1; 0�E2

; . . . ; ��1; 0�En ; �0;�1�M1
; . . . ;

�0;�1�Mm
g;

and ending on the n�m� 1 D-branes [e0 represents
U�1�0]. Diagrammatically this can be represented as the
web in Fig. 4 [the figure shows the (5,3) web described in
more detail later]. This state is classically BPS since its
constituents are essentially (1,0) and (0,1) strings which
together preserve a 1

4 th of the supersymmetry (see, how-
ever, Sec. VI, for more on this). This is vindicated by the
field configuration we exhibit below as a solution to first-
order Bogomolny bound equations in the SYM theory. For
m � 1, this reduces to a �n; 1�0 dyon, i.e. a monopole with
n electric charges attached: this is clearly the simplest such
dyonic state and there are simplifications in its internal
structure. It is thus efficient to glean insights into dyons of
higher magnetic charge by splitting their charges to ulti-
mately reduce to the form of an �n; 1�0 state. A systematic
way to implement this is obtained by noticing the sequen-
tial decomposition

 �n;m� ! �n;m� 1� � �0; 1�

! �n;m� 2� � �0; 1� � �0; 1�

! . . . �n; 1� �
Xm
�0; 1� (20)

of the �n;m�0 state. This is, of course, reliable in specific
regions of moduli space, which we will describe below.
Also note that this decomposition gives nondegenerate
constituents only if n;m are prime (not just coprime).

The D-brane world volume scalars describing the string
web representing this �n;m�0 dyonic state in this SU�n�
m� 1� theory can then be written, generalizing the simple
2-center SU�3� web (7), as

4These can also be regarded as dyonic states studied by Stern
and Yi [7] (in the context of identifying their degeneracies),
given by charge vectors
 

Qm �
X
i

�i;

Qe � ���
X
j

qj��1 � ��� q1 � q2 � . . .��2

� ��� q1 � q2 � . . .��3 � . . .� ���
X
j

qj��N�1;

(for appropriate �; qi) or equivalently, using the roots �1 � e1 �
e2; �2 � e2 � e3; . . . , of SU�N�,
 

Qm � e1 � eN;

Qe � ���
X
i

qi�e1 �
XN�2

i�2

��2qi�ei � ����
X
i

qi�eN:
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X0 �
XEn
i�1

e
j ~s� ~sij

� X0
0 ; Y0 �

XMm

i�1

g
j ~s� ~sij

� Y0
0 ;

Xk ��
e

j~s� ~skj
�X0

k; Yk � Y0
k ; k� E1; . . . ; En;

Xk � X0
k; Yk ��

g
j ~s� ~skj

� Y0
k ; k�M1; . . . ;Mm:

(21)

This is valid in the region of moduli space where brane-0 is
near one or more lines of marginal stability. The intuition
for writing these field configurations is as we have men-
tioned above: for brane-0, the scalars X0; Y0 have prongs
extending from each of the charge cores, which then glue

onto single charge spikes from other branes-k. The bound-
ary conditions on these scalars are

 

~s! 1: �X0; Y0� ! ��X
0
0 ;�Y

0
0�;

�Xk; Yk� ! �X
0
k; Y

0
k �; k 2 fEi;Mjg;

~s! ~sEk : �X0; Y0� ! �X
00
Ek
; Y00

Ek
�  �XEk; YEk�;

~s! ~sMk
: �X0; Y0� ! �X

00
Mk
; Y00

Mk
�  �XMk

; YMk
�;

(22)

the �X00
k ; Y

00
k � being the locations in transverse space where

the prongs glue onto each other [to be distinguished from
the vacuum moduli values �X0

k; Y
0
k �]. These then give con-

straint equations on the field configuration to exist:

 

~s! ~sEk : X
00
Ek
� e

XEn
i�1

�Ek;Ei � X
0
0 � �e�Ek;Ek � X

0
k; Y00

Ek
� g

XMm

i�1

�Ek;Mi
� Y0

0 � Y0
k ;

~s! ~sMk
: X00

Mk
� e

XEn
i�1

�Mk;Ei � X
0
0 � X0

k; Y00
Mk
� g

XMm

i�1

�Mk;Mi
� Y0

0 � �g�Mk;Mk
� Y0

k :

(23)

In what follows, we use the above equations to write out
scalar field configurations and the corresponding con-
straints from boundary conditions for dyons in various
N � 4 theories, and glean insights into their internal
structure.

A. SU�4� dyons: 3-center configurations

In this section, we study string web states describing 3-
center dyon bound states in the U�1�3 Higgsed theory
stemming from SU�4� [or more precisely U�4� ! U�1�4].
Consider the �2; 1�0 dyon, represented by the string web
�2; 1� � ��1; 0� � ��1; 0� � �0;�1�. This can be de-

scribed by the following 3-center scalar configuration
(left side of Fig. 3):

 

X0 �
e

j ~s� ~s1j
�

e
j ~s� ~s2j

� X0
0 ; Y0 �

g
j~s� ~s3j

� Y0
0 ;

X1 � �
e

j ~s� ~s1j
� X0

1 ; Y1 � Y0
1 ;

X2 � �
e

j ~s� ~s2j
� X0

2 ; Y2 � Y0
2 ;

X3 � X0
3 ; Y3 � �

g
j ~s� ~s3j

� Y0
3 :

(24)

(X30’,Y30’)

1

3

(−X00,−Y00)

(X30’,Y30’)

2

(X10,Y10)

(X30,Y30)

(X20,Y20)

0

2

1

3

0

SU(4) web: 
branes 0,3 close to LMS

(X20,Y20)

(X10,Y10)
(−X00,−Y00)

(X30,Y30)

SU(4) web: 
brane 0 close to both LMS

X

Y

(X20’,Y20’)

(X10’,Y10’)
(X10’,Y10’)

(X20’,Y20’)

FIG. 3 (color online). String webs in a SU�4� theory: shapes in two different regions of moduli space. Grey circles: D-branes, black
circles: prong-gluing locations.
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In the limit where all centers coalesce, i.e. ~s1; ~s2; ~s3 � ~s0,
the deformation from brane-0 resembles a spike represent-
ing a (2,1)-string. Thus the ~s1; ~s2 centers are electric
charges, while ~s3 is a monopole. We have the boundary
conditions near each charge core:
 

~s!1: �X0; Y0� ! ��X
0
0 ;�Y

0
0�; �Xk; Yk� ! �X

0
k; Y

0
k �;

~s! ~s1;2: �X0; Y0� ! �X
00
1;2; Y

00
1;2�  �X1;2; Y1;2�;

~s! ~s3: �X0; Y0� ! �X
00
3 ; Y

00
3 �  �X3; Y3�:

(25)

This gives the constraints
 

~s! ~s1: X00
1 � e�11 � e�12 � X

0
0 � �e�11 � X

0
1 ;

Y00
1 � g�13 � Y

0
0 � Y0

1 ;

~s! ~s2: X00
2 � e�12 � e�22 � X

0
0 � �e�22 � X

0
2 ;

Y00
2 � g�23 � Y

0
0 � Y0

2 ;

~s! ~s3: X00
3 � e�13 � e�23 � X

0
0 � X0

3 ;

Y00
3 � g�33 � Y

0
0 � �g�33 � Y

0
3 :

(26)

It is straightforward to simplify these equations towards
solving for the core sizes and separations, and we find, in
particular, that the electric-magnetic core separations are
fixed as

 g�13 � Y0
0 � Y

0
1 ; g�23 � Y0

0 � Y
0
2 ; (27)

showing the two distinct lines of marginal stability to be at
�13 ! 0 and �23 ! 0, i.e. at Y0

0 , Y0
1 ! 0, and Y0

0 , Y0
2 ! 0.

Note, however, that the electric-electric core separations
are not determined completely. In this case, with a single
monopole, the magnetic core size is also fixed, while the
electric core sizes are fixed only up to the separations. This
incompleteness in the solution turns out to be a generic
feature as we go to higher charge, as we will see in what
follows. Finally, consistency of the solution (compatibility
of the Y00

k ; X
00
3 equations above) gives the constraint

 

e
g
�2Y0

0 � Y
0
1 � Y

0
2� � X0

0 � X
0
3 ; (28)

on the moduli values of this solution. To elucidate the
meaning of this constraint, notice that for large X0

0 , Y0
0 ,

this simplifies to e
g 2Y0

0 � X0
0 , which describes the line of

slope y
x�

1
2 traced out by the (2,1)-string in the transverse

space, while the limit Y0
0 , X0

0 , and Y0
1 ! 0 gives e

g Y
0
2 � X0

3 ,
which describes the intermediate (1,1)-string leg between
the two junctions in the string web.

Note that it is in the vicinity of the simultaneous coin-
cidence of both LMS [i.e. short (2,1)- and intermediate
(1,1)- legs; left side of Fig. 3] that the above field configu-
ration can be regarded as reliable: in this region of moduli
space X0

0 , Y0
0 , Y0

1 , Y0
2 ! 0, the core sizes are 1

�ii
� 1

X0
1

, 1
X0

2

, 1
Y0

3

,

all effectively pointlike for large vevs, with the electric
charges widely separated from the monopole.

The asymptotic charges at spatial infinity and those of
the individual centers are
 

f�2; 1�0��1; 0�1��1; 0�2�0;�1�3g at spatial infinity;

~s1 
 f�1; 0�0��1; 0�1g; ~s2 
 f�1; 0�0��1; 0�2g;

~s3 
 f�0; 1�0�0;�1�3g: (29)

It is straightforward to check that there are transitions in
the internal structure reflecting charge rearrangement as we
move in the moduli space, as in the previous subsection for
the SU�3� case.

Note that different regions in moduli space can also be
described by field configurations that look quite different
from the one above. For instance the dyon in the region in
moduli space shown on the right side in Fig. 3 is best
described by the 3-center field configuration essentially
made of two SU�3� webs �2; 1� � ��1; 0� � ��1;�1�
and �0; 1� � ��1;�1� � �1; 0�,
 

X0 �
e

j ~s� ~s1j
�

e
j ~s� ~s2j

� X0
0 ; Y0 �

g
j~s� ~s2j

� Y0
0 ;

X1 � �
e

j ~s� ~s1j
� X0

1 ; Y1 � Y0
1 ;

X3 �
�e
j ~s� ~s2j

�
e

j ~s� ~s3j
� X0

3 ; Y3 �
�g
j~s� ~s2j

� Y0
3 ;

X2 � �
e

j ~s� ~s3j
� X0

2 ; Y2 � Y0
2 ;

(30)

with the boundary conditions on the scalars near the cores
being
 

~s! ~s1: �X0; Y0� ! �X
00
1 ; Y

00
1 �  �X1; Y1�;

~s! ~s2: �X0; Y0� ! �X
00
2 ; Y

00
2 �  �X3; Y3�;

~s! ~s3: �X3; Y3� ! �X00
3 ; Y

00
3 �  �X2; Y2�:

(31)

It is straightforward to work out the core sizes and separa-
tions from these, and we find

 g�12 � Y0
0 � Y

0
1 ; g�23 � Y0

3 � Y
0
2 ; (32)

for the separations between the cores, whose charges now
are
 

~s1 
 f�1; 0�0��1; 0�1g; ~s2 
 f�1; 1�0��1;�1�3g;

~s3 
 f�1; 0�3��1; 0�2g; (33)

the asymptotic charges being the same of course. The
constraint equation on the moduli values is the same as
(28). This field configuration is reliable near different
limits in moduli space, which can be analyzed as before.

Similar techniques can be used to study other dyons/
webs in SU�4�.

B. The N � 4 SYM ‘‘halo’’

Now let us generalize the �2; 1�0 dyon in the previous
section and consider the (maximally split) �n; 1�0 state,
with one monopole, in an N � 4 SU�n� 1� theory. The
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asymptotic charges of this state and those of the n� 1
individual charge cores are
 

f�n; 1�0��1; 0�1 . . . ��1; 0�n�0;�1�3g at spatial infinity;

~sEk 
 f�1; 0�0��1; 0�kg; k � 1; . . . ; n;

~sM 
 f�0; 1�0�0;�1�1g: (34)

Then the constraint Eqs. (23) (specifically Y00
Ek

) give

 g�Ek;M � Y0
0 � Y

0
k ) rEk;M �

g

Y0
0 � Y

0
k

; (35)

which represents the n electric charges Ek distributed on an
approximate shell around the monopole M. For all Y0

k �
Y0

1 , this is an exact shell of radius g
Y0

0�Y
0
1

. This seems to be

the N � 4 field theory version of the halo in N � 2 d �
4 string theories of Denef [20]. In the limit Y0

0 , Y0
k ! 0, all

the lines of marginal stability coincide and all separations
1

�Ek;M
grow, the halo size diverging.

Note that the separations between the electric charges is
again not fixed by the equations. Some intuition for this is
gained by realizing that if the monopole were not present,
then the n electric charges are all 1

2 -BPS with uncon-
strained core separations since the charge locations are
all moduli. The presence of the monopole fixes the
electric-magnetic separations but does not affect the
electric-electric ones.

C. More general �n;m�0 dyons

The structure of the �n;m�0 state, i.e. the core sizes and
separations, with more than one monopole is harder to

obtain in general since the equations are more complicated.
We can see a pattern from the above general constraint
Eqs. (23), as well as the simpler examples of SU�3�, SU�4�
webs described earlier. The n�m equations given by X00

Ek
,

Y00
Mk

are used to solve for the core sizes �Ek;Ek , �Mk;Mk
,

while we expect that the remaining n�m equations (i.e.
X00
Mk

, Y00
Ek

) which do not contain the core sizes can be used
to solve for the core separations �Ei;Mj

, i � j. However,

clearly these 2�n�m� equations for the �n�m��n�m�1�
2 un-

known core sizes and separations f�ak;ak0 ; ak � Ei;Mjg are
too few for an exact description of the spatial structure of
the �n;m� state on the entire moduli space. In what follows,
we will describe certain limiting regions of the moduli
space where we can in fact describe the structure of the
dyonic state in terms of approximate solutions to the above
equations. This relies on the fact that a 2-center configu-
ration near the LMS acquires a loosely bound molecular
structure where the microscopic non-Abelian physics of
the charge cores can be ignored reliably. We can thus look
for regions in the moduli space where there is a hierarchy
of scales set up so that we first find a 2-center configuration
near one LMS, one of whose centers is itself made of two
further centers near a LMS and so on. This sort of treelike
structure becomes increasingly more reliable in the vicinity
of the simultaneous coincidence of all the lines of marginal
stability, where all core separations are large.

We will illustrate this now with the example of the �5; 3�0
state. For convenience, let us label the five electric charge
centers Ek � 1; . . . ; 5 and the three magnetic charge cen-
ters Mk � 6, 7, 8. The constraint Eqs. (23) then become

 

X00
1 � e��11 � �12 � . . .� �15� � X

0
0 � �e�11 � X

0
1 ; . . . ; X00

5 � . . . ;

Y00
1 � g��16 � �17 � �18� � Y

0
0 � Y0

1 ; . . . ; Y00
5 � . . . ;

X00
6 � e��61 � �62 � . . .� �65� � X

0
0 � X0

6 � 0; . . . ; X00
8 � . . . ;

Y00
6 � g��66 � �67 � �68� � Y0

0 � �g�66 � Y0
6 ; . . . ; Y00

8 � . . . :

(36)

(For simplicity and ease of illustrating the physics, we have
set X0

6 � 0, without loss of generality.) Solving these equa-
tions in general is difficult. However, consider the region in
moduli space where X0

0 
 X0
7 
 X0

8 . Then we can find the
approximate solution of interest in an iterative way. First
assume that there are only two centers of charge M6 

�0; 1� and D 
 �5; 2�: i.e. the centers 1 . . . 5; 7; 8 
 D con-
stitute an effectively pointlike center of charge (5,2). This
gives the inverse core separation e�6D �

X0
0

5 , with appro-
priate inverse core sizes �66, �DD. Now the dyon center
D 
 �5; 2� itself is not really pointlike of course but has
structure, which can be obtained by treating (5,2) as made
of constituents M7 
 �0; 1� and D0 
 �5; 1�: this gives
e�7D0 �

X0
7

5 . The center (5,1) of course we know to be a
halo from above.

Since X0
0 
 X0

7 
 X0
8 , this zeroth order solution can

thus be tweaked consistent with the full set of equations
and we find the approximate solution [using the Eqs. (36)
for X0

6;7;8]:
 

e�67; e�68 � e�61; . . . ; e�65 �
X0

0

5
;

e�78 � e�71; . . . ; e�75 �
X0

0 � X
0
7

5
;

e�81; . . . ; e�85 �
X0

0 � X
0
8

5
:

(37)

However, since these inverse core separations �Ei;Mj
be-

tween the electric and magnetic charges also appear in the
equations for Y00

1;...;5, we must make sure that the above
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separations are consistent with the latter. Indeed substitut-
ing (37) in the Eqs. (36) gives:

 �18 �
1

g
�Y0

0 � Y
0
1� �

X0
0

5e
�
X0

0 � X
0
7

5e
; . . . (38)

Adding these up and using the X00
8 equation, we get the

nontrivial constraint for consistency of this set of inverse
core separations:

 

5e
g
Y0

0 � 3X0
0 �

e
g

X5

i�1

Y0
k � X0

7 � X
0
8 : (39)

To see that this is in fact sensible, note that this constraint
equation reduces to 5e

g Y
0
0 � 3X0

0 � 0, if X0
0 , Y0

0 are large,
which is the line in transverse space along which the single
(5,3) string, that the system reduces to, stretches (see
Fig. 4). Alternatively, for X0

0 , Y0
0 small, the constraint

reduces to e
g

P5
i�1 Y

0
k � X0

7 � X
0
8 . To understand the phys-

ics of this constraint, note that for all Y0
k � Y0

1 say, and
X0

7 � X
0
8 , this becomes 5eY0

1 � 2gX0
7 , representing the line

in transverse space along which the (5,2) string stretches,5

while for X0
8 � X0

7 , we get 5eY0
1 � gX0

8 , representing the
profile of the (5,1) string.

Finally, let us compare the core sizes with the core
separations of relevance, to see the regimes of validity
where the cores can be treated as pointlike and widely
separated. From the X0

1;...;5 ; Y
0
6;7;8 Eqs. (36), we get

 

e�Ei;Ei �
1

2

�
X0

0 � X
0
i �

X
j�i

�Ei;Ej

�
;

g�Mi;Mi
�

1

2

�
Y0

0 � Y
0
i �

X
j�i

�Mi;Mj

�
:

(40)

For example, we have �ii �
X0
i

2e � �8i, �7i, �6i, i.e. center
Ei is pointlike (its inverse core size is much larger than its
inverse separation from centers 6, 7, 8) if X0

i � X0
8 , X0

7 , X0
0 .

Similarly, the magnetic charges can be regarded as point-
like compared with their relative separations if certain

conditions hold on the vevs: e.g. �66 �
Y0

6

2g� �67, �68 i.e.

charge M6 is pointlike if eY0
6 � gX0

0 , while �77 �
1
2 �
Y0

7

g �
X0

7

5e� � �78 if Y0
7 �

3g
5e X

0
7 , i.e. the point �X0

7 ; Y
0
7� lies far

above the line with slope 3
5 [corresponding to the (5,3)

string]. Likewise for charge M8 to be pointlike, we have

�88 �
1
2 �
Y0

8

g �
X0

7

5e� � �78 if Y0
8 �

3gX0
7

5e , while �88 � �8i if

eY0
8 �

g�X0
7�2X0

8�

5 (which implies the earlier condition).
These conditions are compatible and give a region in
moduli space where this molecular structure of the con-
figuration is reliable.

From Fig. 4, we see that the limit X0
0 , X0

7 , X0
8 ! 0 [which

through the constraint (39) implies Y0
1;...;5 ! 0] corre-

sponds to the various lines of marginal stability (i.e. the
various string junction locations) coinciding. In this limit,
the inverse core separations (37) all vanish, so that all
charges are widely separated and the bound state unbinds.
Keeping X0

1;...;5, Y0
6;7;8 fixed in this limit ensures that the

individual constituents with charges
 

~s1;...;5 
 f�1; 0�0��1; 0�1;...;5g;

~s6;7;8 
 f�0; 1�0�0;�1�6;7;8g;
(41)

are all pointlike to arbitrary accuracy, their core sizes�ij �
1
rij

using (40) in this limit being
 

X0
0 
 X0

7 
 X0
8 ! 0; X0

1;...;5; Y
0
6;7;8fixed:

�Ei;Ei �
X0
i

2e
; i � 1; . . . ; 5;

�Mj;Mj
�
Y0
j

2e
; j � 6; 7; 8:

(42)

As we move away from this region, e.g. as X0
0 , Y0

0 grow
relative to the other vevs, the different centers begin to
coalesce and their spatial separations cannot be distin-
guished clearly enough from their core sizes and the struc-
ture becomes fuzzy. Finally for large X0

0 , Y0
0 , we see the

5

(1,0) strings

(0,1)

(0,1)

(0,1)

(5,2)(5,3)

(5,1)

(0,1)

(0,1)

(5,2)

(5,1)
"halo"

6

7

8+1...5

(5,3) string web  (transverse space)
(5,3) dyon 
 (spacetime structure)

0

1
2

3

4

6
7

8

FIG. 4 (color online). �n;m�0 string webs illustrated using a �5; 3�0 example. The shape of the (5,3) web in transverse space is shown,
along with its approximate internal structure in spacetime (in this region of moduli space). In web: gray circles are D-branes, black
circles are prong-gluing locations.

5Note that the geometry of the web in transverse space forces
X0

8 	 X0
7 .
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single dyon center �5; 3�0. Clearly there exist different
regions of moduli space where the �5; 3�0 can break up
into different constituents. For instance, consider the re-
gion in moduli space
 

�X0
5 ; Y

0
5� � �X

0
7 ; Y

0
7�; �X0

8 ; Y
0
8� � �X

0
i ; Y

0
i � � �X

0
1 ; Y

0
1�

i � 1; 2; 3; 4; (43)

where branes-5, 7 and separately branes-1, 2, 3, 4, 8
coincide. Now the �5; 3�0 dyon can break up into four
constituents resulting in an effectively SU�4� string web
e.g. �5; 3� � ��4; 1� � ��1; 1� � �0;�1�, where the (1,1)
and (0,1) legs end on branes-7 and -6, respectively, while
the (4,1) leg ends on brane-1. The internal structure of the
�5; 3�0 dyon in this region can be analyzed by considering
the appropriate limits in (36), resulting in a 3-center bound
state configuration somewhat similar to the SU�4� dyons
described earlier.

V. MORE ON INTERNAL STRUCTURE
TRANSITIONS: STRING WEBS WITH INTERNAL

FACES

It is known that there are moduli in string webs corre-
sponding to internal faces opening up (see e.g. [2,9,23]).
We will consider what is perhaps the simplest such string
web �2; 1� � ��1; 1� � ��1;�2� in SU�3� SYM theory
(left side of Fig. 5). As can be seen from the figure, the
internal face opening up has internal string legs corre-
sponding to �1; 1�; �1; 0�; �0; 1� strings.

We would like to understand the spacetime structure of
the dyon in N � 4 SYM theory that corresponds to such a
web with an internal face. Towards this end, we see that the
field configuration

 

X0 �
e

j~s� ~s1j
�

e
j ~s� ~s2j

� X0
0 ; Y0 �

g
j ~s� ~s2j

� Y0
0 ;

X1 � �
e

j ~s� ~s1j
� X0

1 ; X2 � �
e

j ~s� ~s2j
� X0

2 ;

Y2 � �
g

j ~s� ~s2j
�

g
j ~s� ~s3j

� Y0
2 ; Y1 �

g
j ~s� ~s3j

� Y0
1 ;

(44)

is a description of the web with internal faces (middle of
Fig. 5). This configuration consists of three SU�3� 3-
pronged string web configurations, of charges ��2; 1� �
��1; 0� � ��1;�1��; ���1; 1� � �1; 0� � �0;�1��; ���1;
�2� � �1; 1� � �0; 1��, one pair �Xi�~s�; Yi� ~s�� from each of
branes-0, 1, 2, glued pairwise at appropriate charge cores.
To elaborate, the spike from core ~s1 in prong-0 glues onto
that from ~s1 in prong-1, while the ~s2-spike in prong-0 glues
onto that from ~s2 in prong-2. Finally the ~s3-spikes from
prongs-1, 2 glue onto each other. Alternatively, one could
imagine branes-0, 1, 2 to have charge cores f ~s1; ~s2g, f~s3; ~s4g,
f~s5; ~s6g, respectively. Consistency of the prong-gluing then
forces ~s3 
 ~s1, ~s2 
 ~s5, and ~s4 
 ~s6.

With the (1,0) leg lying parallel to the X-axis, Y � Y00
1 ,

and scalar boundary conditions

 

~s! ~s1: �X0; Y0� ! �X
00
1 ; Y

00
1 �  �X1; Y1�;

~s! ~s2: �X0; Y0� ! �X
00
2 ; Y

00
2 �  �X2; Y2�;

~s! ~s3: �X2; Y2� ! �X
00
3 ; Y

00
3 �  �X3; Y3�;

(45)

it is straightforward to work out the core separations from
the resulting constraint equations for the moduli as in our
previous discussions, and we find

(1,1)
(0,1)

(1,0)
(2,1)

(2,1)

(1,3)

(1,2)

(1,1)

(1,0)

(0,1)

(0,1)

(−1,−2)

(−1,1)

(−1,−2)

(−1,1)

(1,−2)

(1,−1)

(−2,−1
0

1

2

0

1

2

FIG. 5. Webs with internal faces: on the left side is shown a web with a single internal face and its brane-prong realization, while the
right side shows a web with two internal faces (and the prong-gluing locations). The charges of the various string legs are also shown.
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 g�12 � Y0
0 � Y

00
1 ; g�13 � Y0

1 � Y
00
1 ;

e�23 � X0
2 � X

0
1 �

e
g
�Y0

1 � Y
00
1 �;

(46)

with corresponding core sizes, Y00
1 being the modulus

corresponding to changing the size of the internal face.
We see that the core separations can be tuned indepen-
dently showing the three lines of marginal stability. In the
limit Y0

0 � Y
00
1 , Y0

1 � Y
00
1 ! 0, X0

2 ! X0
1 , i.e. short

�2; 1�; ��1; 1�; ��1;�2� web legs, all core separations di-
verge and we obtain pointlike widely separated cores, and a
reliable field configuration. Unlike the SU�4� 3-center
configurations in Sec. IVA, all core separations here are
fixed and we have a rigid ‘‘molecule’’ of three constituent
‘‘atoms,’’ shaped like an isosceles triangle, with sides
r13 � r23 �

g
Y0

1�Y
00
1

, r12 �
g

Y0
0�Y

00
1

, for X0
2 � X0

1 . When the

internal face is of maximal size, i.e. zero size external web
legs, we have Y00

1 � �Y
0
1 (and corresponding other edge

locations, e.g. X00
3 � X0

1): then we have r12 �
g

Y0
0�Y

0
1

and

r13, r23 infinite, showing Y0
0 	 Y0

1 for a physical dyon
configuration corresponding to a maximal size face. This
then shows that the triangle inequality for the 3-center
configuration is always satisfied and the molecule shape
does not degenerate.

This configuration and the string web then show that the
dyon has asymptotic charges and three individual constitu-
ent cores of charge

 

f�2; 1�0��1; 1�1��1;�2�2g at spatial infinity;

~s1 
 f�1; 0�0��1; 0�1g; ~s2 
 f�1; 1�0��1;�1�2g;

~s3 
 f�0; 1�1�0;�1�2g: (47)

Thus each internal leg corresponds to a charge core. By
comparison, we see that the dyon for the same web but
without the internal face corresponds to a 2-center con-
figuration whose constituent cores have charges

 ~s 01 
 f�1;�1�0��1; 1�1g; ~s02 
 f�1; 2�0��1;�2�2g;

(48)

the corresponding scalar field configuration (with brane-0
near LMS) being

 

X0 �
e

j~s� ~s01j
�

e
j ~s� ~s02j

�X0
0 ; X1 ��

e
j ~s� ~s01j

�X0
1 ;

Y1 �
g

j~s� ~s01j
� Y0

1 ; Y0 ��
g

j ~s� ~s01j
�

2g
j ~s� ~s02j

� Y0
0 ;

X2 ��
e

j ~s� ~s02j
�X0

2 ; Y2 � �
2g

j~s� ~s02j
� Y0

2 ; (49)

the prong-0 gluing onto spikes-1, 2 at the black circles
shown on the left side of Fig. 5.

Thus we see that the spacetime description of the open-
ing up of the internal face is essentially similar to the kinds
of transitions in internal structure that we saw earlier in
Sec. III. However, in this case, we are not moving around in
the moduli space of the D-branes defining the vacuum: the
D-brane locations are fixed. Changing moduli of the inter-
nal structure gives rise to charge rearrangement of the
cores. Specifically we go to the symmetric point in moduli
space of the 2-core configuration (mentioned at the end of
Sec. II) which effectively has a single coalesced core: this
then breaks up into the 3-core configuration with rear-
ranged charges.

The way the brane-prong configurations glue onto each
other is shown in Fig. 5 (the thickened webs on the bot-
tom), the black circles being the gluing locations (the gray
circles corresponding to D-brane locations are not shown
explicitly). A noteworthy point is that this system exhibits
change in topology of the branes’ collective world volume
3-surface. With no internal face, we have the 3-
dimensional analog of a genus-0 surface (49), while the
opening up of the internal face creates a new ‘‘handle’’ in
the interior of the brane 3-surface (44). This ‘‘tearing’’ of
the 3-surface as we transit from no handle to one handle
would seem like a singular process from the point of view
of classical geometry, but we have to remember that our
Abelian approximations are not good in this intermediate
region. The process of separation of the new cores from the
single ‘‘effective’’ core involves the light non-Abelian
fields that we have neglected. We expect that the full
non-Abelian theory gives a smooth description of this
brane-prong topology change as the internal face opens up.

It is possible to describe webs with multiple internal
faces along these lines. The right side of Fig. 5 shows the
web �1; 3� � ��2;�1� � �1;�2�, with two internal faces
opened up. We can construct a field configuration for this
system by considering the two branes with legs
�1; 3�; �1;�2� to have a 4-pronged web scalar configuration
each (of the sort described earlier in Sec. IV), and the brane
with leg ��2;�1� to be a 3-pronged web. These then glue
onto each other (at the black circles) as shown in the figure.

VI. DISCUSSION

We have described field configurations in an Abelian
U�1�r approximation that describe dyons and their approxi-
mate internal structure in N � 4 SU�N� super Yang-Mills
theory. These dovetail closely with string web configura-
tions corresponding to the dyon states in D-brane construc-
tions of these gauge theories. The internal structure of the
dyon for fixed asymptotic charges is a complicated func-
tion of the moduli space in general, as we have seen,
closely intertwining with the geometry of the correspond-
ing string web in transverse space.

One could now ask how reliable these constructions are,
in terms of giving insight into the dyon internal structure.
Note that while the SU�3� dyon/web is truly 1

4 -BPS, the
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generic such state in a higher rank SU�N� theory is not, for
the following reason.6 Recall that the BPS bound equations
follow from restricting to a 2-dimensional subspace of the
6N-dimensional Coulomb branch: this corresponds to the
fact that the generic string web is a planar configuration
stretched betweenN D-branes. This is crucial to having 1

4 th
supersymmetry preserved. However a small perturbation to
the locations of one or more of the D-branes will tilt the
string web which will now no longer be planar: from
the field theory point of view per se, this means one of
the other 4N transverse scalars has been turned on, ruining
the Bogomolny bound in the energy functional. Thus the
dyon/web is no longer precisely 1

4 -BPS, with the exception
being SU�3� (since three points always lie on some
plane).7

From the field theory point of view, we have k charge
centers, held together in equilibrium by force balance
(approximately, since some of the core separations are
not determined by the methods here). In the regions of
moduli space we have focussed on, i.e. near one or more
lines of marginal stability, the charge cores are all effec-
tively pointlike and widely separated. Thus it seems rea-
sonable to suppose that the internal structure in spacetime
that we have obtained here is in fact not drastically altered
even though the dyon/web is not truly 1

4 -BPS, at least at
weak coupling. Essentially any such dyon is approximately
a classical object in this regime, being a moleculelike
configuration of widely separated pointlike charge cores,
so that quantum corrections would seem to make negli-
gible contributions to the force balance conditions. This
corroborates with the fact that at weak string coupling, the
string web is a relatively light object stretched between
heavy D3-branes. Perhaps this makes the picture here more
interesting since we seem to be describing approximate
configurations, robust under small perturbations, for highly
nontrivial nonsupersymmetric bound states in N � 4
super Yang-Mills theories of high rank. It would be very
interesting to go beyond the Abelian approximation here,
perhaps by adding higher derivative terms to the effective
action, or by considering the corresponding configurations
in the full non-Abelian theory.

As we have seen, the boundary conditions on the scalar
moduli generically fix the electric-magnetic core separa-
tions, or more generally, those of constituents with mutu-
ally nonlocal charges. However, the separations of
mutually local charges are not fixed, so these must be
regarded as moduli of the configurations. Thus the low
energy dynamics of these dyons would be captured by an
appropriate approximately supersymmetric quantum me-
chanics on the moduli space of these solutions. There
presumably are similar moduli for dyon states that do not

satisfy n;m prime: in this case, some constituent cores
would perhaps fragment. A systematic study, possibly
equipped with a better understanding of the coupling de-
pendence of these configurations, might draw connections
to the quiver quantum mechanics of [20].

Finally, it would be interesting to understand black hole
bound state configurations, in part along the lines described
in [19,20], and more recently [24,26,27] (see also e.g. the
review [28]), and contrast them with the description of
SYM dyons here. For instance, away from a line of mar-
ginal stability, we have seen that the SYM dyon centers
here begin to coalesce, and non-Abelian modes (i.e. the
ultraviolet completion of the Abelian approximation) be-
come important. It would be interesting to understand if
similar ultraviolet completions, i.e. stringy corrections to
the low energy gravity description, are required for a care-
ful understanding of the internal structure of black hole
bound states away from lines of marginal stability (which
would naively seem to involve merging or bifurcation of
horizons). On a more technical note, perhaps some of these
spacetime configurations for dyons corresponding to webs
with internal faces might be of relevance for understanding
black holes in type IIB compactifications on K3� T2, via
effective string webs wrapped on T2 corresponding to
higher genus surfaces [24,29].

More generally, this approach would perhaps closely tie
into the broad ideas and attempts to understanding black
holes by decomposing it into constituent bits [30].
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APPENDIX: BPS BOUNDS, BRANE PRONGS AND
STRING WEBS

Here we review the BPS state construction [11,12] of
string webs from the low energy effective action on the
Coulomb branch, making perhaps slightly more manifest
the brane-prong description, paving the way for the con-
figurations described in this paper. First, we consider an
N � 4 U�1� theory ( ~E; ~B being electric, magnetic fields)
with two scalars X; Y representing a 2-dimensional sub-
space of the 6-dimensional Coulomb branch. With a view
to finding BPS solutions, we complete squares in the
energy functional to obtain Bogomolny bound equations:
this gives

6This arose in discussions with Ashoke Sen.
7See e.g. [24–26] for some related discussions on lines of

marginal stability in N � 4 string theories.
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M �
1

g2
YM

Z
d3 ~x

1

2
�� ~E� cos� ~rX� sin� ~rY�2

� � ~B� sin� ~rX� cos� ~rY�2�

�
1

g2
YM

Xn
I�0

�
cos�

I
S2
I

�X ~E� Y ~B� � d ~a

� sin�
I
S2
I

�X ~B� Y ~E� � d ~a
�

(A1)

where the boundaries S2
I are spheres around each of several

charge cores in the system and one sphere at infinity, and
we have used the divergence-free equations for the electric
and magnetic fields ~r � ~E � ~r � ~B � 0 away from the

cores.8 Labelling the boundaries so that the I � 0 bound-
ary is the one at infinity and the I � i � 0 are the ones
around the charge cores, within the Abelian approxima-
tion, the scalars X; Y can be regarded as taking constant
values Xi; Yi at the ith boundary while at infinity they take
their asymptotic vacuum values, say ��X0;�Y0�. This
reduces the boundary terms to expressions involving the
electric/magnetic charges

H
S2
i

~E � d ~a � Qi
E,
H
S2
i

~B � d ~a �

Qi
B, of the various cores. By charge conservation, the

charges at infinity are �Q0
E;Q

0
B� � �

Pn
i�1�Q

i
E;Q

i
B�. Then

the BPS saturated mass (using gs � g2
YM in four dimen-

sions)

 MBPS �
1

gs

����������������������������������������������������������������������������������������������������������������������������������������
��Xi � X0�Qi

E � �Y
i � Y0�Qi

B�
2 � ��Xi � X0�Qi

B � �Y
i � Y0�Qi

E�
2

q
; (A2)

(implied sum over the i charge cores) arising from the
boundary terms, is obtained when the BPS bound equa-
tions

 

~E � cos� ~rX� sin� ~rY; ~B � sin� ~rX� cos� ~rY;

(A3)

hold, where we maximize with respect to �, i.e. when

 tan� �
�Xi � X0�Qi

B � �Y
i � Y0�Qi

E

�Xi � X0�Qi
E � �Y

i � Y0�Qi
B

: (A4)

The scalars are harmonic, i.e. r2X � r2Y � 0. Let us
illustrate this with a few examples. A single �Q1

E;Q
1
B� �

�ne;mg� charge core has tan� � Q1
B

Q1
E

, where e; g are the
units of electric and magnetic charge. A unit electric
charge Q1

E � e, Q1
B � 0, is then given by

 

~E � e
~s� ~s0

4�j~s� ~s0j
3 ; X �

ne
4�j~s� ~s0j

� X0; (A5)

where we have chosen �� � [which also satisfies (A4)] so
that the spike stretches along increasing X. This is a 1

2 -BPS
state. Here we have set Yi � �Y0, i.e. we have turned off
the Y scalar. Alternatively we have performed a rotation in
the �X; Y� plane so that the �n;m� string emanating from a
D-brane stretches along the X axis. The 4� factors are not
important for our analysis, so we will drop this for
convenience.

Now consider a 2-center configuration with Q1
E � ne,

Q2
B � mg, Q2

E � Q1
B � 0, i.e. one charge core is purely

electric while the other is purely magnetic. This is a 1
4 -BPS

state. This gives

 

~E � ne
~s� ~s1

j ~s� ~s1j
3 ;

~B � mg
~s� ~s2

j ~s� ~s2j
3 ;

tan� �
mgX0 � neY0

�X1 � X0�n� �Y2 � Y0�m
;

(A6)

where we have imposed boundary conditions so that the
moduli values at the charge cores are �X; Y�~s1


 �X1; 0�,
�X; Y�~s2


 �0; Y2�, for simplicity. Now we see that � �

0; � ifmgX0 � neY0. Choosing� � �, we have ~E � ~rX,
~B � ~rY, giving the scalar field configurations

 X �
ne

j ~s� ~s1j
� X0; Y �

mg
j ~s� ~s2j

� Y0; (A7)

the constants of integration being fixed to be the vacuum
moduli values. Effectively, our choice of � has fixed our
freedom to perform a rotation in the �X; Y� plane, and
ensured that e.g. electric charges correspond to F-strings
stretched along the X axis, and more generally an �n;m�
charge corresponds to an �n;m� string stretched along a
line of slope Y0

X0 �
m
n
g
e in the �X; Y� plane.

The scalar configurations can now be interpreted as
brane prongs approximating a string web with increasing
accuracy as we approach the line of marginal stability,
which lies at X0, Y0 � 0 with our choices of moduli values.

Now let us go to higher rank theories. We expect on
physical grounds that the U�1� theory above is UV incom-
plete, and must be regarded as a piece of a U�1�n theory,
arising as the Higgs approximation to a U�n� theory. The
energy functional for the U�1�n theory is

 M �
Z

E �
1

2

Z X
i

� ~E2
i � ~B2

i � �rXi�
2 � �rYi�

2�:

(A8)

8A similar Bogomolny bound in a non-Abelian gauge theory
would contain e.g. a BPS ’t Hooft-Polyakov monopole solution,
with the non-Abelian modes dying out exponentially outside the
monopole core whose size is set by the Higgs vev. The Abelian
description here can be regarded as the approximate Dirac-
monopolelike (semiclassical) description outside the charge
core.
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Extremizing this and finding BPS states is straightforward
but not simple. For the SU�3� theory, details appear in
[11,12]. We will simply describe some intuitive aspects
of the embedding of the U�1� brane-prong configurations
into U�1�2 and U�1�3 theories: this should pave the way for
the description of dyon-web configurations in the text.

We expect that a U�1� brane-spike representing a single
charge must be patched up with a corresponding spike
from another brane, the two spikes together being thought
of as a low energy U�1�2 approximation to the full non-
Abelian U�2� theory. Thus for, say, a unit electric charge
represented by a (1,0)-string stretched between 2 D-branes
at say ��X0; 0� and �L; 0� on the �X; Y� plane, we expect the
BPS bound equations

 

~E 1 � rX1; ~E2 � rX2; (A9)

from the two D-branes separately, giving the scalar field
configurations (2). For the two spikes to be glued together,
we require that the two cores be located at the same
position ~s0 along the D-brane world volume directions
and the core sizes be the same (within this approximation).
This implies that the gluing happens at the midpoint of the
line joining the two branes, i.e. at the singularity corre-
sponding to enhanced U�2� gauge symmetry on the moduli
space. Note that the gluing and charge boundary conditions
are consistent with the fact that the X1 brane appears to
have a positive charge flux emanating from the gluing core,
while the X2 brane appears to have a negative charge flux
emanating from the gluing location.

Similarly, the brane-prong configuration (A7) represent-
ing say the �1; 1� � ��1; 0� � �0;�1� string web in the
U�1� theory must be patched up with corresponding
spikes/prongs from two other branes, the three spike/prong
pieces together being thought of as a low energy U�1�3

approximation to the full non-Abelian U�3� theory. Thus

for, say, the �1; 1� � ��1; 0� � �0;�1� string web stretched
between three D-branes at say 0 
 ��X0;�Y0�; 1 

�X0

1 ; 0�; 2 
 �0; Y
0
2� on the �X; Y� plane (Fig. 1), we expect

the U�1�3 BPS bound equations
 

~E0 � rX0; ~B0 � rY0;

~E1 � rX1; ~B2 � rY2:
(A10)

The expectation that the electric part of prong-0 glues onto
that of brane-1 while the magnetic part of prong-0 glues
onto that of brane-2 implies

 

~E0 � e
~s� ~s1

j ~s� ~s1j
3 ;

~B0 � g
~s� ~s2

j ~s� ~s2j
3 ;

~E1 � �e
~s� ~s1

j ~s� ~s1j
3 ;

~B2 � �g
~s� ~s2

j ~s� ~s2j
3 :

(A11)

These field strengths along with the BPS bound equations
imply the scalar field configurations in (7).

It is similarly possible to write out educated guesses for
the BPS bound equations for the higher rank/charge cases
and then the corresponding field configurations: e.g. the
BPS bound equations for the �5; 3�0 state described in the
text are
 

~E0 � rX0; ~B0 � rY0;

~E1;...;5 � rX1;...;5; ~B6;7;8 � rY6;7;8;
(A12)

from which we can write the scalar field configurations
(21) specializing to the �5; 3�0 state.

The field configurations in the text are written with a
rotation in the transverse �X; Y� plane, as for the single
U�1� theory described earlier, so that the �n;m�0 dyon spike
from brane-0 (away from any line of marginal stability)
points in the �X0; Y0� � �n;m� direction.
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