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Ultrahigh-energy string scattering is investigated to clarify the relative role of string and gravitational
effects, and their possible contributions to nonlocal behavior. Different regimes can be characterized by
varying the impact parameter at fixed energy. In the regime where momentum transfers reach the string
scale, string effects appear subdominant to higher-loop gravitational processes, approximated via the
eikonal. At smaller impact parameters, ‘‘diffractive’’ or ‘‘tidal’’ string excitation leads to processes
dominated by highly excited strings. However, new evidence is presented that these excitation effects do
not play a direct role in black-hole formation, which corresponds to the breakdown of gravitational
perturbation theory and appears to dominate at sufficiently small impact parameters. The estimated
amplitudes violate expected bounds on high-energy behavior for local theories.
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I. INTRODUCTION

High-energy scattering is a time-tested method to probe
the fundamental dynamics of a theory. For this reason,
there has been significant effort and progress towards
determining the high-energy scattering behavior of string
theory—see for example [1–7].

A particularly interesting issue relates to the status of
locality in string theory. There is a widespread feeling, and
various evidence, that string theory, being a theory of
extended objects, is indeed in some sense not as local as
quantum field theory. This certainly seems to be true at the
string scale, but even more interesting is the question of
whether string theory manifests longer-scale, and even
macroscopic, nonlocalities. Certainly such behavior could
nicely accord with suggestions that string theory is holo-
graphic [8–10], that is, can be completely described by a
number of degrees of freedom that grows with the surface
area bounding a volume, or even is completely captured by
a theory on such a boundary, as in AdS/CFT [11]. Possible
nonlocality is also of great interest for understanding
whether and how string theory resolves a central problem
in gravity, that of black-hole information.1

Locality in a theory can typically be investigated either
through behavior of local observables or, more indirectly,
through high-energy scattering. In a gravitational theory
such as string theory, precisely local observables should
not exist, although there has been some success in under-
standing how approximately local observables emerge in
appropriate limits from relational observables [14,15]. It
thus becomes of great interest to better understand high-
energy string scattering. While scattering at a threshold
energy near the string scale should exhibit a variety of

novel phenomena such as excited string states, as well as
string-scale nonlocalities [1,2], possibly even more pro-
found is the ultrahigh-energy regime far beyond the string
scale. For example, at ultrahigh energies, one has sufficient
energy to excite a macroscopic string, of length L�
E=M2

s . These observations have motivated the proposal
of a string uncertainty principle [16,17], and were sug-
gested to play a role in resolving the information paradox
[18]. It is important to determine whether such macro-
scopic nonlocality due to string extendedness is indeed a
feature of the theory.

Despite the progress in understanding high-energy string
scattering [1–6], various puzzles have remained [7], and a
clear and complete picture has been lacking. Particularly
important is understanding the relative role of effects due
to string excitation, such as long strings, and effects that are
more easily described as being essentially gravitational.
For example, if excitation of strings of length / E is an
important effect in an ultrahigh-energy collision, this
would seem to interfere with the very formation of a black
hole, since it could prevent sufficient concentration of
energy to form a trapped surface.

Indeed, one might expect string excitation to become
important for momentum transfers of order Ms, and, in
particular, Refs. [3–5] have argued that string excitation
becomes important at impact parameters far greater than
those required to form a black hole. These observations
raise both the prospect of some essentially stringy long-
range nonlocal effects, and the possibility that black holes
do not form in high-energy string collisions.

This paper will investigate these questions more closely.
We begin in Sec. II with a summary of some of the basic
effects in string scattering, at ultrahigh energy, and as we
vary the impact parameter to control the strength of the
interaction. Section III then explores the role of string
excitation in scattering at momenta transfers �Ms,
and provides arguments that in this regime higher-loop
gravitational amplitudes dominate over string effects.
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Section IV then proceeds to smaller impact parameters;
here ‘‘diffractive string excitation [4],’’ which can be
understood as arising from gravitational tidal distortion
[7], becomes an important effect, and ultimately over-
whelms purely elastic scattering. Nonetheless, following
more heuristic arguments presented in [7], we provide
calculations strongly supporting a picture in which black-
hole formation proceeds without interference from such
tidal excitation.

Section V briefly summarizes the overall picture and
resulting puzzles. In short, we find no evidence that ex-
tendedness of the string is a mechanism producing long-
distance nonlocal effects in high-energy scattering, and, in
particular, no evidence that such effects interfere with
black-hole formation. In contrast, the black-hole threshold
raises important questions of locality. The origin of the
threshold is the breakdown of the perturbation series. A
precise prediction would appear to require a fully non-
perturbative theory, string theory or otherwise; order-by-
order UV finiteness of the perturbation series does not
suffice to complete the theory in this regime. Moreover,
such a theory would bring us face to face with the infor-
mation problem. Rough features of the resulting ampli-
tudes can be inferred from the semiclassical description of
black holes, and violate expected general bounds on local
field theories, of the Froissart and Cerulus-Martin form.
Both these facts, and the statement that a unitary resolution
of the information problem apparently requires nonlocality
on the scale of the black hole, are suggestive of nonlocal
effects that are intrinsically gravitational in nature.

II. OVERVIEW OF SCATTERING REGIMES

We will consider scattering in string theory compactified
to D dimensions, in the ultrahigh-energy limit E� Ms,
E� MD. Here Ms � 1=

�����
�0
p

is the string mass scale, and
the Planck massMD is given in terms of theD-dimensional
Newton’s constant by

 M2�D
D � GD / g

2
sM

2�D
s : (2.1)

Below the ultrahigh-energy regime, the distinction be-
tween Ms andMD plays an important role in the dynamics,
in controlling the relative contributions of string and gravi-
tational effects. Our goal is to determine what effects
dominate dynamics in the ultrahigh-energy region.

A useful way to parametrize one’s entry into this region
is to describe scattering as a function both of the energy
E �

���
s
p

and of the impact parameter b of the collision—
the latter is, after all, something over which we have a large
degree of control in everyday experiments. Moreover, for
sufficiently large b, interactions are very weak. Thus, one
can imagine gradually decreasing b, for fixed ultrahigh E,
and asking what dynamics comes into play as one does so.

At very large distances, exchange of massless fields
dominates the dynamics, and since its effective coupling
grows with E, gravity is dominant among these. A central

question is what other effects become important with
decreasing b. In particular, since strings have internal
structure, one might expect important effects when this
structure is excited. There is extensive literature on this
subject (see for example [1–7]), but also some outstanding
puzzles.

Let us describe some of the known features, and puzzles.
First, one might naı̈vely expect string behavior to become
apparent at impact parameters

 b�M�2
s E; (2.2)

where there is sufficient energy to create a stretched string
of length b. However, there is no indication for such string
effects in scattering. For example, the tree-level amplitude
at these impact parameters is well approximated by gravi-
ton exchange, and a good explanation for this is that long
strings in the s channel are dual to exchange of the graviton
mode of the string in the t channel.

Indeed, the results of [3,4] suggest that scattering is
simply dominated by long-range gravity until one reaches
a regime of ‘‘diffractive excitation.’’ A simple mechanical
description of this phenomenon, as ‘‘tidal excitation’’ of
one string in the gravitational field of the other, was given
in [7]. This tidal string excitation becomes important at
impact parameters

 bD �
1

MD

�
E
Ms

�
2=�D�2�

: (2.3)

Reference [7] noted that as b decreases beyond bD, tidal
excitation becomes sufficiently large that a string can
become stretched to scales comparable to the impact pa-
rameter. Such ‘‘large tidal excitation’’ is expected to occur
at impact parameters of order

 bT �
�
GDE

2

M3
s

�
1=�D�1�

: (2.4)

Large tidal excitation raises the prospect of nontrivial
string effects, and perhaps that of some sort of stringy
nonlocality. Moreover, the impact parameter (2.4) is larger
than that for black-hole formation, which is given by the
Schwarzschild radius of the center-of-mass energy,

 b� RS�E� � �GDE�1=�D�3�: (2.5)

This means that such large tidal excitation raises the pros-
pect that black holes would not form in high-energy string
collisions, because the string energy distribution is spread
out on scales large as compared to the would-be horizon.
To see this, notice that [4] shows that the ‘‘elastic’’ part of
the amplitude falls exponentially in GDs=M2

sbD�2 as tidal
excitation takes over. Near the horizon radius, the ampli-
tude for unexcited string scattering is thus exponentially
small in

 �el�RS� � E�D�4�=�D�3�=G1=�D�3�
D M2

s : (2.6)
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In fact, even before reaching these impact parameters,
one is led to consider other possibly important string
effects. Specifically, the asymptotic form of the four-
graviton superstring amplitude, as s! 1 with fixed t, is2

(working in units �0 � 1=2)

 A string
0 �s; t� / g2

s
���t=8�

��1� t=8�
s2�t=4e2�t=4: (2.7)

For �t � q2 � 1, this amplitude shows significant correc-
tions to the tree-level amplitude of pure gravity,

 A grav
0 �s; t� / GD

s2

t
; (2.8)

due to string excitation. The condition q2 � 1 corresponds
to an impact parameter

 bt � �GDE2=Ms�
1=�D�3�; (2.9)

and raises the question of why the picture of eikonal
scattering down to at least the impact parameter bD of tidal
string excitation makes sense.

III. SCATTERING AT q2 � 1

We turn first to the second question, justifying the ne-
glect of string effects when the impact parameter reaches
the region (2.9) where q2 � 1. Specifically, the eikonal
approximation sums an infinite class of loop diagrams
that contribute to the scattering. The question at hand is
the extent to which string corrections modify this sum. To
estimate the loop amplitudes in the ultrahigh-energy re-
gime, one may follow the eikonal method, but capture
string effects by sewing together string tree amplitudes
(2.7) rather than those for single graviton exchange. The
N-loop term in this sum takes the form (see e.g. [20])
 

iAstring
N �

2s
�N � 1�!

Z �YN�1

j�1

dD�2kj
�2��D�2

iAstring
0 �s;�k2

j �

2s

�

� �2��D�2�D�2

�X
j

kj � q?

�
: (3.1)

Here in the high-energy limit, the sum over intermediate
propagators approximately yields on-shell projectors,
which in turn enforce the condition that the exchanged
momenta be perpendicular to the center-of-mass collision
axis; q? is the corresponding projection of the momentum
transfer.

One can first ask, for a given order N, what momentum
configuration dominates the integral. Notice that, as q
increases, the tree amplitude (2.7) decreases. In particular,
string corrections lead to exponential weakening of the
amplitude with increasing q. This indicates that the ‘‘opti-
mal’’ distribution of momentum is such that the string
corrections are minimized, with each momentum kj �

q=N. As a result, the net correction is a factor of the form

 s�q
2=4N (3.2)

and is comparatively small for q2 � 1 andN � 1. In short,
the exponential softening due to string effects only rein-
forces the tendency of the momentum transfer to distribute
uniformly over the exchanged strings.

We next examine which N dominate the amplitude. If
we define the eikonal phase

 ��x� �
1

2s

Z dD�2k

�2��D�2 e
ik?	xA0�s; t�; (3.3)

the sum of the amplitudes (3.1) takes the eikonal form

 iAeik�s; t� � 2s
Z
dD�2x?e�iq?x?�ei� � 1�: (3.4)

For the pure gravity amplitude (2.8), the eikonal phase
takes the form

 ��x� �GD
s

bD�4 ; (3.5)

where x? � b; for D � 4 it is a logarithm. The dominant
loop order in the eikonal sum thus occurs near

 N �
GDE2

bD�4 : (3.6)

Thus, for the impact parameter (2.9) where q2 � 1, the
dominant amplitudes are at very high loop order,

 N � �GDE2MD�4
s �1=�D�3�: (3.7)

These arguments strongly suggest the consistency of
replacing string amplitudes by pure gravity amplitudes in
the regime q2 & 1. Note that, of course, the full N-loop
gravity amplitudes will be UV divergent. However, these
UV divergences are not visible in the leading order expan-
sion in E, which gives the eikonal amplitude (3.4). The UV
divergences are short-distance effects, and would not be
expected to play a role in the physics at the large impact
parameters we are considering. This statement should be
true for any consistent regulator of gravity, and in this vein
we can regard string theory as providing such a regulator.
The above arguments suggest that amplitudes down to the
regime q2 & 1 do not significantly depend on such a
regulator—long-distance dynamics of gravity is dominant.

As expected, the eikonal amplitudes (3.4) closely corre-
spond to a semiclassical picture. Indeed, [4] has argued that
their form matches a picture of one string scattering in the
classical metric of the other; for an ultrahigh-energy string
this is the Aichelburg-Sexl metric [21]. The combined
classical metric of the pair of colliding strings is that of
colliding Aichelburg-Sexl metrics, which was shown in
[22–24] to form a closed trapped surface, and thus a black
hole, at impact parameters of order RS�E�. However, before
concluding that black holes form in the collision of a pair
of strings, one needs to check that other effects do not2See, for example, [19].
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intervene as we decrease the impact parameter to this
value. The specific effects of concern are the tidal string
excitation effects described above.

IV. TIDAL STRING EXCITATION AND
BLACK-HOLE FORMATION

A. Collision with an Aichelburg-Sexl metric

The preceding section argued that graviton exchange, in
the eikonal approximation, is the dominant dynamics of
scattering at least until the regime where tidal string exci-
tation becomes large. However, as we have said, once the
expected tidal stretching of strings reaches a size compa-
rable to the impact parameter, one should address the
question [7] of whether the strings become so excited
that this leads to new nonlocal effects. If so, one might
be concerned that there is no meaningful sense in which a
black hole forms. Reference [7] outlined arguments that
black-hole formation should in fact remain relevant, but
these bear closer scrutiny.

As stated, the collision of two localized high-energy
objects is classically well described by the collision of
two Aichelburg-Sexl [21] metrics. Penrose argued that
the combined metric with zero impact parameter forms a
trapped surface, and [23] gave a construction3 of trapped
surfaces for b & RS�E�. Thus, by the area theorem, a black
hole forms. Since the curvature at the trapped surface is
small, modulo a mild singularity from the point-particle
limit (which is smoothed out for quantum wave packets
[25]), one expects classical black-hole formation to well
approximate the quantum process.4

The specific concern with delocalization of strings is
that if the strings are spread out on scales large compared to
the horizon, there is no meaningful sense in which their
energy is concentrated inside a region small enough to
form a black hole. A full treatment of this problem appar-
ently requires a nonperturbative formulation of high-
energy string scattering. However, if there is such an effect,
it seems extremely probable that it would be seen in the
approximation where one string scatters in the approximate
Aichelburg-Sexl metric of the other string, and where
backreaction is neglected. Certainly in this approximation
one expects the essential effect of tidal string excitation
and spreading—the question is whether it is sufficient to
prevent black-hole formation.

Working in the center-of-mass frame with motion in the
z direction, define null coordinates

 u � t� z; v � t� z (4.1)

and transverse coordinates xi, with transverse distance � ���������
xixi
p

. The Aichelburg-Sexl metric for the right-moving

string of energy � � E=2 is

 ds2 � �dudv� dxidxi �������u�du2 (4.2)

with
 

���� � �8GD� ln�; D � 4;

�
16�GD�

�D�3�D� 4��D�4 ; D > 4; (4.3)

and �D�3 the area of the unit D� 3 sphere.
We will consider motion of the second, left-moving,

string in this background, neglecting its backreaction on
the full metric. Quantization in such plane-fronted waves
has been studied in [28,29]. We begin by reviewing and
elaborating on their results.

B. Light-cone quantization

For the metric (4.2), the conformal-gauge sigma-model
action is

 S � �
1

4��0
Z
d�d�
�@aU@

aV � @aX
i@aXi

���Xi���U�@aU@
aU�: (4.4)

The light-cone structure significantly aids in the quantiza-
tion. Specifically, define light-cone gauge through the co-
ordinate u:

 U��� � 2�0pu�: (4.5)

The form of (4.3) shows that the action is nonlinear and
thus nontrivial. However, one may work to leading order in
the �0 expansion. Specifically, let x���� describe the clas-
sical trajectory of the center of mass of the string, taken to
be a null geodesic in the metric (4.2), and expand the string
trajectory about this:

 X���; �� � x���� � X̂���;��: (4.6)

Correspondingly, � is expanded about the impact point of
the null trajectory as
 

��Xi� � ��xi� � X̂j��; ��@j��x
i� � 1

2X̂
jX̂k@j@k��x

i�

� 	 	 	 : (4.7)

This is thus an expansion in X̂@� X̂=b. We will work up to
quadratic order in this expansion. A test of the validity of
this approximation will be to compute a typical value of
X̂=b at this order.

Away from the shock front at � � 0, the string propa-
gates freely. Thus in the ‘‘in’’ and ‘‘out’’ regions before and
after the collision, we expand5

3For D> 4 the construction was made explicit via numeric
methods in [24].

4For related discussion, see [26,27].

5Our conventions for mode expansion of the string coordinate
differs from that of [28]; we use the more standard practice of
including an explicit factor of i multiplying the Fourier
coefficients.
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Xi � xout i
0 � 2�0pout i�� i

�����
�0

2

s X
n�0

1

n

�out i

n e�in�����

� ~�out i
n e�in������; � > 0 (4.8)

and
 

Xi � xin i
0 � 2�0pin i�� i

�����
�0

2

s X
n�0

1

n

�in i

n e�in�����

� ~�in i
n e�in������; � < 0: (4.9)

The oscillators satisfy the usual commutation relationships
 


�out i
n ; �out j

m � � 
~�out i
n ; ~�out j

m � � 
�in i
n ; �in j

m � � 
~�in i
n ; ~�in j

m �

� n�m�n�
ij; (4.10)

 
�out i
n ; ~�out j

m � � 
�in i
n ; ~�in j

m � � 0: (4.11)

For the remainder of the paper, we set �0 � 1=2.
The relationship between the in and out oscillators is

determined by string propagation through the interface at
� � 0. The quantum equation of motion following from
the action (4.4) is

 �@2
� � @

2
��X

i � 1
2p

u@i����� � 0: (4.12)

This should be supplemented by the constraints, T�� �
T�� � 0, which determine the solution for X� in terms of
the Xi. Matching the solutions (4.8) and (4.9) across the
shock gives the conditions
 


@�X
i
out � @�X

i
in�j��0 �

pu

2
@i�;

Xiout�0; �� � Xiin�0; ��:
(4.13)

These conditions can be easily solved by writing

 Xiin;out � XiRin;out��� �� � X
iL
in;out��� ��: (4.14)

Specifically, Xout is determined in terms of Xin by the
expression

 Xiout��; �� � Xiin��; �� �
pu

4

�Z ���

���
d�0@i��Xj�0; �0��

�
:

(4.15)

To quadratic order in the expansion (4.7), these equa-
tions are linear and can be readily solved to relate the
oscillators by a Bogoliubov transformation. In particular,
the individual out oscillators can be read off from the
expansions of XiLout, X

iR
out. The result is

 �out i
n �

�
�ij �

ipu

4n
�i
j

�
�in j
n �

ipu

4n
�i
j ~�in j
�n (4.16)

and

 ~� out i
n �

�
�ij �

ipu

4n
�i
j

�
~�in j
n �

ipu

4n
�i
j�

in j
�n (4.17)

where

 �ij � @i@j��xk�: (4.18)

C. String size

To estimate the effects of string spreading on black-hole
formation, we next compute the characteristic spread for a
string initially in its ground state that propagates through
the Aichelburg-Sexl metric. We will do so by calculating
the correlator,

 

h0inj
Xiout � x
i����
Xjout � x

j����j0ini

� h0injX̂
i
out��; ��X̂

j
out��; ��j0ini; � > 0; (4.19)

determining the distribution about the center-of-mass tra-
jectory. Inserting the expansion (4.8) and the relations
(4.16) and (4.17), one finds after some simple algebra

 h0injX̂
i��; ��X̂j��; ��j0ini �

X1
n�1

�
�ij

2n
�

1

4n2 p
u�ij sin�2n��

�
1

8n3 �p
u�2�ik�kjsin2�n��

�
:

(4.20)

This sum is divergent, due to the first term. This is exactly
the same as the infinite spreading of a string in a purely flat
background [30], in the unphysical limit where the string is
probed at infinitesimally short length or time scales. As
suggested there, this divergence can be regulated by in-
troducing a finite resolution parameter. One such definition
is to smear X̂ over a small range of �,

 X̂ i
	��; �� �

1

	

Z 	=2

�	=2
d�0X̂i��; �� �0�: (4.21)

From the expansion (4.8) we find the oscillator expansion

 X̂ i
	 �

i
2

X
n�0

1

n

�
2 sin�n	=2�

n	

�

�out i

n e�in�����

� ~�out i
n e�in������: (4.22)

One finds an equivalent expression if one instead integrates
over time, so that 	 can alternately play the role of a
resolution time. For the oscillators of mode number n
with n	� 1, the Fourier coefficients of X̂i	 are essentially
the same as those of X̂. But for the higher modes n	 * 1,
the effect of smearing is a suppression of the Fourier
coefficient by a factor of N=n, where N � 1=	. Thus,
in practice this regulator plays the same role as the mode
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cutoff used in [30]. As a result, the two-point function in (4.20) is regulated:

 h0injX̂
i
	��; ��X̂

j
	��; ��j0ini �

X1
n�1

4sin2�n	2 �

n2	2

�
�ij

2n
�

1

4n2 p
u�ij sin�2n�� �

1

8n3 �p
u�2�ik�kjsin2�n��

�
: (4.23)

The first N terms of the sum in (4.20) remain essentially
unchanged while the latter terms are suppressed by a factor
of order N2=n2. Thus the first sum is no longer divergent;
for large N � 1=	 it tends to j log	j. It is also possible to
estimate the behavior of the second and third sums. For
times �� 	, expanding the sine for small argument in the
first N terms, one finds that the leading behavior of the
second term is �j log	j while the leading behavior of the
third term is �2j log	j.

For � * 	, the resolution parameter can effectively be
ignored in the second and third terms of the sum; these are
convergent, and produce polylogarithms.6 Specifically, the
coefficients of the linear and quadratic terms in pu are

 f1��� �
X1
n�1

1

4n2 sin�2n�� �
i
8

Li2�e�2i�� � Li2�e2i���

(4.24)

and

 f2��� �
X1
n�1

1

8n3 sin2�n��

�
1

32

2
�3� � Li3�e�2i�� � Li3�e2i���: (4.25)

At short times �� 1 these behave as

 f1��� 
 �
1
2� ln��O���; f2��� 
 �

1
8�

2 ln��O��2�;

(4.26)

at times �� 1 they oscillate with amplitude O�1�.
At large times the stretching parametrized by (4.23)

becomes large and our approximations fail. We therefore
focus on the short-time behavior. Combining our results,
we thus find an asymptotic expression

 

h0injX̂
i
	��; ��X̂

j
	��; ��j0ini 


1
2�

ijj ln	j � 1
2�

ijpu�j ln	j � 1
8�

ik�kj�pu��2j ln	j; �� 	;


 1
2�

ijj ln	j � 1
2�

ijpu�j ln�j � 1
8�

ik�kj�pu��2j ln�j; �� 	: (4.27)

A useful comparison is to a collection of particles that
simultaneously hit the shock wave. Consider such a col-
lection with label �, with some transverse position distri-
bution, and expand about the center of mass of the
distribution. The �th particle evolves as

 xi���� � xicm��� � �x
i
��0� �

1
2p

u��i
j�xcm��x

j
��0� (4.28)

where �xi� represents the deviation from the center-of-
mass position. Notice that this follows from the point-
particle limit of the string equation of motion, (4.12).
One may compute the average-squared deviation, over
the distribution. Suppose that at impact the particles are
distributed such that

 h�xi�0��xj�0�i � ‘2�ij: (4.29)

Then the subsequent distribution is

 h�xi����xj���i � ‘2
�ij � pu��ij � 1
4�p

u�2�2�ik�jk�:

(4.30)

Note that in the region � * 	, j ln�j & j ln	j. Thus, com-
paring (4.27) with (4.30), we find that for a given resolution

time the string distribution is bounded within a particle
distribution with ‘ �

����������������
j ln	j=2

p
.

One can perform other checks on this picture. For ex-
ample, one can explicitly work out higher-point functions,
such as three- and four-point functions of the operators X̂	,
and show that they are bounded by the same behavior. In
doing so, one can also include subleading corrections in the
�0 expansion (4.7) and find that they indeed contribute
terms suppressed by 1=b. Moreover, one can also work
out correlators such as hX̂	��; ��X̂	��0; �0�i and show that
their real and imaginary parts are bounded by the largest of
hX̂	��; ��X̂	��; ��i, hX̂	��; �0�X̂	��; �0�i.

In addition to transverse string spreading, one can also
calculate the effect of string spreading in the longitudinal
direction. In flat space, such spreading has been discussed
in [31]. It can be evaluated via hX̂v��; ��X̂v��; ��i, where
X̂v � Xv � xv���. In light-cone quantization, Xv is deter-
mined in terms of the other string coordinates,

 X̂ v �
i
pu

X
n�0

�
Ln
n
e�in����� �

~Ln
n
e�in�����

�
; (4.31)

where Ln and ~Ln are the light-cone Virasoro generators.
After using the standard expressions for these generators,
one finds

6The finite sums corresponding to regulated expressions can be
written in terms of polylogarithms, Lerch transcendents, and the
polygamma function.
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 h0j�X̂v�2j0i �
�D� 2�

6�pu�2
X1
n�1

�
n�

1

n

�
: (4.32)

Regulating this expression by smearing the fields or, equiv-
alently, by the mode cutoff N � 1=	, one finds

 h0j�X̂v�2j0i �
1

�	pu�2
: (4.33)

In the Aichelburg-Sexl background, one can evaluate the
quantity analogous to the flat space case,

 h0injX̂
v
out��; ��X̂

v
out��; ��j0ini: (4.34)

Although the algebra is straightforward, one generates a
large number of new terms beyond the flat contribution
(4.32). One can check that none of the additional terms
provides a contribution larger than the flat space term
(4.33).

D. Black-hole formation

To address whether a trapped surface forms, we ask
whether for small enough � the string is within the trapped
surface, as measured by the squared deviation (4.27). In
particular, without the logarithms in (4.27), the typical
string spread is of order

 �X�
GDE

2

bD�2 �: (4.35)

This needs to be small as compared to b for the sigma-
model expansion (4.7) to be valid. Take b & RS�E� /
E1=�D�3� so that the impact parameter is in the black-hole
region. �X also has to be small compared to b so that the
string is inside the black hole. This can be achieved by
taking

 � & R2
S=E� E

�5�D�=�D�3�: (4.36)

If we include the logarithmic spreading, a sufficient con-
dition becomes

 � &
R2
S

Ej ln	j
(4.37)

and is still easily satisfied. Notice that the additive contri-
bution j ln	j to the spread is only logarithmically large in E
for 	� 1=Ep, and so does not compete with the power-law
spread from the tidal terms in (4.27). The logarithmic
transverse spread also apparently matches the arguments
of [32,33] that the gravitational source effectively behaves
like a beam of transverse size �

��������
lnE
p

.
One can also estimate the effect of longitudinal spread-

ing. Given (4.33), the string-spreading range only exceeds
the string length 1=Ms when 	 < 1=pu. Thus for a cutoff of
size (4.36), the effect is small.

These estimates indicate that in our approximation, and
for sufficiently short times, string effects do not distort the
size of the strings to scales competitive with the size of the

trapped surface. Thus there is a controlled sense in which
each string is, at early times, inside the apparent horizon.
Moreover, notice that for any time � * 	, the spread in the
string is smaller than the spread in a distribution of parti-
cles that starts with a characteristic radius ‘ �

����������������
j ln	j=2

p
.

Thus, the only apparent way to conclude that a mean-
ingful realization of a black hole does not form is if, due to
significant modifications of causality, strings can escape
from the interior of an event horizon. This is not strictly
ruled out, as causality in string theory is incompletely
understood, but is not expected. Note also that this picture
seems to contradict the suggestion of [6] that the diffractive
excitation component (tidally excited strings) can carry
information and energy to future infinity.

V. DISCUSSION

To summarize the picture, for impact parameters b *

�GDE2�1=D�4, scattering is well described in the Born
approximation. At smaller impact parameters, one instead
expects the eikonal sum (3.4) to give a good approxima-
tion. This begins to receive important corrections when
strings become diffractively or tidally excited, at bD �
E2=D�2. We expect a reasonable description of the resulting
amplitudes could be given by the diffraction-corrected S-
matrix discussed in [6], which accounts for tidal string
excitation, until the regime b� RS�E�.

The results of the preceding two sections are consistent
with formation of black holes in high-energy string colli-
sions at impact parameters b & RS�E�, and further support
this conclusion by providing a physical description of
relevant string and gravitational effects. In particular, no
grounds have been found for string effects interfering with
formation of a closed trapped surface, in the ultrahigh-
energy regime where the Schwarzschild radius signifi-
cantly exceeds the string length.

Black-hole formation indeed appears to be an effect
fully governed by gravitational dynamics. In particular, it
has been argued to be associated with the breakdown of the
gravitational loop expansion [5,34]. In the ultrahigh-
energy regime, leading corrections to the eikonal series
(3.4) arise from exchange of graviton tree diagrams be-
tween the high-energy strings. (There are additional cor-
rections at higher order in @.) This produces a power series
in RS=b, which becomes divergent at an impact parameter
b� RS.

Of course, a very interesting question is what nonper-
turbative dynamics enters and yields the expected unitary
evolution. The lack of a fully nonperturbative description
of the process means that string theory does not yet supply
an unambiguous answer to this question.

It is interesting to consider features of the expected
amplitudes. One is the total scattering cross section, which
is expected to be of the form

 �T � 
RS�E��D�2 � E�D�2�=�D�3�: (5.1)
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Others are exclusive scattering amplitudes.7 Gross features
of a black hole are expected to follow from black-hole
thermodynamics. In particular, given that a particular
n-particle final state is one of an expected approximate
thermal ensemble of expfSBHg states, where SBH is the
Bekenstein-Hawking entropy, and T � 1=RS is the tem-
perature, one expects exclusive amplitudes of size

 A �s; t� � e�SBH � e�ERS�E� � e�E
�D�2�=�D�3�

: (5.2)

References [6,36] have suggested that such a result might
be understood from a divergent time delay associated with
the breakdown of the perturbation series. In particular, as in
scattering from a classical black hole, they argue for a time
delay of the form RS ln�b� RS�. Below the critical impact
parameter, this expression receives an imaginary contribu-
tion �i�RS, which produces an amplitude of the form
(5.2). Such a picture also appears to link the result (5.2)
with the gravitational nonperturbative dynamics. A chal-
lenge for a nonperturbative formulation of string theory is
to produce such amplitudes in finer detail.

The amplitudes (5.1) and (5.2) violate expected bounds
for local field theory. The D-dimensional Froissart [37]
bound states [38–40] that at E! 1,

 �T � c�lnE�D�2; (5.3)

with constant c, and expected bounds of the Cerulus-
Martin [41,42] form constrain fixed angle asymptotics,

 jA�s; t�j � e�f���E lnE; (5.4)

for some function f���. While basic assumptions needed to
derive these bounds, particularly the existence of a gap, are
not strictly satisfied in gravitational scattering, it is tempt-
ing to conclude that violation of such expected bounds is
associated with some essential nonlocality associated with
nonperturbative gravitational dynamics [7,43].
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