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Lattice studies indicate existence of magnetic strings in QCD vacuum. We argue that recently found
non-Abelian strings with rich world-sheet dynamics provide a pattern which fits the strings observed on
the lattice. In particular, within this pattern we explain the localization of the monopole-antimonopole
pairs on the magnetic string world sheet and the negative contribution of the magnetic strings into the
vacuum energy and gluon condensate. We suggest the D2 brane realization of the magnetic string which
explains the temperature dependence of its tension.
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I. INTRODUCTION

An explanation of the QCD vacuum structure remains a
challenging problem. Recently, progress has been made in
the lattice studies and their interpretation [1]. In particular,
the essential contribution from the 2D surfaces (strings)
and 3D volumes (domain walls) with some unusual prop-
erties to the vacuum characteristics has been found. For our
purposes, the key properties of the magnetic strings ob-
served on the lattice can be summarized as follows (for
references see Sec. IV below and reviews [1]):

(i) The tension of the magnetic strings vanishes below
the critical temperature and they percolate through
the vacuum, forming a kind of a vacuum condensate.

(ii) The world sheet of magnetic string is populated by
monopole-antimonopole pairs.

(iii) Above the temperature of the deconfinement phase
transition magnetic string becomes tensionful.

Most recently, it was argued that
(i) The magnetic strings become a component of Yang-

Mills plasma [2] and the first measurements indicate
surprisingly that

(ii) The contribution of the strings to the gluon conden-
sate and 4D bulk vacuum energy is opposite in sign
compared to its total value [3].

A natural question concerns the very existence of strings
with such properties in the continuum theory. The goal of
this note is to argue that non-Abelian magnetic strings
found recently in the SUSY gauge theories naturally pro-
vide the desired pattern. We are not aiming to prove
rigorously that non-Abelian strings populate the QCD
vacuum. However, our considerations clearly indicate
that this kind of object fits the lattice data perfectly.

The non-Abelian strings which are essentially twisted
ZN strings with orientational moduli were first found in
SUSY context [4,5]. However, later it was recognized that
they do exist in non-SUSY theories as well [6] (see [7–9]
for reviews). The key property of the non-Abelian strings
which distinguishes them from other objects discussed in
this context is highly nontrivial world-sheet theory which
in the simplest examples can be identified with the

CP�N � 1� sigma model. Moreover, it was found that
kinks on the world sheet are nothing else but the 4D
monopoles ‘‘trapped’’ by the string [10,11]. In the non-
supersymmetric case CP�N � 1� world-sheet theory is in
the confinement phase [12] so that only kink-antikink pairs
exist which parallels the lattice QCD observations. It was
also argued recently that non-Abelian strings could play an
essential role in the Seiberg duality [13,14].

As is mentioned above, the very recent lattice data
indicates that magnetic strings contribute to the vacuum
energy and gluon condensate above the critical tempera-
ture with the unexpected sign [3]. On the other hand, it was
a found long time ago [15] that vacuum energies in 4D
gauge theories and the 2D CP�N � 1� sigma model have
opposite signs. We argue that this old observation provides
a pattern for an interpretation of the recent lattice data [3].

The lattice data suggests that the tension of the magnetic
string is zero below the deconfinement temperature Tc and
the question is whether the non-Abelian strings share this
property. To get insight into the problem, we will use the
brane realization of the non-Abelian string as a D2 brane in
a particular supergravity background. Within this picture
we argue that interpretation of the magnetic string as
wrapped D2 brane explains the temperature dependence
of the tension. In the simple model, we discuss the back-
ground geometry formed by Nc D4 branes wrapped around
one compact dimension. Since both D4 and D2 branes
share coordinates, one could expect the effect of dissolving
of D2 branes inside D4 branes due to the tachyons in the
spectrum of D2-D4 strings. Since D4 branes are substituted
by the background geometry, one could expect that there
exists a counterpart of dissolving phenomena in the gravity
background. We will argue that in the dual gravity picture
below the deconfinement temperature D2 branes yield
tensionless strings which can condense indeed. It is this
effect that corresponds to the dissolving phenomena at
large Nc. The change of the background above the critical
temperature results to the tensionful strings and an inter-
esting phenomenon that the properties of the time- and
space-oriented magnetic strings become different.
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The paper is organized as follows. In Sec. II we explain
the construction of the non-Abelian string solution in a
simple model. In Sec. III we argue that the non-Abelian
string pattern explains the negative contributions to the
vacuum energy and the gluon condensate and temperature
dependence of the magnetic-string tension. In Sec. IV we
briefly compare our picture with available lattice data on
the magnetic strings. Section V involves a brief discussion
of the results obtained and some unsolved issues.

II. NON-ABELIAN STRINGS

Here we review the simplest model which can be used to
analyze non-Abelian strings. The gauge group of the model
is SU�N� � U�1�. Besides SU�N� and U�1� gauge bosons,
the model contains N scalar fields charged with respect to
U�1�which form N fundamental representations of SU�N�.
It is convenient to write these fields as N � N matrix � �
f’kAg where k is the SU�N� gauge index while A is the
flavor index,

 � �

’11 ’12 � � � ’1N

’21 ’22 � � � ’2N

� � � � � � � � � � � �

’N1 ’N2 � � � ’NN

0
BBB@

1
CCCA: (1)

The action of the model has the form
 

S �
Z

d4x
�

1

4g2
2

�Fa���2 �
1

4g2
1

�F���2 � Tr�r���y�r���

�
g2

2

2
�Tr��yTa��	2 �

g2
1

8
�Tr��y�� � N�	2

�
i�

32�2 F
a
��

~Fa��
�
; (2)

where Ta stands for the generator of the gauge SU�N�,

 r�� 

�
@� �

i�������
2N
p A� � iAa�Ta

�
�; (3)

and � is the vacuum angle. The action (2) represents a
truncated bosonic sector of the N � 2 SUSY model. The
last term in the second line forces � to develop a vacuum
expectation value (VEV) while the last but one term forces
the VEV to be diagonal,

 �vac �
���
�

p
diagf1; 1; . . . ; 1g: (4)

We assume that the parameter � is large,

 

���
�

p
� �4; (5)

where �4 is the scale of the four-dimensional theory (2).
That is, we are in the weak-coupling regime since both
couplings g2

1 and g2
2 are frozen at a large scale.

The vacuum field (4) results in spontaneous breaking of
both gauge and flavor SU�N�’s. A diagonal global SU�N�
survives

 U �N�gauge � SU�N�flavor ! SU�N�diag; (6)

yielding color-flavor locking in the vacuum.
Within this model, there exists a topologically stable

string solution. The topological considerations unify the
ZN center of the SU�N� with the elements exp�2�ik=N� 2
U�1�. In other words,

 �1�SU�N� � U�1�=ZN� � 0; (7)

and this nontrivial topology amounts to winding of just one
element of �vac. For instance, asymptotically

 �string �
���
�

p
diag�1; 1; . . . ; ei��x��; x! 1: (8)

These strings can be called elementary ZN strings; their
tension is 1=Nth of that of the Abrikosov-Nielsen-Olesen
(ANO) string. The ANO string can be viewed as a bound
state of N ZN strings.

The ZN string solution can be written as follows [5]:

 

� �

��r� 0 � � � 0

� � � � � � � � � � � �

0 � � � ��r� 0

0 0 � � � ei��N�r�

0
BBBBB@

1
CCCCCA;

ASU�N�
i �

1

N

1 � � � 0 0

� � � � � � � � � � � �

0 � � � 1 0

0 0 � � � ��N � 1�

0
BBBBB@

1
CCCCCA

� �@i����1� fNA�r�	;

AU�1�
i �

1

N
�@i���1� f�r�	; AU�1�

0 � ASU�N�
0 � 0;

(9)

where i � 1, 2 labels coordinate in the plane orthogonal to
the string axis and r and � are the polar coordinates in this
plane. The profile functions ��r� and �N�r� determine the
profiles of the scalar fields, while fNA�r� and f�r� deter-
mine the SU�N� and U(1) fields of the string solutions,
respectively. These functions satisfy the following bound-
ary conditions:

 �N�0� � 0; fNA�0� � 1; f�0� � 1; (10)

at r � 0, and

 �N�1� �
���
�

p
; ��1� �

���
�

p
;

fNA�1� � 0; f�1� � 0
(11)

at r � 1. These profile functions satisfy the following
first-order differential equations:

A. GORSKY AND V. ZAKHAROV PHYSICAL REVIEW D 77, 045017 (2008)

045017-2



 

r
d
dr
�N�r� �

1

N
�f�r� � �N � 1�fNA�r���N�r� � 0;

r
d
dr
��r� �

1

N
�f�r� � fNA�r����r� � 0;

�
1

r
d
dr
f�r� �

g2
1N
4
��N � 1���r�2 ��N�r�2 � N�	 � 0;

�
1

r
d
dr
fNA�r� �

g2
2

2
��N�r�2 ���r�2	 � 0:

(12)

The tension of this elementary string is

 T1 � 2�� (13)

while the tension of the ANO string is

 TANO � 2�N� (14)

which confirms its composite nature.
The elementary strings are essentially non-Abelian

since, besides trivial translational moduli, they give rise
to moduli corresponding to the spontaneous breaking of a
non-Abelian symmetry. Indeed, while the ‘‘flat’’ vacuum is
SU�N�diag symmetric, the solution (9) breaks this symme-
try down. This means that the world-sheet theory of the
elementary string moduli is the CP�N � 1� sigma model.

To obtain the non-Abelian string solution from the ZN
string (9), we apply the diagonal color-flavor rotation
preserving the vacuum (4). Consider the singular gauge
where the scalar fields have no winding at infinity, while
the string flux comes from the vicinity of the origin. In the
singular gauge we have
 

� � U

��r� 0 � � � 0

� � � � � � � � � � � �

0 � � � ��r� 0

0 0 � � � ��N�r�

0
BBBBB@

1
CCCCCAU

�1;

ASU�N�
i �

1

N
U

1 � � � 0 0

� � � � � � � � � � � �

0 � � � 1 0

0 0 � � � ��N � 1�

0
BBBBB@

1
CCCCCAU

�1

� �@i��fNA�r�;

AU�1�
i � �

1

N
�@i��f�r�; AU�1�

0 � ASU�N�
0 � 0; (15)

where U is a matrix 2 SU�N�. This matrix parametrizes
orientational zero modes of the string associated with flux
embedding into SU�N�. The orientational moduli encoded
in the matrix U were first observed in [4,5].

Turn now to the world-sheet description of the non-
Abelian string. It is important that there are two indepen-
dent contributions from ‘‘space’’ and ‘‘internal’’ terms.
The space-time action does not reduce entirely to the
Nambu-Goto term which is only the first approximation

term. The corresponding tension is proportional to �. To
obtain the kinetic term in the ‘‘internal’’ action we follow
the standard logic in the derivation of the low-energy
action in the moduli approximation. That is, we substitute
our solution, which depends on the moduli nl, into the
action, assuming that the fields acquire dependence on the
coordinates xk via nl�xk�. Then we arrive at the CP�N � 1�
sigma model (for details see [8]),

 S�1�1�
CP�N�1� � 2f

Z
dt dzf�@kn

�@kn� � �n
�@kn�

2g; (16)

where the coupling constant f is determined by the nor-
malization condition defined in terms of the string profile
functions:

 f �
2�

g2
2

: (17)

That is, the two-dimensional coupling constant is deter-
mined by the four-dimensional non-Abelian coupling.

The relation between the four-dimensional and two-
dimensional coupling constants (17) is obtained on the
classical level. In quantum theory both couplings run and
hence we have to specify the scale at which the relation
(17) holds. The two-dimensional CP�N � 1� model is an
effective low-energy theory valid for description of internal
string dynamics at low energies, much lower than the
inverse thickness of the string which, in turn, is given by
g2

���
�
p

. Therefore, g2

���
�
p

plays the role of a physical ultra-
violet cutoff in (16). Below this scale, the coupling f runs
according to its two-dimensional renormalization-group
flow.

The sigma model (16) is asymptotically free; hence, at
large distances it gets into the strong coupling regime. The
running coupling constant as a function of the energy scale
E at one loop is given by

 4�f � N ln
�

E
�CP�N�1�

�
� � � � ; (18)

where �CP�N�1� is the dynamical scale of the CP�N � 1�
model. As was mentioned above, the UV cutoff of the
sigma model at hand is determined by g2

���
�
p

. Hence,

 �N
CP�N�1� � gN2 �

N=2e��8�
2=g2

2�: (19)

In the bulk theory, due to the VEV’s of the scalar fields, the
coupling constant is frozen at g2

���
�
p

. There are no logs in
the bulk theory below this scale and the logs of the world-
sheet theory take over.

III. MAGNETIC STRINGS VERSUS NON-ABELIAN
STRINGS

A. Monopole pairs on the world sheet

Let us show that the pattern of the non-Abelian strings
provides an explanation of the properties of the magnetic
strings observed on the lattice. First, we would like to note

MAGNETIC STRINGS IN QCD AS NON-ABELIAN VORTICES PHYSICAL REVIEW D 77, 045017 (2008)

045017-3



that from the discussion above it is clear that monopole
pairs are present on the non-Abelian string indeed.

The world-sheet theory is the nonsupersymmetric
�-model which has a single vacuum state and the spectrum
consists of kink-antikink bound states [12]. These bound
states can be identified with monopole-antimonopole
bound states from the four-dimensional viewpoint. The
IR scale �CP is generated in the world-sheet theory and
can be related to the scale in the bulk theory. The masses of
the bound states in the theory are of order �CP and they
cannot be found exactly since world-sheet theory is in the
strong coupling regime. In the SUSY setup, one can con-
sider massive flavors yielding the quasiclassical picture of
the bound states. In the non-SUSY case we have no such
simple argumentation. Note however that the monopoles in
the Higgs phase on the string world sheet are smoothly
related to the t’Hooft-Polyakov monopoles via the continu-
ous deformation in the parameter space (see a recent dis-
cussion in [16]).

If one introduces a � term in the bulk theory then due to
the Witten effect monopoles acquire nonzero electric
charge and become dyons. A similar phenomenon happens
on the world sheet as well. The � term penetrates into the
world-sheet theory and a kink in the world-sheet theory
acquires global charge.

B. Vacuum energy and gluon condensate

In view of the recent lattice measurements [3] of con-
tribution of magnetic strings into Yang-Mills plasma en-
ergy, we will consider the energy issue in the context of the
non-Abelian strings. There are two contributions to the
energy associated with dynamics in space-time and inter-
nal space, respectively. These contributions above the
critical temperature can be treated separately. Our basic
observation is that the contribution from the internal,
CP�N � 1� part is in fact negative and opposite in sign to
its total value, in agreement with the lattice data.

First, note that vacuum energy (at vanishing tempera-
ture) in the Yang-Mills theory is related to the conformal
anomaly,

 EYM
vac �

1

4
h0j�YM

�� j0i � h0j �
b0�S
32�

TrG2j0i; (20)

where b0 is the beta function coefficient. A similar relation
holds in the CP�N � 1� model as well. Namely,

 ECPvac �
1

2
h0j�CP��j0i �

N
8�

�2
CP: (21)

The gluon condensate hTrG2i gets a contribution from the
non-Abelian strings since the internal tension is propor-
tional to inverse gauge coupling,

 hTrG2itot /
d

d�1=g2�
logZ / hTrG2iYM � CCPhTrG2iCP:

(22)

The two-dimensional contribution from the non-Abelian
strings comes from the vacuum expectation value of two-
dimensional conformal anomaly in the CP�N � 1� model
which has the opposite sign [15] compared to the total
value

 hTrG2iCP / h0j�CP��j0i �
N
8�

�2
CP: (23)

The value of the dimensionful constant CCP is determined
by the density of the strings and we cannot estimate its
value at the moment. Let us emphasize that above the
critical temperature the world-sheet theory on the magnetic
string is supposed to be in the confinement phase from the
four-dimensional viewpoint. Let us emphasize that we
consider only the nonperturbative contributions to the vac-
uum energy which is determined by the nonperturbative
contribution to the conformal anomaly. Increasing the
temperature we could reach the temperature of the phase
transition on the magnetic-string world sheet. At this point
the magnetic-string contribution into the vacuum energy
shall vanishes.

C. Low-energy theorems and dilaton

Condensation of the magnetic string, observed on the
lattice, asks for consideration of the backreaction of a
single non-Abelian string on the bulk fields. Below we
use the low-energy theorems in the CP�N � 1� model to
argue that the scalar mode on the world sheet contributes
negatively to the mass squared of the corresponding mode
in four dimensions, contrary to the pseudoscalar case.

In the bulk theory, for any operator A there holds the
dilatation Ward identity,

 i
Z
d4xh0j�YM

���x�A�0�j0i � �dAh0jAj0i; (24)

where dA is the canonical dimension of the operator A. This
equation follows from the very fact that the theory is
asymptotically free. Similar arguments apply to the
world-sheet theory and the corresponding dilatation Ward
identity reads [15]

 i
Z
d2xh0j�CP���x�; A�0�j0i � �dAh0jAj0i; (25)

where we consider the correlator of the ��� with an
arbitrary operator in the CP�N � 1� sigma model.

Some of the operators A are of special interest. Consider
first the operator A � TrG2 so that the corresponding low-
energy theorem reads as

 i
Z
d4xh0jTrG2�x�;TrG2�0�j0i � SYM�0� / h0jTrG2j0i:

(26)

In YM theory the right-hand side is positive and if we
assume one-particle saturation of S�0� this sign corre-
sponds to a positive mass squared. This particle naturally
could be related to the dilaton � because of the standard
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coupling of the dilaton, e� TrG2. On the other hand, it is
clear from the arguments above that this correlator has a
contribution from the string of the form

 i
Z
d2xh0j�CP���x�; �CP���0�j0i � SCP�0�: (27)

The low-energy theorem yields SCP < 0 [15] which corre-
sponds to a tachyonic contribution to the mass of the
particle in the intermediate state. The total mass squared
of the scalar is positive while the stringy contribution is
negative.

Let us compare the bulk–world-sheet interplay of the
dilaton dynamics with the similar consideration concern-
ing axion [17]. It was shown in [17] that the two-
dimensional axion due to the mixing with photon is re-
sponsible for deconfinement on the world sheet. The reason
is that because of this mixing the world-sheet photon
becomes massive and linear confinement disappears. On
the other hand, the non-Abelian string does not cause a
strong modification of the bulk dynamics and results only
on the axion-emission halo around the string.

One can consider the correlator of topological-charge
densities:
 

d2 logZ

d2�
�
Z
d4xh0jTrG ~G�x�;TrG ~G�0�j0i �PYM�0�; (28)

which can be saturated by the axion in the intermediate
state (we have no quarks). Since the four-dimensional �
term penetrates into the world-sheet theory, the P�0� has
the two-dimensional contribution

 i
Z
d2xh0jF�x�F�0�j0i � PCP�0�; (29)

where F � 	��@�A� and A� is the auxiliary Abelian
gauge field in the CP�N � 1� model which acquires the
mass at the quantum level. The contribution of the PCP to
the total P�0� depends on the density of the non-Abelian
strings but the crucial point now is the sign of this con-
tribution. Namely, it is known [15] that the value of PCP�0�
is positive and has the same sign as the total correlator.
That is, we have opposite influence of the non-Abelian
strings on the dynamics of the dilaton and axion. The string
tends to decrease the mass of scalar and acts oppositely in
the pseudoscalar case.

D. Magnetic-string tension from brane perspective

Let us discuss the brane realization of the magnetic
string. To begin with, consider the weak-coupling non-
Abelian string. In the N � 2 SQCD case, the non-
Abelian string is perfectly identified as a D2 brane
stretched between two NS5 branes placed at large distance
� in some direction. According to the standard logic, the
tension of the non-Abelian string then turns out to be
proportional to � so that the quasiclassical analysis is
reasonable.

The geometry of the non-SUSY QCD is not established
well enough. However, the natural starting point is the
geometry provided by the set of D4 branes wrapped around
one compact dimension [18]. We shall consider the pure
gauge sector and do not discuss the chiral matter in this
note.

We shall assume the large NC limit and consider the
supergravity approximation. In this approximation the ge-
ometry looks asM10 � R3;1 �D� S

4 and the correspond-
ing metric reads as
 

ds2 �

�
u
R0

�
3=2
��dt2 � 
ijdxidxj � f�u�dx2

4�

�

�
u
R0

�
�3=2

�
du2

f�u�
� u2d�2

4

�
e� �

�
u
R0

�
4
;

F4 �
3Nc	4

4�
; f�u� � 1�

�
u�

u

�
3
; (30)

where R0 � ��gsNc�
1=3 and R � 4�

3 �
R3

0

u�
�1=2. The coupling

constant of Yang-Mills theory is related to the radius of the
compact dimension R as follows:

 g2
YM �

8�2gsls
R

:

At zero temperature theory is in the confinement phase
and in the (u, x4) coordinates we have the geometry of a
cigar with the tip at u � u�. The D4 branes are located
along our D � 4 geometry and are extended along the x4

coordinate. Let us emphasize that for the magnetic string
we discuss the target space looks asM10 � CP�N � 1� and
involves an ‘‘internal’’ part.

Let us turn to our proposal for the magnetic string within
the brane setup. Assuming the non-Abelian string to con-
stitute a correct pattern for the magnetic string implies that
the magnetic string at the strong coupling regime is the
probe D2 brane wrapped around S1 parametrized by x4 and
its tension is therefore proportional to the effective radius
R�u�. Because of the cigar geometry this wrapping is
topologically unstable and the D2 brane shrinks to the tip
where its tension vanishes. This is the large Nc counterpart
of the effect of dissolving of p-brane inside p� 2-brane
[19]. We see that in this way one immediately reproduces
the observed property of tensionlessness of the magnetic
string at zero temperature.

We can also check that there arises the correct �-term in
the magnetic-string world-sheet Lagrangian. To trace the �
term let us consider the CS term on the D2 world volume,

 LCS �
Z
d3xC1 ^ F; (31)

where C1 is the Ramond-Ramond (RR) one-form field.
Taking into account that � �

R
dx4C1, we reproduce the

standard �-term in the CP�N � 1� model �
R
d2xF.

Consideration of the finite �NC case is much more
subtle. Let us consider the finite NC D4 brane wrapped
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around x4 coordinate and a single D2 brane wrapped
around x4 as well. What could be the mechanism for the
magnetic-string condensation for finite NC? A natural con-
jecture is that the phenomenon of dissolving of the p-brane
inside the (p� 2)-brane [19] takes place here. Indeed, in
our D2-D4 system we have proper brane dimensions and
the tachyonic mode of the D2-D4 open string could lead to
the D2 brane condensation providing an additional mag-
netic field in four-dimensional theory via the CS term on
the D4 world sheet,

 LCS �
Z
d5xC3 ^ F; (32)

induced by the D2 brane RR field. However, it is not clear
how this D2-D4 string tachyonic mode could disappear at
the critical temperature and this point needs a careful
consideration. Possible stabilization mechanisms of the
p-brane inside the (p� 2)-brane which could be relevant
also in our context were discussed in [20] and are based on
the account of RR fields in the bulk.

E. Temperature dependence of the magnetic string

A crucial test of our proposal concerns the temperature
dependence of the magnetic string. We have argued above
that at zero and small temperatures the cigar geometry in
the (x4, u) plane amounts to the vanishing tension of the
magnetic string since the radius of the circle D2 brane
wrapped around shrinks to zero. However, the magnetic
string becomes tensionful above the critical temperature Tc
of the deconfinement phase transition. How does the
change of two regimes happens?

The key point is that in the nonzero temperature case
there are two backgrounds with similar asymptotic topol-
ogy of R3 � S1

� � S
1 � S4, where � is the Wick-rotated

time coordinate � � it, � / �� �. One background cor-
responds to the analytic continuation of the metric de-
scribed above while the second background corresponds
to interchange of � and x4, that is the warped factor is
attached to the � coordinate and the cigar geometry
emerges in the (�, u) plane instead of the (x4, u) plane
which now exhibits the cylinder geometry, see Fig. 1. It
was shown in [21] by calculation of the free energies that
above Tc the second background dominates.

Thus, above T � Tc one gets the geometry of the cylin-
der in (x4, u) and of the cigar in (�, u), so that the wrapping
around x4 is topologically stable now and the magnetic-
string tension is proportional to the cylinder radius.
Moreover, by construction the D2 brane is wrapped around
the x4 coordinate but the other two coordinates of the D2
brane can fill different dimensions. If both coordinates of
the magnetic string are transverse to the time direction, it
does not feel the instability in the (�, u) cigar geometry and
behaves as the S-string. On the other hand, if the magnetic
string is wrapped around the � coordinate, it is unstable in
the cigar geometry and shrinks along the � coordinate to
zero. That is, the magnetic string extended in the time
direction loses one physical dimension above TC and,
speaking somewhat loosely, looks as a ‘‘particle.’’ One
could say that the vanishing tension below the critical
temperature is ‘‘traded for’’ a lost dimension above the
critical temperature.

Let us emphasize that we have discussed above the
‘‘space’’ tension corresponding to the linear density of
the energy which jumps at the phase transition point. On
the other hand, the ‘‘internal’’ tension defining theCP�N �
1� part of the action of the magnetic string Tint � 1=g2

could change smoothly at any temperature in accordance
with the asymptotic freedom.

Note that the discussion in this section is somewhat
similar to the consideration in [22] of the role of the
instantons in the similar geometry which are represented
by Euclidean D0 branes wrapped around x4. In that case it
was argued that the single instanton is ill defined below Tc
because of the D0-brane instability in the cigar geometry
while above Tc it is well defined due to the geometry of the
cylinder. The change of the instanton role at the transition
point corresponds to the change from the Witten-
Veneziano to t’Hooft mechanisms of the solution to the
U(1) problem.

IV. LATTICE DATA

A. Lattice strings at zero temperature

In this section we will provide a short guide to the
literature on lattice measurements relevant to the theoreti-
cal issues discussed in this note.

FIG. 1 (color online). Compact coordinates below and above the phase transition temperature.
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Magnetic strings were introduced first in the context of
the confinement studies, as confining field configurations
and are known mostly as ‘‘center vortices,’’ for review and
references see [23]. In particular, it was found that the
vortices percolate in the vacuum, i.e. form an infinite
cluster, or a kind of condensate. Also, the total area of
the vortices is in physical units,

 �Area�total �2
QCDVtotal; (33)

where Vtotal is the total volume of the lattice.
For confinement, the transverse size of the strings is not

crucial and the strings were mostly thought of as ‘‘thick
vortices.’’ The fact that they are actually thin, two-
dimensional surfaces was discovered as a result of mea-
surements of the distribution of non-Abelian action asso-
ciated with the vortices [24]. The action turned to be
singular in the continuum limit,

 �Action�lattice  �Area�total=a2; (34)

where a is the lattice spacing, a! 0 in the continuum
limit. Moreover, the non-Abelian field living on the surface
is aligned, or trapped to the surface. It is these thin strings
which are relevant to our discussion. Moreover, the strings
are closed in the vacuum state but can be open on an
external ’t Hooft line, for argumentation and references
see [1]. Hence, the name of ‘‘magnetic strings.’’

Note the physical string tension is not directly related to
the lattice action but is to be rather calculated as a differ-
ence between lattice action and entropy factors (see, e.g.,
[25]). It is difficult to directly check the strength of the
cancellation between this two contributions. The fact that
the physical tension for the lattice magnetic strings is
vanishing in the confining phase follows from the very
existence of an infinite, or percolating cluster of surfaces.
Indeed, if the tension were not zero only finite clusters
could be observed, by virtue of the uncertainty principle.

Lattice monopoles, in turn, are identified as closed tra-
jectories, or particles (for review see [26]). Their lattice
algorithmic definition is independent of the definition of
the surfaces, or strings. Nevertheless, the lattice simula-
tions reveal that the monopole trajectories lie in fact on the
surfaces [24,27]. The non-Abelian fields associated with
the monopoles are also singular [28] and are aligned with
the surfaces [24].

All the lattice data on the magnetic strings are obtained
with the standard Wilson action and in fact refer mostly to
pure Yang-Mills cases. There is no direct explanation of
the data within the Yang-Mills theory itself. One can check,
however, that the singular non-Abelian fields are just of the
type which is in no contradiction with the asymptotic
freedom [29].

B. Lattice strings in the deconfinement phase

We also considered strings at nonzero temperature and
here we will provide references to the lattice measurements
at temperatures above the deconfinement phase transition.

The basic observation made on the lattice [23,30] is that
at temperatures above the phase transition the strings be-
come time oriented. The four-dimensional infinite perco-
lating cluster is dissolved and does not exist any longer.
However, the percolation is not eliminated altogether.
Namely, in three-dimensional slices the four-dimensional
strings are projected to lines. In the case of the magnetic
strings, the properties of these lines depend crucially on
whether one considers equal-time or equal-space-
coordinate slices. In case of equal-time slices the lines,
which are intersections of the strings and of the 3D spaces,
continue to percolate. In case of the equal-space-
coordinate slices, there is no percolation at all.

Clearly, these lattice data are reproduced by the phe-
nomenon of a ‘‘missed dimension’’ discussed in detail in
Sec. III E in the brane language.

V. DISCUSSION

During the past 30 years, the derivation of the
Mandelstam’s qualitative explanation of the confinement
via the dual Meissner effect was the main goal of the
nonperturbative QCD studies. The recent lattice data sug-
gests that probably the picture is to be modified and con-
densation of the tensionless magnetic strings takes place in
QCD vacuum, instead of the condensation of the magnetic
monopoles. If fact, there is no deep contradiction between
two scenarios. Indeed the magnetic strings observed on the
lattice support the monopoles at their world sheets. In other
words, condensation of the strings implicitly assumes the
condensation of the monopoles. The monopoles become,
however, particles living on a string, or in 2D instead of
ordinary particles living in 4D.

In this paper we conjecture that the strings observed on
the lattice follow the pattern of the non-Abelian strings
with their rich world-sheet structure supporting monopole-
antimonopole pairs. We have argued that this picture ex-
plains qualitatively basic facts about the magnetic strings
observed on the lattice in the pure Yang-Mills case.
Moreover, it turns out that the interpretation of the mag-
netic strings as wrapped D2 branes fits perfectly with their
properties. In particular, within D2 brane interpretation we
explain the existence of the magnetic-string condensate
below the critical temperature and nonzero tension above
the critical temperature.

We have focused on the pure Yang-Mills theory; how-
ever, generalization to QCD with fundamental quarks
seems possible. In particular, it is interesting to investigate
the role of the magnetic strings in the chiral properties of
the theory. In the brane setup we can add Nf flavor branes
and analyze the dynamics in the Sakai-Sugimoto model
[31] (see also [32] for the earlier papers). We have dis-
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cussed magnetic strings that are wrapped D2 branes only.
However, there are other wrapped D4 and D6 branes in this
setup which have an interesting interpretation. These issues
shall be discussed elsewhere.
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