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The Holst action containing the Immirzi parameter for pure gravity is generalized to supergravity
theories. Supergravity equations of motion are not modified by such generalizations, thus preserving
supersymmetry. Dependence on the Immirzi parameter does not emerge in the classical equations of
motion. This is in contrast with the recent observation of Perez and Rovelli for gravity action containing
the original Holst term and a minimally coupled Dirac fermion, where the classical equations of motion do
develop a dependence on the Immirzi parameter.
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I. INTRODUCTION

In the first order formalism, pure gravity is described
through three coupling constants; while two of them
(Newton’s gravitational and cosmological constants) are
dimensionful, the third (known as the Immirzi parameter)
is dimensionless. In the action, these are associated with
the Hilbert-Palatini, cosmological, and Holst terms, re-
spectively. Ignoring the cosmological term, we present
Holst’s generalization [1] of the Hilbert-Palatini action in
the natural system of fundamental units where Newton’s
constant G � 1=�8�� as1

 S �
1

2

Z
d4xe���

ab �R��
ab�!� � i� ~R��

ab�!�� (1)

where �ab
�� �

1
2 e

a
��e

b
�� and Rab���!� � @��!��

ab �

!
��
ac!��

cb. The second term containing the parameter �
is the Holst action with ~R��

ab � 1
2 �

abcdR��cd, and ��1 is
the Immirzi parameter [2]. For� � �i, the action (1) leads
to the self-dual Ashtekar canonical formalism for gravity in
terms of complex SU�2� connection [3]. For real �, this
action allows a Hamiltonian formulation [1,4] in terms of
real SU�2� connection which coincides with that of
Barbero [5] for � � 1.

In the first order formalism, equations of motion are
obtained by varying the Hilbert-Palatini-Holst action (1)
with respect to the connection !�

ab and tetrad ea� fields
independently. Variation with respect to !�

ab leads to the
standard no-torsion equation: D���!�ea�� � 0, which can
be solved for the connection in terms of tetrad fields in the
usual way: ! � !�e� where the standard spin connection
is

 !�
ab�e� � 1

2�e
�a@��eb�� � e

�b@��ea�� � e
�ae�b@��ec��e

c
��:

(2)

Variation of the action (1) with respect to the tetrad ea�
leads to the usual Einstein equation: Ra� �

1
2 e

�
a R � 0.

Thus, adding the Holst action to the Hilbert-Palatini action
as in Eq. (1) does not change the equations of motion of
the theory. Notice that, for ! � !�e�, the Holst term
in the Lagrangian density is identically zero:
e���

ab
~R��

ab�!�e�� � 1
2 �

���	R���	�!�e�� � 0, due to the
cyclicity property R�����	�!�e�� � 0.

While classical equations of motion do not depend on
the Immirzi parameter, nonperturbative physical effects
depending on this parameter are expected to appear in
quantum gravity.

Inclusion of spin 1=2 fermions into Holst’s generalized
Hilbert-Palatini action (1) has been done recently by Perez
and Rovelli and also by Freidel, Minic, and Takeuchi [6].
This has been achieved by minimal coupling of the fermion
through a term ��1=2�� �
��D��!�
�D��!�
��
� into
the action (1) without changing the Holst term. This indeed
does change equations of motion leading to dependence on
the Immirzi parameter even at the classical level. However,
as shown by Mercuri [7], it is possible to modify the Holst
action in the presence of Dirac fermions so that the clas-
sical equations of motion stay independent of the Immirzi
parameter. To do this, to the Einstein-Cartan action2:

 SGF �
1

2

Z
d4xe����

ab R��
ab�!� � �
��D��!�


�D��!�
�
�
�; (3)

we add a modified Holst term introducing a nonminimal
coupling for the fermion:
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1Our conventions are as follows: Latin indices in the beginning

of alphabet, a; b; c; . . . , run over 1, 2, 3, 4 and ea�e
b� � �ab,

ea�e
a
� � g��. The tetrad component e4

� is imaginary, and so are
the connection components !4i

��i � 1; 2; 3� and the determinant
e of tetrad ea�, e� � �e � � 1

4! �
���	�abcdea�eb�ec�e

d
	. The usual

antisymmetric Levi-Civita density of weight one ����	 has
values 	1 or 0 , and ����	 takes values 	e2 or 0; completely
antisymmetric �abcd � �abcd are 	1 or 0.

2In our conventions all the Dirac gamma matrices are hermi-
tian, ��a�y � �a, �a�b � �b�a � 2�ab and �5 � �1�2�3�4,
��5�

2 � �1 and �ab �
1
2��a�b�. For Majorana fermions � �

 TC, where C is the charge conjugation matrix with properties
CyC � CCy � 1, CT � �C, C�aC�1 � ��Ta .
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SHolstF �
i�
2

Z
d4xe����

ab
~R��

ab�!� � �
�5��D��!�


�D��!�
�5�
�
�: (4)

Variation of the total action SGF � SHolstF with respect to
the connection field !�

ab yields the standard torsion equa-
tion as an equation of motion:

 D���!�ea�� � 2T��a�
� 

1

2e
ea�����	 �
�5�	
: (5)

This can be solved as

 !�ab � !�ab�e; 
� 
 !�ab�e� � 
�ab�
� (6)

where !�e� is the spin connection of pure gravity (2) and
the contorsion tensor is given by (the general relation
between the torsion and the contorsion is 2T��
 �
�


����

)

 
�ab�
� � �
1
4e
c
��abcd �
�5�

d
: (7)

It is straightforward to check that the fermionic Holst
Lagrangian density (4) above is a total derivative for the
connection !�e; 
� � !�e� � 
�
� given by (6) and (7).
Mercuri has made an interesting observation [7] that the
modified Holst action SHolstF�!�e; 
�� can be cast in a form
involving the Nieh-Yan invariant density and divergence of
an axial current density in the following manner:

 SHolstF�!�e; 
�� � �
i�
2

Z
d4x�INY � @�J��
��; (8)

where J��
� � e �
�5��
 and the Nieh-Yan invariant den-
sity, in general, is [8]

 INY � ����	�T��
aT�	a �

1
2�

ab
��R�	ab�!��: (9)

For the present case, notice that ����	T��a�
�T�	a�
�
is identically zero for the explicit torsion expression of
Eq. (5), and hence the Nieh-Yan invariant density is simply
��1=2�����	�ab

��R�	ab�!�e; 
��. In general, the Nieh-Yan
topological invariant density is just the divergence of the
pseudotrace axial vector constructed from the torsion:

 INY � ����	@�T��	: (10)

This allows us to see that the modified Holst Lagrangian
density is indeed a total derivative when the connection
equation of motion (6) and (7) is used:

 SHolstF�!�e; 
�� �
i�
4

Z
d4x@�J��
�

� �
i�
6

Z
d4x����	@�T��	�
�;

where we have used the fact that 2����	T��	�
� �
�3J��
�.

Next, variations of the total action SGF � SHolstF with
respect to the tetrad field ea� and fermion 
 lead to the same

equations of motion as those obtained from the variations
of the gravity-fermion action SGF alone, making these
classical equations of motion independent of the Immirzi
parameter.

Coupling of higher spin fermions to gravity also requires
a special consideration in the presence of the Holst term.
For example, we could consider the supergravity theories
which contain spin 3=2 fermions. If we add the original
Holst term of Eq. (1) without any modifications to the
standard actions of these theories in the manner done by
Perez and Rovelli [6] for spin 1=2 fermions, the equations
of motion obtained from the resulting actions will indeed
develop dependence on the Immirzi parameter, indicating
violation of supersymmetry. It is worthwhile to ask if there
are any possible modifications of the Holst term which
preserve the original supergravity equations of motion. In
the following, we shall discuss such modifications of the
Holst action, which, when added to the standard N � 1, 2,
4 supergravity actions, will leave the supergravity equa-
tions of motion unchanged and thereby preserve supersym-
metry. In addition, we shall also see that, in each of these
cases, for the connection satisfying the connection equa-
tion of motion, the modified Holst action can be written in
an analogous form as written by Mercuri for spin 1=2
fermions (8).

II. N � 1 SUPERGRAVITY WITH HOLST ACTION

The simplest supersymmetric generalization of Einstein
gravity is N � 1 supergravity [9], which is described by a
spin 3=2 Majorana spinor, the gravitino  �, and the tetrad
field ea�. The generalized supergravity action containing
the modified Holst term for this theory is given by

 S1 � SSG1 � SSHolst1; (11)

where the supergravity action is

 SSG1 �
1

2

Z
d4x�e���

ab R��
ab�!�

� ����	 � ��5��D��!� 	� (12)

and the supersymmetric Holst action as introduced by
Tsuda [10] is

 SSHolst1 �
i�
2

Z
d4x�e���

ab
~R��

ab�!�

� ����	 � ���D��!� 	�: (13)

Again for � � �i, action (11) is the N � 1 supersymmet-
ric generalization of the Ashtekar chiral action.

Variation of the action S1 with respect to the connection
!ab
� leads to the standard torsion equation of N � 1 super-

gravity:

 D���!�e
a
�� � 2T��

a� � 
 1
2

� ��
a �; (14)

which in turn is solved by
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 !�
ab � !�

ab�e;  � 
 !�
ab�e� � 
�

ab� � (15)

where!�e� is the pure gravity spin connection given by (2)
and the contorsion tensor is

 
��	� � �
1
4�

� ��� 	 � � ��� 	 � � ��	 ��: (16)

Next, the supersymmetric Holst Lagrangian density (13)
is a total derivative for ! � !�e;  �. It can also be cast in
the form as in (8) involving the Nieh-Yan topological
invariant density and divergence of an axial current density
as

 SSHolst1�!�e;  �� � �
i�
2

Z
d4x�INY � @�J�� ��; (17)

where now we have the gravitino axial vector current
density J�� � � 1

2 �
���	 � ��� 	. Here also, Fierz re-

arrangement implies ����	T��a� �T�	
a� � � 0 for the

torsion given by (14), and hence the Nieh-Yan density is
simply ��1=2�����	�ab

�	R��ab�!�e;  ��. Using the gen-
eral property of the Nieh-Yan topological invariant density
given in Eq. (10), it follows that the modified Holst
Lagrangian density for the connection !�e;  � is a total
derivative:

 SSHolst1�!�e;  �� � �
i�
4

Z
d4x@�J�� �

�
i�
2

Z
d4x����	@�T��	� �:

This is to be contrasted with the pure gravity case above
where the Holst Lagrangian density is exactly zero for! �
!�e�.

When the substitution ! � !�e;  � is made into the
variation of the super-Holst action (13) with respect to
the gravitino  � and tetrad ea� fields, we obtain integrals
over total derivatives, and hence these do not contribute to
the equations of motion which come entirely from the
variations of the supergravity action SSG1 (12). Thus the
addition of the super-Holst action (13) to the supergravity
action (12) does not change the standard equations of
motion of N � 1 supergravity.

III. N � 2 SUPER-HOLST ACTION

The next-level supersymmetric generalization of
Einstein gravity is N � 2 supergravity [11]. Besides the
tetrad fields ea� and their two superpartner gravitinos whose
chiral projections are  I� and  I�, I � 1, 2 (�5 I� � � I�
and �5 I� � � I�), this theory also contains an Abelian
gauge field A�. The action for this theory is given by [11]

 

SSG2 �
Z
d4xe

�
1

2
���
ab R��

ab�!� �
1

4
F��F��

�
1

2e
����	� � I���D��!� I	 � � I���D��!� 

I
	�

�
1

2
���
2
p � I� J��IJ�F��� � F̂

����

�
1

2
���
2
p � I� J��

IJ�F��� � F̂����
�
; (18)

where the supercovariant field strength is

 F̂ �� � @��A�� �
1���
2
p � � I� 

J
��IJ � � I� J��

IJ�

and the self-(antiself-)dual field strengths are F	�� �
1
2 �

�F�� 	
� F��� and the star dual * is given by �F�� �

1
2e ����	F

�	.
We generalize the N � 2 supergravity action (18) by

adding a modified Holst term to obtain the new action as

 S2 � SSG2 � SSHolst2; (19)

where the super-Holst action is

 SSHolst2 � i�
Z
d4xe

�
1

2
���
ab

~R��
ab�!�

�
1

4e
����	 � I� 

J
�

� I� J	

�
1

2e
e���	� � I���D��!� I	

� � I���D��!� 
I
	�

�
: (20)

Notice that this N � 2 super-Holst action has an addi-
tional four-gravitino term as compared to the similar N �
1 super-Holst action (13). This term plays an important
role, as shall be seen in what follows. Also, in this modified
Holst action, there are only fields that couple to the con-
nection field! in the original supergravity action; no terms
involving the gauge field A� are included. This modified
Holst action, as it is, does have the desired property of
leaving the original supergravity equations unaltered. To
see this, we vary the generalized total action S2 (19) with
respect to the connection !�

ab to obtain
 

�
1

2

Z
d4x����	�D��!��

ab
�	 � e

a
�

� I��
b I	�

�

�
1

2
�abcd � i��ac�bd

�
�!�

cd � 0;

which implies

 ����	D��!��ab
�	 � �

1
2�
���	e�a� � I��b� I	;

which in turn leads to the standard torsion equation of N �
2 supergravity:
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 D���!�e
a
�� � 2T��

a� � 
 1
2�

� I��
a I� � � I��

a I��

whose solution is given by

 !�
ab � !�

ab�e;  � 
 !�
ab�e� � 
�ab� �: (21)

Here !�
ab�e� is the usual torsion-free spin connection (2),

and the contorsion tensor of N � 2 supergravity is

 
��	� � �
1
4�

� I��� I	 � � I��� I	 � � I��	 I� � c:c:�:

(22)

Thus, despite the additional super-Holst term SSHolst2 in the
total action S2 above, the connection equations (21) and
(22) obtained are the standard N � 2 supergravity
equations.

Next, for this connection !�e;  �, the super-Holst
Lagrangian density (20) is a total derivative. To see this,
notice that
 

� 1
2�
���	� � I���D��!�e;  �� I	 � � I���D��!�e;  �� I	

� 1
2

� I� J� � I� J	� � �
1
2�@�J

�� � � ����	T��aT�	
a�

(23)

where the axial current density J�� � � ����	 � I��� I	.
To obtain this relation we have made use of 2T��


 �

�

����


 � 1
2

� I
���


 ��I and the identity

 � 1
2�
���	T��a� �T�	

a� � � 1
4�
���	 � I� 

J
�

� I� J	;

which can be checked easily using the explicit expression
for the torsion and a simple Fierz rearrangement. Clearly
the four-gravitino term in the left-hand side of Eq. (23),
which has its origin in the four-gravitino term in the super-
Holst action (20), is important to obtain the desired form of
this equation.

Here also, for the connection !�e;  � given by (21) and
(22), the super-Holst Lagrangian density can be written in a
special form in terms of the Nieh-Yan invariant density and
divergence of an axial current density as

 SSHolst2�!�e;  �� � �
i�
2

Z
d4x�INY � @�J�� ��: (24)

Again using the general property of the Nieh-Yan invariant
density and relating it to a derivative of torsion (10), we
find that super-Holst Lagrangian density is a total deriva-
tive for the connection !�e;  �:

 SSHolst2�!�e;  �� � �
i�
4

Z
d4x@�J�� �

�
i�
2

Z
d4x����	@�T��	� �; (25)

where we have used the fact that 2����	T��	� � �
�J�� �.

Not only is the connection equation ofN � 2 supergrav-
ity unchanged by adding the super-Holst action (20), other
equations of motion are also unmodified. For example, to
check this explicitly, substituting ! � !�e;  � � !�e� �

� � into the variation of the super-Holst Lagrangian
density LSHolst2 (20) with respect to the gravitino field
 I� leads to

 �
� I�

�LSHolst2

� I�

�
!�!�e; �

� �
i�
2
����	�� � I���D��!�e�� I	 � � I���D��!�e��

� � I	 � � � I��b I	
��b � � � I� J� � I� J	�;

where the last two terms can be checked to cancel against
each other by using the explicit expression for the N � 2
contorsion tensor (22) and a Fierz rearrangement. Again
we notice that the presence of the four-gravitino term in the
N � 2 super-Holst action (20) is important for this can-
cellation to happen. Now the first two terms in the right-
hand side of the above equation combine into a total
derivative:

 �� I�
�LSHolst2

� I�
�!�!�e; � � �

i�
2
����	@��� � I��� I	�:

Hence this variation does not contribute to the gravitino
equation of motion; only contributions to the variation of
the total action S2 of Eq. (19) come from the supergravity
action SSG2 (18) yielding the standard supergravity
equations.

A similar conclusion holds for the other equation of
motion obtained by varying the tetrad field ea�. This can
be seen explicitly from

 

�
�ea�

�
�ea�
�e���

ab
~Rab���!��

�
!�!�e; �

� 2����	�r�
�	
 � 
�	
�
��
�e



b�e

b
�

and

 

�

�
�ea�

�
�ea�
�e���	� � I���D��!� I	 � � I���D��!� I	��

�
!�!�e; �

� ����	�r�� � I��
 I	� � � I��� I	
�
��e
b�e
b
�:
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From the expression for the contorsion tensor (22),
notice that ����	� � I��
 I	� � �2����	
�	
 and
e���	 � I��� I	
�
� � 2����	
�	

�
��
, so that adding
the above two equations yields

 

�
�ea�

�LSHolst2

�ea�

�
!�!�e; �

� 0:

Again the �ea� variation of the total action S2 obtains
contributions only from the supergravity action (18) lead-
ing to the standard supergravity equation of motion. Also,
since the super-Holst action SSHolst2 (20) does not depend
on the gauge field, the last equation of motion obtained by
varying A� comes from the supergravity action SSG2 (18).

IV. N � 4 SUPERGRAVITY

Now we shall consider the generalization of the Holst
action to the case of N � 4 supergravity [12]. This theory,

in its SU�4� version, describes four spin 3=2 Majorana
gravitinos whose chiral projections  I� and  I� (I � 1,
2, 3, 4) with �5 

I
� � � 

I
� and �5 I� � � I� transform

as 4 and �4 representations of SU�4�, and four Majorana
spin 1=2 fermions whose chiral projections �I and �I with
�5�I � ��I and �5�I � ��I also transform as 4 and �4,
respectively. Bosonic fields of the theory include the tetrad
fields ea� and six complex vector fields A�IJ (antisymmet-
ric in IJ) and their SU�4� dual �AIJ� � �A�IJ�

� �
1
2 �

IJKLA�KL. In addition, there are scalar fields that pa-
rametrize the coset manifold SU�1; 1�=U�1�. These are
represented as a doublet of SU�1; 1� complex scalar fields
�A � ��1; �2� and their SU�1; 1� dual �A � �AB��B �
���1;��

�
2� subject to the condition �A�A 
 ��1�1 �

��2�2 � 1. The equations of motion of this theory exhibit
an SU�1; 1� invariance, though its action does not. The
action is given by [12]

 

SSG4 �
Z
d4xe

�
1

4
R�!; e� �

1

2e
����	 � I���D��!� I	 �

1

2
��I��D��!��I �

1

2
c� �c� �

1

8

�
�1 ��2

�

�
F�IJ�� �F�IJ��

�
1

2
���
2
p

�
� I� 

J
��F

���
IJ � F̂���IJ � �

1

2��
��I�� 

J
��F

���
IJ � F̂���IJ � �

1���
2
p ��I����

�
c� �

1

2
���
2
p � J��J

�
 I� � c:c:

�
;

(26)

where � 
 ��1 ��2� and �� 
 ��1 ��2�, and the co-
variant derivatives D are
 

D��!��I � �D��!� � �3i=2�a���I;

D��!��
I � �D��!� � �3i=2�a���

I;

D��!� 
I
	 � �D��!� � �i=2�a�� 

I
	;

D��!� I	 � �D��!� � �i=2�a�� I	;

and the SU�1; 1� invariant vectors a�, c�, and �c� are

 a� � i�A@��
A; c� � �AB�

A@��
B;

�c� � �AB�A@��B:

The field strengths F��IJ � @��A��IJ and �FIJ�� � @��A
IJ
��

are supercovariantized as

 F̂ ��
IJ � F��IJ �

1

2
���
2
p �� � ��

�I  
��
J� �

���
2
p
�IJKL � K������L�

�
1

2
���
2
p ����IJKL � K�� ��L �

���
2
p

� ��
�I �

���J��;

 

�̂F IJ
�� � �FIJ�� �

1

2
���
2
p ��� � �I

�� 
J�
�� �

���
2
p
�IJKL � K������L�

�
1

2
���
2
p ���IJKL � K�� ��L �

���
2
p

� �I
������

J��:

To the N � 4 supergravity action (26), we add an ap-
propriately modified Holst term:

 S4 � SSG4 � SSHolst4; (27)

where the N � 4 super-Holst action is given by

 SSHolst4 � i�
Z
d4xe

�
1

2
���
ab

~R��
ab�!� �

1

2e
����	� � I���D��!� I	 � � I���D��!� I	� �

1

2
� ��I��D��!��I

� ��I��D��!��I� �
1

4e
����	 � I� J� � I� J	 �

1

4e
����	 ��I�� J� ��I�� J	

�
: (28)

Here, only those fields which are coupled to the connection
! in the supergravity action are involved, and not others
like the gauge fields A�IJ, �AIJ� , and scalar fields �A, which
do not have any coupling to !. Also, in addition to the

four-gravitino term, which is also present in the super-
Holst action for N � 2 supergravity, we have an additional
four-fermion term involving two gravitinos and two �’s.
Both these terms are important to achieve the desired result
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that equations of motion of N � 4 supergravity theory are
not modified in the presence of this super-Holst term.

Variation of the total action S4 (27) with respect to the
connection !�

ab leads to
 Z

d4x
�
����	

�
D	�!��

cd
�� �

1

2
� I�e

�c
� �d� I	

�

� e ��Ie��c�d��I
��

1

2
�abcd � i��ac�bd

�
�!�

ab � 0:

This implies the standard torsion equation of N � 4 super-
gravity:

 D���!�e
a
�� � 2T��

a � 2�T��
a� � � T��

a����



1

2
� I���

a ��I �
1

2e
ea�����	 ��I�

	�I; (29)

which is solved by

 !�ab � !�ab�e;  ;�� 
 !�ab�e� � 
�ab (30)

where !�ab�e� is the standard pure gravitational spin
connection given by (2) and the N � 4 contorsion tensor

 has contributions from both the gravitinos  and fermi-
ons �:
 


��	 � 
��	� � � 
��	���;


��	� � �
1

4
� � I��� I	 � � I��� I	 � � I��	 I� � c:c:�;


��	��� � �
1

4e
���	� ��I�

��I: (31)

Like in the earlier cases of N � 1 and N � 2 supergrav-
ity, for the connection ! � !�e;  ;�� � !�e� � 
� ;��,
the super-Holst Lagrangian density LSHolst4 (28) is a total
derivative. To demonstrate that this is so, notice that
 

� 1
2��

���	� � I���D��!� I	 � � I���D��!� I	�

� e� ��I�
�D��!��

I � ��I��D��!��I��!�!�e; ;��

� 1
4�
���	� � I� J� � I� J	 � ��I�� J� ��I�� J	�

� �1
2�@��J

�� � � J����� � ����	T��aT�	
a� (32)

where J�� � � ����	 � I��� I	 and J���� � e ��I���I.
Here we have used 2T��
� � � �
����


� �, T������ �

�
������ and the identities e ��I���I
���� � �
2����	T��

a� �T�	a���, ����	T��a���T�	
a��� � 0,

and the following relation obtained by Fierz rearrange-
ments:

 � 1
2�
���	T��aT�	

a � �1
2�
���	�T��a� �T�	

a� �

� 2T��a� �T�	
a����

� 1
4�
���	� � I� J� � I� J	

� ��I�� 
J
�

��I�� J	�: (33)

Notice that the two four-fermion terms of the super-Holst
action (28) have played an important role in allowing us to
write Eq. (32). Now substituting this equation into the
super-Holst action (28), we find that the super-Holst action
for ! � !�e;  ;�� takes the same special form as in the
earlier cases:

 SSHolst4�!�e;  ;��� � �
i�
2

Z
d4x�INY � @�J

�� ;���

(34)

where J�� ;�� 
 J�� � � J����. It is important to note
that this axial vector density J�� ;�� is not the conserved
axial current of the N � 4 theory; in fact, the conserved
current density associated with the axial U�1� invariance of
the theory is J � � J�� � � 3J����.

Now, for the Nieh-Yan invariant density, we use

 INY � ����	@�T��	 � ����	@��T��	� � � T��	����

� �1
2@��J

�� � � 3J�����;

where we have used the facts that 2����	T��	� � �
�J�� �, 2����	T��	��� � �3J����. This thus leads us
to

 

SSHolst4�!�e;  ;��� � �
i�
4

Z
d4x@��J�� � � J�����

�
i�
2

Z
d4x����	@�

�

�
T��	� � �

1

3
T��	���

�
: (35)

Next, to check explicitly that the other equations of
motion are not changed in this case too, consider, for
example, the �I variation of the super-Holst Lagrangian
density LSHolst4 from Eq. (28):

 ��I
�LSHolst4

��I
� �

i�
2
e
�
�� ��I�

�D��!��
I

� ��I��D��!���I� �
1

2
� � I��

� I�

� � I��
� I��� ��J�

��J
�
;

where, in writing the second term on the right-hand side,
we have used the Fierz rearrangement

 e� � I��
� I� � � I��

� I�� ��J�
��J

� �����	 ��I�� 
J
�

��I�� J	:

Now substituting ! � !�e;  ;�� from (30), we obtain
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 �
��I

�LSHolst4

��I

�
!�!�e; ;��

� �
i�
2
e
�
� ��I��D��!�e���I � ��I��D��!�e����I

� � ��I�
��I

�

�

�
� �

1

2
� � I��

� I� � � I��
� I��

��
:

Using (31) for the N � 4 contorsion tensor, the last two
terms cancel, leaving the first two terms which combine
into a total derivative:

 

�
��I

�LSHolst4

��I

�
!�!�e; ;��

� �
i�
2
@��e� ��I�

��I�:

Similarly, variations of the super-Holst Lagrangian den-
sity (28) with respect to the gravitino  I� and tetrad ea�
fields are
 �
� I�

�LSHolst4

� I�

�
!�!�e; ;��

� �
i�
2
����	@��� � I��� I	�;

�
�ea�

�LSHolst4

�ea�

�
!�!�e; ;��

� 0:

Thus, clearly all the equations of motion obtained by
varying the modified supergravity action S4 (27) are the
same as those obtained by varying the supergravity action
SSG4 (26) alone; the addition of the super-Holst action
SSHolst4 (28) does not change these classical equations of
motion. These are indeed independent of the Immirzi
parameter.

V. CONCLUDING REMARKS

We have extended the Holst action for pure gravity with
the Immirzi parameter as its associated coupling constant
to the case of supergravity theories. This has been done in a
manner that the equations of motion of supergravity theo-
ries are not changed by such modifications of the original
Holst action. This ensures that supersymmetry is preserved
and the Immirzi parameter does not play any role in the
classical equations of motion. This is unlike the case
studied by Perez and Rovelli and also by Freidel, Minic,
and Takeuchi [6], where a spin 1=2 fermion is minimally
coupled to gravity in the presence of the original Holst
action without any modification. In such a situation, the
equations of motion do develop dependence on the Immirzi
parameter.

For each of the N � 1, 2, 4 supergravity theories, we
find that the modified Holst Lagrangian density becomes a
total derivative when we use the connection equation of
motion ! � !�e; . . .� � !�e� � 
�. . .�, where ellipses in-
dicate the various fermions which introduce torsion in the
theory. This total derivative takes a special form analogous
to the one described by Mercuri for the case of spin 1=2
fermions (8). It is given in terms of the Nieh-Yan invariant
density and divergence of an axial fermion current density:

 SHolst�! � !�e; . . .�� � �
i�
2

Z
d4x�INY � @�J

��. . .��:

(36)

The Nieh-Yan topological density is the divergence of the
pseudotrace axial vector associated with torsion: INY �

@������	T��	�.
It is important to emphasize that the modified Holst

action on its own does not have this special form (36)
and reduces to this form only for the connection that
satisfies the connection equation of motion.

For arbitrary real values of the Immirzi parameter ��1,
the Holst action allows a canonical formulation of pure
gravity [1,4] in terms of a real Ashtekar-Barbero SU�2�
connection. For the modified Holst action for the case of
spin 1=2 fermions, a canonical formulation has been de-
veloped in [7]. Extension of such a canonical formulation
toN � 1 supergravity has been presented by Tsuda in [10].
In the same spirit, for the modified Holst actions (20) and
(28) for N � 2 and N � 4 supergravity theories, a similar
generalized Hamiltonian formulation can be developed.
Care needs to taken in this analysis to fix the gauge after
the proper constraint analysis is performed [13].

ACKNOWLEDGMENTS

Useful discussions with Naresh Dadhich, Ghanashyam
Date, and T. R. Govindarajan are gratefully acknowledged.

[1] S. Holst, Phys. Rev. D 53, 5966 (1996).
[2] G. Immirzi, Classical Quantum Gravity 14, L177 (1997).
[3] A. Ashtekar, Phys. Rev. Lett. 57, 2244 (1986); Phys. Rev.

D 36, 1587 (1987).
[4] N. Barros e Sa, Int. J. Mod. Phys. D 10, 261 (2001); S.

Alexandrov, Classical Quantum Gravity 17, 4255 (2000).

[5] J. Fernando Barbero, Phys. Rev. D 51, 5507 (1995).
[6] A. Perez and C. Rovelli, Phys. Rev. D 73, 044013 (2006);

L. Freidel, D. Minic, and T. Takeuchi, Phys. Rev. D 72,
104002 (2005).

[7] S. Mercuri, Phys. Rev. D 73, 084016 (2006); , Phys. Rev.
D 77, 024036 (2008).

HOLST ACTIONS FOR SUPERGRAVITY THEORIES PHYSICAL REVIEW D 77, 045030 (2008)

045030-7



[8] H. T. Nieh and M. L. Yan, J. Math. Phys. (N.Y.) 23, 373
(1982).

[9] D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara,
Phys. Rev. D 13, 3214 (1976); S. Deser and B. Zumino,
Phys. Lett. 62B, 335 (1976); D. Z. Freedman and P. van
Nieuwenhuizen, Phys. Rev. D 14, 912 (1976).

[10] M. Tsuda, Phys. Rev. D 61, 024025 (1999).
[11] S. Ferrara and P. van Nieuwenhuizen, Phys. Rev. Lett. 37,

1669 (1976); A. S. Fradkin and M. A. Vasiliev, Lett.
Nuovo Cimento 25, 79 (1979); B. de Wit and J. W. van

Holten, Nucl. Phys. B155, 530 (1979); A. S. Fradkin and
M. A. Vasiliev, Phys. Lett. 85B, 47 (1979); P.
Breitenlohner and M. F. Sohnius, Nucl. Phys. B165, 483
(1980).

[12] A. Das, Phys. Rev. D 15, 2805 (1977); E. Cremmer and J.
Scherk, Phys. Lett. 69B, 97 (1977); Nucl. Phys. B127, 259
(1977); E. Cremmer, J. Scherk, and S. Ferrara, Phys. Lett.
74B, 61 (1978); R. E. C. Perret, Classical Quantum
Gravity 5, 1109 (1988).

[13] J. Samuel, Phys. Rev. D 63, 068501 (2001).

ROMESH K. KAUL PHYSICAL REVIEW D 77, 045030 (2008)

045030-8


