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Domain wall solitons are the simplest topological objects in field theories. The conventional transla-
tional symmetry in a field theory is the generator of a one-parameter family of domain wall solutions, and
induces a massless moduli field which propagates along a domain wall. We study similar issues in braided
noncommutative field theories possessing Hopf algebraic translational symmetries. As a concrete
example, we discuss a domain wall soliton in the scalar �4 braided noncommutative field theory in
Lie-algebraic noncommutative space-time, �xi; xj� � 2i��ijkxk �i; j; k � 1; 2; 3�, which has a Hopf
algebraic translational symmetry. We first discuss the existence of a domain wall soliton in view of
Derrick’s theorem, and construct explicitly a one-parameter family of solutions in perturbation of the
noncommutativity parameter �. We then find the massless moduli field which propagates on the domain
wall soliton. We further extend our analysis to the general Hopf algebraic translational symmetry.
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I. INTRODUCTION

Noncommutative field theories [1–4] are important sub-
jects for studying the Planck scale physics. The most well
studied are the noncommutative field theories in Moyal
space-time, whose coordinate commutation relation is
given by �x�; x�� � i��� with an antisymmetric constant
���. Field theories in Moyal space-time are also known to
appear as effective field theories of open string theory with
a constant background B�� field [5,6]. Thus, not only as the
simplest field theories in quantum space-time but also as
toy models of string theory, various perturbative and non-
perturbative aspects such as unitarity [7–9], causality [10],
UV-IR mixing [11–13], renormalizability [12], scalar sol-
itons [14–17], instantons [18–23], monopoles [23–25],
and other solitonic solutions [26–30] have extensively
been analyzed. Recently it has been pointed out that
Moyal space-time is invariant under the twisted Poincaré
symmetry, which is a kind of Hopf algebraic symmetry
[31–33]. There have been various proposals to implement
the twisted Poincaré invariance in quantum field theories
[34– 48]. Gravity in fuzzy space-times has also been dis-
cussed in [49–56].

A prominent feature of Hopf algebraic symmetries is the
general requirement of nontrivial statistics, which is called
braiding, of fields to keep the symmetries at the quantum
level. In our previous paper [47], it has been shown that
symmetry relations among correlation functions can sys-
tematically be derived from Hopf algebraic symmetries in
the framework of braided quantum field theories [57], if
appropriate braiding of fields can be chosen. This feature is
in parallel with the existence of similar relations, such as

Ward-Takahashi identities, in field theories possessing
conventional symmetries.

The main motivation of this paper is to understand better
the physical roles of Hopf algebraic symmetries in another
setting. In this paper we study a domain wall soliton in
the three-dimensional noncommutative scalar field theory
in Lie-algebraic noncommutative space-time �xi; xj� �
2i��ijkxk �i; j; k � 0; 1; 2� [58–62]. This noncommutative
space-time has also a Hopf algebraic Poincaré symmetry
[47,61,62], but the difference from Moyal space-time is
that its translational symmetry is Hopf algebraic, while the
rotation-boost symmetry is Hopf algebraic in Moyal space-
time. Therefore this noncommutative field theory provides
an interesting stage for investigating the physical roles of
the braiding and the Hopf algebraic translational symmetry
on a domain wall soliton, since the conventional transla-
tional symmetry in a field theory is the generator of a one-
parameter family of domain wall solutions, and induces a
massless moduli field which propagates along a domain
wall.

This paper is organized as follows. In Sec. II A, we
review the three-dimensional noncommutative �4 theory
in the Lie-algebraic noncommutative space-time �xi; xj� �
2i��ijkxk. In Sec. II B, we apply the criterion of Derrick’s
theorem [63] to the �4 theory and conclude that a domain
wall solution is possible at least perturbatively in �. In
Sec. II C, we solve the equation of motion to obtain a
one-parameter family of the kink solutions in perturbation
of the noncommutativity parameter �. In Sec. II D, we
discuss the moduli space. In Sec. II E, we analyze the
moduli field, which propagates along the domain wall
soliton, and conclude that the moduli field is massless. In
Sec. III, we study the general Hopf algebraic translational
symmetry. The final section is devoted to the summary and
comments.
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II. NONCOMMUTATIVE �4 THEORY IN
LIE-ALGEBRAIC SPACE-TIME AND THE

DOMAIN WALL SOLUTIONS

A. Noncommutative �4 theory in Lie-algebraic
space-time

In this subsection, we review the noncommutative �4

theory in Lie-algebraic noncommutative space-time whose
commutation relation is given by

 �x̂i; x̂j� � 2i��ijkx̂k; (1)

where i, j, k � 0, 1, 21 [58,59], following the constructions
of [47,60,61]. Imposing the Jacobi identity and Lorentz
invariance, we can determine the commutation relations
between the coordinates and momenta as follows [58]:

 �P̂i; x̂j� � �i�ij
��������������������
1� �2P̂2

p
� i��ijkP̂k; (2)

where we have also imposed �P̂i; P̂j� � 0. We can identify
these operators with the Lie algebra of ISO�2; 2� as fol-
lows:

 x̂ i � ��Ĵ�1;i �
1
2�
jk
i Ĵjk�; (3)

 P̂ i � P̂��i; (4)

 1� �2P̂�P̂� � 0; (5)

where the commutation relations of the Lie algebra of
ISO�2; 2� are given by

 �Ĵ��; Ĵ�	� � �i����Ĵ�	 � ��	Ĵ�� � ���Ĵ�	

� ��	Ĵ���; (6)

 �Ĵ��; P̂�� � �i����P̂� � ���P̂��; (7)

 �P̂�; P̂�� � 0; (8)

and the Greek indices run through �1 to 2. From the
constraint (5), we can identify the momentum space with
the group manifold SL�2; R�.

Let��x� be a scalar field in the three-dimensional space-
time. Its Fourier transformation is given by

 ��x� �
Z
dg ~��g�eiP�g��x; (9)

where Pi�g� are determined by g � P�1�
i�Pi ~	i 2 SL�2; R�2 and

R
dg is the Haar measure of

SL�2; R�. This P�1 can take two values,

 P�1 � 	
������������������������
1� �2PiPi

q
; (10)

for each Pi. This unphysical twofold degeneracy can be
deleted by imposing

 

~��g� � ~���g�: (11)

The definition of the star product is given by3

 eiP�g1��x ? eiP�g2��x � eiP�g1g2��x: (12)

This determines the coproducts of Pi and P�1 via the group
product g1g2 as

 �Pi � Pi 
 P�1 � P�1 
 Pi � ��ijkPj 
 Pk; (13)

 �P�1 � P�1 
 P�1 � �2Pi 
 Pi: (14)

We consider the �4 theory in the Lie-algebraic non-
commutative space-time. We give the action as follows:
 

S �
Z
d3x

�
�

1

2
�@i� ? @i���x� �

1

2
m2�� ? ���x�

�


4
�� ? � ? � ? ���x� �

m4

4


�
; (15)

where we have chosen the constant term so that the minima
of the potential vanish when � � 0.

Carrying out the coordinate integration, one finds a
modified energy-momentum conservation: Pi�g1g2 � � �� �
P1 � P2 � � � � �O��� � 0 at the classical level. This
should be regarded as a consequence of the Hopf algebraic
translational symmetry. A naive construction of noncom-
mutative quantum field theory in this space-time leads to
disastrous violations of the energy-momentum conserva-
tion in the nonplanar diagrams [60]. One can avoid this
violation by introducing a nontrivial statistics between
scalar fields, which is given by

1The signature of the metric �ij is ��1; 1; 1�, and that of ��� is
��1;�1; 1; 1�.

2The definition of ~	i is given by

 ~	 0 � 	2; ~	1 � i	3; ~	2 � i	1;

with Pauli matrices �	1; 	2; 	3�. We have also changed the
normalization of P�1 by � from (5).

3In fact, one can produce the commutation relation between
the coordinates (1) by differentiating both sides of (12) with
respect to Pi1 � Pi�g1� and Pj2 � Pj�g2� and then taking the
limit Pi1, Pi2 ! 0.
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  � ~�1�g1� ~�2�g2�� � ~�2�g2� ~�1�g�1
2 g1g2�; (16)

where  is an exchanging map. This is denoted by braid-
ing. This braiding was first derived from three-dimensional
quantum gravity with scalar particles [61]. With this braid-
ing, correlation functions respect the Hopf algebraic sym-
metry at the full quantum level [47].

B. Derrick’s theorem in the noncommutative�4 theory

We consider a domain wall soliton in the noncommuta-
tive �4 theory. At first we consider whether the domain
wall solution may exist or not by applying the criterion of
Derrick’s theorem [63].

Varying the action (15) with respect to ��x�, we obtain
the equation of motion,

 @2��x� �m2��x� � 
�� ? � ? ���x� � 0: (17)

Since our interest is in a domain wall, we consider only one
spatial direction of the coordinates.4 Let us change the
variables P, P�1 as follows:5

 P �
1

�
sinh���� P�1 � cosh����; (18)

where �1< �<1. Then the field ��x� is given by

 ��x� �
Z d�

2�
~����e�i=�� sinh����x: (19)

The star product simply becomes

 e�i=�� sinh���1�x ? e�i=�� sinh���2�x � e�i=�� sinh����1��2��x: (20)

Here we notice that the nontrivial momentum sum,
which comes from the star product, can be described by
the usual sum of �. In fact, from (2), we can find that the
commutation relation between �̂ � 1

� sinh�1��P̂� and x̂
becomes

 ��̂; x̂� � �i; (21)

and, from (13), the coproduct of �̂ becomes

 ��̂ � �̂ 
 1� 1 
 �̂; (22)

which is the usual Leibnitz rule.
Using (19) and (20), the equation of motion (17) be-

comes

 Z d�
2�

�
�

1

�2 sinh2���� ~���� �m2 ~����

� 

Z d�1

2�
d�2

2�
d�3

2�
�2������ �1 � �2 � �3�

� ~���1� ~���2� ~���3�

�
e�i=�� sinh����x � 0: (23)

Thus we find that
 �
�

1

�2 sinh2���� �m2

� ~����
2�

� 

Z d�1

2�
d�2

2�
d�3

2�
���� �1 � �2 � �3�

� ~���1� ~���2� ~���3� � 0: (24)

Next we define

 h�x� �
Z d�

2�
~����ei�x: (25)

Rewriting (24) with h�x�, we obtain an equation of motion
for h�x�:

 

1

�2
sin2��@�h�x� �m2h�x� � 
h3�x� � 0: (26)

Now the equation has a familiar local interaction term, but
has infinite higher derivative terms. Another very impor-
tant feature is that, though the star product (20) and hence
(17) are not invariant under the simple translation x! x�
a, Eq. (26) has the obvious translational symmetry.

To analyze (26), we may consider an action for h�x�,
which is given by
 

Sh �
Z
dx
�
�

1

2�2 sin��@�h�x� sin��@�h�x� �
1

2
m2h2�x�

�


4
h4�x� �

m4

4


�
: (27)

Then the problem becomes to find the minimum of the
energy Eh � �Sh with an appropriate boundary condition
at the infinities x! 	1, where the field takes the vacuum
values h � 	m=

����


p

.
In this regard, we will consider perturbation in �. The

energy can be expanded in the form

 Eh � �Sh

�
Z
dx
�

1

2

�X1
n�1

�2n�2Cn@nh�x�@nh�x�
�
� V�h�x��

�
;

(28)

where Cn � 2n�1=�n!�2n� 1�!!� and V�h�x�� �
� 1

2m
2h2�x� � 


4 h
4�x� � m4

4
  0. The positivity of all the
coefficients Cn will play an essential role in the following
discussions.

Let us rescale xi ! x0i � �xi (0<�<1) and define
h����x� � h��x�. Derrick’s theorem [63] tells us that, if the

4In one dimension, there is no nontrivial noncommutativity of
coordinates, but the coordinate and the momentum are non-
commutative as in (2). Thus a soliton solution is not the same
as the commutative case.

5When one considers only spatial directions, one can safely
take only the positive branch of P�1 in (10).
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energy for the rescaled field does not have any stationary
points with respect to�, there exist no soliton solutions. In
our case, the energy for h����x� is given by

 Eh��� �
Z
dx
�

1

2

�X1
n�1

�2n�2Cn@
nh����x�@nh����x�

�

� V�h����x��
�

(29)

 

�
Z
dx0

1

�

�
1

2

�X1
n�1

�2n�2n�2Cn@
0nh�x0�@0nh����x0�

�

�V�h����x0��
�

(30)

 

�
1

�
E0 �

X1
n�1

�2n�1E2n; (31)

where

 E0 �
Z
dxV�h�x��; E2n �

Cn
2

Z
dx�@nh�x��2: (32)

All the E0 and E2n are non-negative in general. For an h�x�
connecting the distinct vacua, E0 and at least some of the
E2n are positive. Therefore (31) diverges at �! �0;�1
(or a finite �c),

6 and takes a minimum value at a positive
finite �. Thus we conclude that a domain wall solution in
this noncommutative field theory is possible.

C. The perturbative solution of h�x�

Next we consider the perturbative solution of h�x�. We
write the perturbation series as h�x� � h0�x� � �

2h2�x� �
�4h4�x� � � � � . Inserting this into the equation of motion
(26), we obtain for each order of �2,

 @2h0�x� � 2h0�x� � 2h3
0�x� � 0; (33)

 @2h2�x� � 2h2�x� � 6h2
0�x�h2�x� �

1
3@

4h0�x� � 0; (34)

 

@2h4�x� � 2h4�x� � 6h2
0�x�h4�x� �

1

3
@4h2�x� �

2

45
@6h0�x�

� 6h0�x�h
2
2�x� � 0; (35)

 

..

.

where we have set m2 � 2, 
 � 2 for simplicity.
Our purpose is to obtain kink solutions whose boundary

condition is given by h�x � 	1� � 	1. Equation (33) is
the same as the equation of motion in the commutative
case. The general solution of (33) has two integration
constants. One is interpreted as the translation of the

solution, and the other can be determined by the behavior
at x � �1 or 1. If one assumes h0�x � 	1� � 	1,
h0�x� diverges or oscillates at x � 	1. For such an
h0�x�, the solutions of h2n�x� �n � 1; 2; . . .� diverge at x �
	1, unless h2n�x � 	1� � 0. Thus the boundary condi-
tion h�x � 	1� � 	1 cannot be satisfied by the pertur-
bative solution, unless we assume h0�x � 	1� � 	1.

For the boundary condition h0�x � 	1� � 	1, the so-
lution to Eq. (33) is well known and given by

 h0�x� � tanh�x� a�; (36)

where a 2 R. The arbitrary parameter a results from the
translational invariance of Eq. (33).

Next we will solve Eq. (34) for a � 0. Let us put

 h2�x� �
f�x�

cosh2x
: (37)

Inserting this and (36) for a � 0 into (34), we obtain

 f00�x� � 4 tanhxf0�x� �
8

3

�
2

tanhx

cosh2x
� tanh3x

�
� 0: (38)

Then let us put

 f0�x� � cosh4�x�g�x�; (39)

and insert this into (38). The equation becomes

 g0�x� �
8

3cosh4x

�
2

tanhx

cosh2x
� tanh3x

�
: (40)

Integrating (40) over x, we obtain

 g�x� �
2

3cosh4x
�

4

3cosh6x
� A1; (41)

where A1 is an integration constant. Thus the differential
equation of f�x� becomes

 f0�x� �
2

3
�

4

3cosh2x
� A1cosh4x: (42)

Integrating this over x and using (37), we obtain
 

h2�x� �
2x

3cosh2x
�

4 tanhx

3cosh2x
� A1

�
3x

8cosh2x
�

3

8
tanhx

�
1

4
cosh2x tanhx

�
�

A2

cosh2x
; (43)

where A2 is an integration constant.
Since the term with A1 is divergent at x � 	1, we

have to put A1 � 0 from the boundary condition. The
A2 term is allowed but can just be absorbed into the
parameter a in (36), because tanh�x� �2A2� � tanh�x� �
�2A2=cosh2�x� � � � � . To systematically kill such redun-
dant integration constants, we impose the oddness condi-
tion, h2n�x� � �h2n��x� for a � 0. Then A2 � 0 is also
required. Finally, recovering the parameter a, we obtain

 h2�x� �
2�x� a�

3cosh2�x� a�
�

4 tanh�x� a�

3cosh2�x� a�
: (44)6For example, the convergence radius of the infinite sum is

j�j<�c � �=4� for h�x� � tanh�x�.
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In the same way, we can obtain the solution to Eq. (35),
which is given by

 h4�x� �
134�x� a�

45cosh2�x� a�
�

8�x� a�

3cosh4�x� a�

�
40 tanh�x� a�

9cosh2�x� a�
�

4�x� a�2 tanh�x� a�

9cosh2�x� a�

�
52 tanh�x� a�

9cosh4�x� a�
: (45)

This procedure will be able to be repeated to a required
order.

D. The solution of ��x� and the moduli space

In the preceding subsection, we have obtained the per-
turbative solution of h�x�. Then we formally know the
perturbative soliton solution of ��x� through ~����, which
are related to ��x� and h�x� by (19) and (25), respectively.

In the following let us discuss the moduli space of the
domain wall solution. In h�x�, the moduli parameter is just
the translation parameter a. This translation corresponds to
the phase rotation ~���� ! eia� ~����, as can be seen in (25).
Therefore the translation on ��x� is given by

 Ta��x� �
Z d�

2�
~����ei��a��1=�� sinh����x� (46)

 

� eia�̂��x�: (47)

This last expression shows that the operator �̂, which is a
nonlinear function of P̂, is the generator of the translational
moduli. In fact, by using the Leibnitz rule (22) and follow-
ing the same procedure as a conventional symmetry, one
can directly show that, if ��x� is a solution to the equation
of motion (17), eia�̂��x� is also a solution. The general-
ization of this fact to the general Hopf algebraic transla-
tional symmetry will be discussed in Sec. III.

E. The moduli field from the Hopf algebraic
translational symmetry

Another interesting consequence of the conventional
translational symmetry in a field theory is the existence
of a massless propagating field along a domain wall. This
field can be obtained by generalizing the constant moduli
parameter a to a field a�xk� depending on the coordinates
along a domain wall. In this subsection, we will study this
aspect in our noncommutative field theory.

We go back to the three-dimensional case. For simplic-
ity, we set � � 1. We change the variable Pi�g� as follows:

 Pi � sinh�
�����
k2

p
�
ki�����
k2
p : (48)

This ki is the three-dimensional analog of � in the previous
subsections. The field ��x� can be rewritten as

 ��x� �
Z d3P

�2��3
���������������
1� P2
p ~��P�eiP�x

�
Z d3k

�2��3
sinh2�

�����
k2
p
�

k2
~��k�ei sinh�

����
k2
p
�ki=

����
k2
p

xi

�
Z d3k

�2��3
~’�k�ei sinh�

����
k2
p
�ki=

����
k2
p

xi : (49)

Let us define

 h�x̂� �
Z d3k

�2��3
~’�k�eik�x̂ (50)

as in (25). Then it can be shown that the action (15) is
equivalent to the following action [58]:

 S � h0j
�
�

1

2
h�x̂��P̂i; �P̂i; h�x̂��� �

1

2
m2h�x̂�2

�


4
h�x̂�4

�
j0i; (51)

where j0i denotes the momentum zero eigenstate P̂ij0i �
0, and

 �P̂i; x̂j� � �i�ij
���������������
1� P̂2

p
� i�ijkP̂k; (52)

 �P̂i; P̂j� � 0: (53)

From the commutation relation, the following relation is
satisfied [58]:

 P̂ ieik�x̂j0i � sinh�
�����
k2

p
�
ki�����
k2
p eik�x̂j0i � Pieik�x̂j0i: (54)

Thus eik�x̂j0i is the eigenstate of P̂i with an eigenvalue Pi.
In the following discussions, we use the notation jPii �
eik�x̂j0i.

The equation of motion from (51) is

 ���P̂2; h�x̂�� �m2h�x̂� � 
h�x̂�3�j0i � 0: (55)

As has been discussed in the preceding subsections, there
exists a one-parameter family of domain wall solutions
hasol�x̂� to (55), where a is the translational parameter.
One may expand the solution with respect to a as hasol�x̂� �
hsol�x̂1� � af�x̂1� � � � � , where we have chosen x̂1 as the
spatial direction perpendicular to the domain wall.7 Then,
putting this expansion into (55) and taking the first order of
a, f�x̂1� is shown to satisfy

 ���P̂2; f�x̂1�� �m2f�x̂1� � 3
�hsol�x̂1��2f�x̂1��j0i � 0:

(56)

To study the property of the moduli field, we will replace
a to a�x̂0; x̂2�. In doing so, the braiding property (16) plays
essential roles. For general h1�x̂�, h2�x̂�, we have the fol-

7The following discussions do not depend on the value of a
where the expansion with respect to a is carried out.
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lowing commuting property:
 

h1�x̂�h2�x̂� �
Z
dg1

Z
dg2

~�1�g1� ~�2�g2�e
ik�g1��x̂eik�g2��x̂

�
Z
dg1

Z
dg2

~�2�g2� ~�1�g
�1
2 g1g2�

� eik�g1��x̂eik�g2��x̂

�
Z
dg1

Z
dg2

~�2�g2� ~�1�g1�e
ik�g2g1g�1

2 ��x̂

� eik�g2��x̂

�
Z
dg1

Z
dg2

~�2�g2� ~�1�g1�e
ik�g2g1��x̂

� h2�x̂�h1�x̂�; (57)

where we have used the invariance of the Haar measure.
Inserting h�x̂� � hsol�x̂

1� � a�x̂0; x̂2�f�x̂
1� into the equa-

tion of motion (55) and taking the first order of a�x̂0; x̂2�,
we obtain
 

���P̂2; a�x̂0; x̂2�f�x̂1�� �m2a�x̂0; x̂2�f�x̂1�

� 3
a�x̂0; x̂2��hsol�x̂1��2f�x̂1��j0i � 0: (58)

Then, from (56), we obtain

 �P̂2; a�x̂0; x̂2��f�x̂1�j0i � 0: (59)

After the Fourier transformation, we find

 

Z
P1

Z
P2

~a�P1�~f�P2��P�g1g2�
2 � P2

2�jP�g1g2�i � 0; (60)

where Pi1 � �P
0
1; 0; P

2
1� and Pi2 � �0; P2; 0�. From the for-

mula of the coproduct of P2, which is given by
 

��P2� � P2 
 1� 1 
 P2 � P2 
 P2

� 2
���������������
1� P2

p
Pi 


���������������
1� P2

p
Pi � PiPj 
 PiPj;

(61)

Eq. (60) becomes

 

Z
P1

Z
P2

P2
1 ~a�P1��1� P

2
2�

~f�P2�jP�g1g2�i � 0: (62)

Operating hxj from the left, we find

 

Z
P1

Z
P2

P2
1 ~a�P1��1� P2

2�
~f�P2�eiP�g1g2��x

�
Z
P1

Z
P2

P2
1 ~a�P1��1� P2

2�
~f�P2�eiP1�x ? eiP2�x

� �@2a�x0; x2��1� @
2�f�x1� � 0: (63)

Thus, since �1� @2�f�x1� does not vanish constantly, we
obtain

 @2a�x0; x2� � 0: (64)

Thus we conclude that the moduli field is massless.

The preceding discussions in the operator formalism can
be repeated with the star product. Putting the expansion
�a

sol�x� � �sol�x1� � ag�x1� � � � � into the equation of
motion (17), one obtains

 @2g�x1� �m2g�x1� � 3
�sol�x1� ? �sol�x1� ? g�x1� � 0:

(65)

Next we define the moduli field a�x0; x2�, and consider
��x� � �sol�x

1� � a�x0; x2� ? g�x1�. Putting this into the
equation of motion and taking the first order of a�x0; x2�,
we obtain
 

@2�a�x0; x2� ? g�x1�� �m2�a�x0; x2� ? g�x1��

� 3
�sol�x
1� ? �sol�x

1� ? a�x0; x2� ? g�x1� � 0; (66)

where we have used the property similar to (16) for the star
product. The first term of (66) can easily be computed by
using the coproduct of P2. Using (61) and (10), @2�a ? g�
becomes

 @2�a�x0; x2� ? g�x1�� � a�x0; x2� ? @2g�x1� � @2a�x0; x2�

? g�x1� � @2a�x0; x2� ? @2g�x1�:

(67)

Thus (66) becomes
 

0 � a�x0; x2� ? �@2g�x1� �m2g�x1� � 3
g�x1� ? �sol�x�

? �sol�x�� � @2a�x0; x2� ? g�x1�

� @2a�x0; x2� ? @2g�x1�

� �g�x1� � @2g�x1�� ? @2a�x0; x2�; (68)

where we have used (65). Thus we obtain the same con-
clusion as above.

III. THE GENERAL HOPF ALGEBRAIC
TRANSLATIONAL SYMMETRY

In the preceding section, the discussions are restricted to
the specific noncommutative field theory. However, it is
interesting to know what holds for the general Hopf alge-
braic translational symmetry. In this section, we will show
that the results in the preceding section are the general
consequence of a Hopf algebraic translational symmetry.

We first assume that, in considering domain wall solu-
tions, only one direction of momentum is relevant. Then
the (associative) coproduct of the momentum may be
written as

 ��P̂� �
X
i

ai�P̂� 
 bi�P̂�: (69)

This defines the associative sum of two momenta �.
Let us consider a small momentum P". One may con-

sider its n sum,

 Pn � P" � P" � � � � � P
n
"

z����������������������}|����������������������{ n: (70)
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For such Pn, let us define

 ��Pn� � nP": (71)

Then ��P� can be shown to define an additive quantity for
� as

 ��Pn � Pm� � ��Pn�m� (72)

 

� �n�m�P" (73)

 

� ��Pn� � ��Pm�; (74)

where we have used the associativity of �. This shows the
usual Leibnitz rule for the coproduct of �̂,

 ���̂� � �̂ 
 1� 1 
 �̂: (75)

The above discussions may be generalized to negative n’s,
and further to a continuous momentum by considering the
limit P" ! 0.

In the actual computation, it is convenient to consider a
differential equation for ��P� as

 

d��P�
dP

� lim
P"!0

��P" � P� � ��P�
P" � P� P

� lim
P"!0

P"
P" � P� P

:

(76)

The last limit can be computed from a given coproduct of
momentum.8 The initial condition should be taken as
��0� � 0.

For the noncommutative field theory in the preceding
section, the coproduct of momentum is given by (13), and
the differential equation (76) becomes

 

d��P�
dP

� lim
P"!0

P"��������������������
1� �2P2
p

P" �
��������������������
1� �2P2

"

p
P� P

�
1��������������������

1� �2P2
p : (77)

With the initial condition ��0� � 0, the solution is actually
given by P � 1

� sinh����, which agrees with (18).
As explained in Sec. II E, the usual Leibnitz rule (75) for

�̂ implies that eia�̂��x� forms a one-parameter family of
domain wall solutions, provided that ��x� is such a solu-
tion. It would be physically reasonable to assume that there
exists at least one domain wall solution which connects
distinct vacua with the same energy, if a theory has mul-

tiple vacua and is physically sensible. Therefore a non-
commutative field theory possessing a Hopf algebraic
translational symmetry will have a one-parameter family
of domain wall solutions, if it has multiple vacua with the
same energy. The associated moduli field will also have a
vanishing mass, since the zero mode of the moduli field is
the parameter itself, and its potential should be flat in this
direction.

IV. SUMMARY AND COMMENTS

We have studied the domain wall soliton and its moduli
field in the braided �4 noncommutative field theory in the
three-dimensional Lie-algebraic noncommutative space-
time �xi; xj� � 2i��ijkxk. This noncommutative space-
time is known to have a Hopf algebraic translational sym-
metry, and provides an interesting stage for investigating
the physical roles of a Hopf algebraic translational sym-
metry on domain walls. We have found that there exists a
one-parameter family of the solutions, and the mass of the
moduli field propagating along the domain wall vanishes.
We have also argued that the results should also hold in the
general noncommutative field theory with a Hopf algebraic
translational symmetry. This conclusion agrees with what
can be obtained from the conventional translational sym-
metry of the usual field theory. Therefore our results show
another evidence for the physical importance of Hopf
algebraic symmetries as much as the standard Lie-
algebraic symmetries.

Two comments are in order. First, we have used the
braiding property when we analyze the equation of motion
for the moduli field. Therefore the nontrivial statistics of
both the domain wall and the moduli field seem to play
significant roles in their dynamics. Second, in our discus-
sions, the operator �̂, which has a Lie-algebraic coproduct,
plays essential roles. The general derivation of �̂ in the
preceding section is based on that there is only one relevant
direction. Therefore, if one considers higher dimensional
topological objects such as instantons, it is not at all clear
whether we will obtain results in parallel with the usual
field theories.
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8For the limit to have a finite value, 0 � P � P is necessary.
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 ��� �
�� 
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