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We consider decay processes of scalar-field condensation in the framework of well-established quantum
field theory. We postulate that the quantum state corresponding to the scalar-field condensation is the so-
called coherent state with discussing the validity of such a treatment. We show that, by using the unitarity
relation of the scattering matrix, the decay rate of the coherent state is systematically calculated. We apply
our procedure to derive explicit formulas of decay rates for two cases: (i) we study the case where the
scalar condensation decays into a pair of scalar particles and show that our formalism reproduces the
results obtained from the parametric-resonance analysis, and (ii) we also calculate the decay rate when the
coherent state decays via anomaly.
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I. INTRODUCTION

Scalar-field condensations play very crucial roles in
various places in cosmology. Probably the most important
example is the inflaton field which is necessary for inflation
[1]. In particular, in the slow-roll inflation models [2],
energy density of the inflaton condensation provides the
energy density to realize a (quasi)de-Sitter universe during
inflation. After inflation, the inflaton oscillates around the
minimum of the potential and decays into standard-model
particles to reheat the universe realizing hot big-bang
cosmology. This class of inflation model not only solves
flatness and horizon problems in cosmology but also pro-
vides density fluctuation consistent with the Wilkinson
microwave anisotropy probe data [3]. In addition, it has
been pointed out that the density fluctuation may arise from
a late-decaying scalar field other than the inflaton, which is
called ‘‘curvaton’’ [4]. Another important example is the
Affleck-Dine field for baryogenesis [5]. In low-energy
supersymmetric models, there exist scalar fields, i.e., scalar
partners of quarks, which have baryon number. If some of
those fields acquire nonvanishing amplitudes in the early
universe, the nonvanishing baryon number may be im-
printed into the motion of the scalar-quark condensations
due to baryon-number violating operators at an ultrahigh
energy scale. Such a scenario is one of the most attractive
scenarios to generate large enough baryon asymmetry of
the universe.

All of these exotic scalar-field condensations (i.e., in-
flaton, curvaton, Affleck-Dine field, and so on) oscillate
around the minimum of the potential at some stage of the
evolution of the universe, and eventually decay into
standard-model particles for the cosmological history con-
sistent with observations. Thus, it is important to under-
stand how the scalar-field condensation decays from the
viewpoint of the quantum field theory.

The main concern of this paper is to discuss how the
oscillating scalar-field condensation decays into other

states. Around the minimum, the potential of the scalar
field ’ is well estimated by a parabolic one,

 V � 1
2m

2
’’

2: (1.1)

Neglecting the effect of the cosmic expansion for simplic-
ity, the solution to the classical equation of motion is given
by

 ’ � A’ cosm’t: (1.2)

In this case, the energy density of the condensation is given
by �’ �

1
2m

2
’A

2
’. One should understand how the energy

density stored in the oscillation of ’ is converted to that of
radiation. In the simplest approach, the decay rate of the
scalar-field condensation is estimated from the decay rate
of a single scalar field (in the vacuum): the energy density
of the scalar field in the condensation is approximated to
decrease as

 

d�’
dt
� ��’�’; (1.3)

where �’ is the decay rate of ’ in the vacuum. However, it
has been also pointed out that, when the scalar field ’ is
oscillating like Eq. (1.2), wave functions of fields which
couple to ’ are modified. Consequently, the ‘‘decay rate’’
of the scalar field in the condensation may be significantly
different from the one obtained from the field theory in the
vacuum. In particular, in some of the cases, an instability
band may arise in the wave function of the final-state
particles, which results in catastrophic particle production
(so-called parametric resonance) [6–9]. Since the decay of
scalar-field condensation is very important, it is desirable
to have a deep understanding of the decay processes of
scalar-field oscillations in the framework of well-
established quantum field theory.

In this paper, we consider decay processes of scalar
condensations in the framework of the quantum field the-
ory. In our analysis, we neglect the effects of cosmic

PHYSICAL REVIEW D 77, 045014 (2008)

1550-7998=2008=77(4)=045014(12) 045014-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.77.045014


expansion as a first step to understand the behavior of the
scalar condensation.

We postulate that the scalar condensation corresponds to
the so-called coherent state j’i in the quantum field theory;
justification of such a treatment will be also discussed.
Then, we will show that the decay rate of the coherent
state can be systematically calculated by using the unitarity
relation of the scattering matrix (S-matrix). Both the co-
herent state and the S-matrix unitarity have been well-
known concepts in the conventional quantum field theory
for a long time [10,11]. (In addition, the coherent state was
also used in cosmology in the studies of the cosmic per-
turbation [12], entropy production [13], electroweak bar-
yogenesis [14], and so on.) However, we show that, by
combining these two, new insights into the decay of scalar
condensation are obtained. Using the fact that the decay
rate of the coherent state is proportional to the imaginary

part of the so-called T-matrix element =�h’jT̂ j’i�, we
give a new formalism with which the decay rate is system-
atically calculated. We will also apply our formalism to
two cases. First, we study the case where the scalar-field
condensation is coupled to a real scalar field. We will see
that our procedure gives the same decay rate as that ob-
tained by the discussion of parametric resonance. We dis-
cuss when Eq. (1.3) is justified and how the instability band
for parametric resonance arises in our framework. Second,
we consider a scalar condensation which decays into
gauge-boson pair via anomaly. We give an explicit expres-
sion of the decay rate for such a case.

Organization of this paper is as follows. In Sec. II, we
first derive basic formulas which are used in the calculation
of the decay rate of the coherent state. In particular, we
define the coherent state j’i in the quantum field theory
and present important properties of j’i. Then, we explain
how the decay rate of the state j’i is obtained. In Sec. III,
we consider the case where the condensation couples to a
real scalar field � via three-point interaction. Decay of the
coherent state via the interaction induced by the anomaly is
discussed in Sec. IV. In Sec. V, we summarize our results.

II. BASIC FORMULAS

In this section, we introduce basic formulas used in our
analysis. Some of the formulas given in this section are
quite well known, and are found in standard textbooks of
the quantum field theory [10,11]. However, we give basic
formulas for the sake of the following arguments. Then, we
discuss how the condensation of scalar field decays via
some interaction. Hereafter, the interaction of the scalar
field is assumed to be weak enough.

Total decay rate of any state can be related to the
imaginary part of the scattering-matrix element due to
the S-matrix unitarity [10]. Let us denote the S-matrix as

 Ŝ � 1̂� iT̂ ; (2.1)

where 1̂ and T̂ are the unit operator and the so-called
T-matrix, respectively. (Here and hereafter, the ‘‘hat’’ is
used for operators.) Then, from the unitarity of the
S-matrix, the following relation holds:

 T̂ yT̂ � i�T̂
y
� T̂ �: (2.2)

This relation is important for our analysis.
We expect that there exists a quantum state j’i which

describes the state with scalar condensation. (Details about
j’i will be explained below.) The probability of the state
j’i decaying into all the possible final states is related to
the imaginary part of the T-matrix element as

 Prob �j’i ! all� �
X
f

jhfjT̂ j’ij2 � 2=�h’jT̂ j’i�:

(2.3)

Now, we consider what the state j’i is. We first quantize
the field operator using the free part of the Lagrangian, then
treat the interaction terms as perturbations. We denote the
free part of the Lagrangian of the real scalar field ’ as

 L � 1
2@�’@

�’� 1
2m

2
’’2: (2.4)

In our analysis, we use the box normalization of the wave
functions with the volume L3. Then, the field operator is
given by

 ’̂�x� �
X
k

1��������������
2EkL3

p �âke�ikx � â
y
ke

ikx�; (2.5)

where Ek �
�������������������
k2 �m2

’

q
. The annihilation and creation

operators satisfy the following commutation relations:

 �âk; â
y
k0 � � �k;k0 ; (2.6)

while âk and âk0 (as well as âyk and âyk0) commute.
We postulate that the quantum state describing the

scalar-field condensation is the coherent state, which is
given by [11]

 j’i � e�jC’j
2=2eC’â

y
0 j0i; (2.7)

where j0i is the vacuum state satisfying âkj0i � 0. Notice
that the state j’i is properly normalized: h’j’i � 1. In
addition, importantly, the state j’i is an eigenstate of the
annihilation operator â0:

 â 0j’i � C’j’i: (2.8)

We can also see that

 ’�x� � h’j’̂�x�j’i � ’��x� � ’��x�; (2.9)

where

 ’��x� �
1
2A’e

�im’t; ’��x� �
1
2A
	
’e

im’t; (2.10)

with
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 A’ � C’

������������
2

m’L
3

s
: (2.11)

One can easily see that, for the coherent state j’i, the
expectation value of the field operator follows the trajec-
tory of the solution to the classical wave equation. Thus,

we expect that the coherent state j’i corresponds to the
quantum state where the scalar field is under oscillation.

In calculating T-matrix elements, it is necessary to
calculate the expectation values of time-ordered products
of field operators. By using the Wick’s theorem, such
products are calculated as

 h’jT
Y
i

’̂�xi�j’i � h’jN
Y
i

’̂�xi�j’i � �all the possible contractions� �
Y
i

’�xi� � �all the possible contractions�;

(2.12)

where the symbol T here denotes the time ordering while N is for normal ordering. In addition, in the second equality, we
have used Eq. (2.8). Even in more complicated cases, we obtain

 h’jT
Y
i

fi�’̂�xi��j’i � h’jT
Y
i

X
n

1

n!

�
dnfi
d’n

�
’�xi�
�’̂�xi� � ’�xi��nj’i �

Y
i

fi�’�xi�� � �all the possible contractions�:

(2.13)

Here, we expand fi�’̂�xi�� around ’̂�xi� � ’�xi�. Then,
h’j�’̂�x� � ’�x��j’i � 0, and Eq. (2.13) is applicable
even when the function fi�’� is singular at ’ � 0.

In the following, we will not consider the processes in
which ’ is produced due to the decay of the coherent state.
(The inclusion of such processes is straightforward.) In
such a case, the propagator of ’ does not show up in the
calculation and the field operator ’̂�x� can be simply
replaced by the expectation value ’�x�, in which the con-
traction terms are irrelevant.

It is also instructive to calculate the expectation values of
energy-density operator as

 �’ � L�3h’j
X
k

Ekâ
y
kâkj’i �

1

2
m2
’jA’j2; (2.14)

while the expectation value of the number density is also
given by

 n’ � L�3h’j
X
k

âykâkj’i �
1

2
m’jA’j2: (2.15)

For the complex scalar field (which we denote as �),
similar argument applies. We define the field operator for
the complex scalar field as

 �̂�x� �
X
k

1��������������
2EkL3

p �âke�ikx � b̂
y
ke

ikx�; (2.16)

where âk and b̂k (âyp and b̂yk) are annihilation (creation)
operators. The coherent state for the complex field is given
by

 j�i � e��jC�j
2�jC ��j

2�=2eC�â
y
0�C ��b̂

y
0 j0i; (2.17)

and

 ��x� � h�j�̂�x�j�i � A�e
�im�t � A	��e

im�t; (2.18)

where

 A� �
C����������������

2m�L
3

q ; A �� �
C �����������������

2m�L
3

q : (2.19)

The energy density of this state is given by

 �� � 2m2
��jA�j

2 � jA ��j
2�; (2.20)

while we can also calculate the expectation values of the
number densities of particle � and antiparticle �� as

 n� � L�3h�j
X
k

aykakj�i � 2m�jA�j2; (2.21)

 n �� � L�3h�j
X
k

bykbkj�i � 2m�jA ��j
2: (2.22)

We can see that the number densities of � and its antipar-
ticle are proportional to jA�j2 and jA ��j

2, respectively.
Thus, when jA�j> jA ��j (jA�j< jA ��j), � is more (less)
abundant than �� in the condensation. It should be also
noted that the function ��x� given in Eq. (2.18) gives an
elliptical trajectory on the complex �-plane. When A� �
0 or A �� � 0, the trajectory becomes a circle and, when
jA�j � jA ��j, the trajectory becomes a straight line.

Before closing this section, we would like to comment
that our arguments provide a new procedure of studying the
decay of scalar condensation even though the concepts of
the S-matrix unitarity and the coherent state have been
known for a long time. Importantly, our formalism allows
us to systematically calculate the decay rate of the scalar
condensation in the framework of quantum field theory,
which was not successful before. For instance, as we will
discuss in the next section, the band structure of the para-
metric resonant phenomena, which has been obtained only
in the classical treatment, can be understood as a contri-
bution from the quantum corrections with our formula.
This fact has a great impact, because our formula makes
it possible to evaluate the quantum corrections systemati-
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cally, which is impossible in the classical treatment.
Furthermore, our formula can be applied to other decays
of scalar condensation even in the cases where the classical
treatment cannot be used.

III. DECAY INTO SCALAR FIELDS

A. Setup

First, we consider the simplest case where the scalar
field ’ couples only to the real scalar field � via the
interaction

 L int � �
1
2�’�

2; (3.1)

with � being the coupling constant. With this interaction,
the decay rate of single particle in the vacuum is given by

 �’!�� �
�2

32�m’

������������������������
1�

�
4m2

�

m2
’

�vuut : (3.2)

In this section, with the interaction given in Eq. (3.1), we
discuss how the coherent state decays.

As discussed in the previous section, the decay rate of
the coherent state can be related to the imaginary part of

the diagonal element of the T-matrix h’jT̂ j’i.

Importantly, h’jT̂ j’i is obtained by calculating loop dia-
grams in the quantum field theory.

At the one-loop level, in other words, neglecting the

fluctuation of ’, h’jT̂ j’i is expressed as

 h’jT̂ j’i �
X1
p�1

X
F �2p�

T F �2p� ; (3.3)

where the summation over F �2p� is for all the possible
Feynman diagrams with 2p external ’. With p being fixed,
one can find

 X
F �2p�

iT F �2p� �
1

�2p�!

�
i�
2

�
2p
�

0

��������T
�Z

d4xf’��x� � ’��x�g�̂�x��̂�x�
�

2p
��������0

�
; (3.4)

where ’� and ’� show up when the field operator ’̂ is
contracted with the creation operator in j’i and the anni-
hilation operator in h’j, respectively. In order to obtain
nonvanishing results, we need to pick up the same number
of ’� and ’�.

The right-hand side of Eq. (3.4) contains a contribution
from various Feynman diagrams because ’� and ’� can
be ordered in many ways. In Fig. 1, we show a typical
diagram (after imposing the cut). In our notation, we
represent the insertion of ’� by the white dot 
 while
’� by the black dot �; nonvanishing diagrams have p
black and p white dots. Internal lines are the �-propagator.

The expectation value of T̂ for the given diagram F �2p�

(with 2p external ’ insertion) is given by
 

iT F �2p� � L3TSF

���������A’2

��������2pZ d4 ~k

�2��4

�
Y2p
I�1

�k2
I �m

2
� � i0

���2; (3.5)

where SF is the symmetry factor and

 L3T �
Z
d4x: (3.6)

In addition, the momentum flowing on the Ith propagator is
given by

 kI � ~k�
XI
J�1

"JQ’; (3.7)

with

 Q’ � �m’; 0�; (3.8)

and "J � 1 and �1 if the Jth ’ insertion is ’� and ’�,
respectively.

The imaginary part of T F �2p� is obtained by cutting two
propagators (see Fig. 1), which corresponds to the replace-
ments of those two propagators by the �-functions (with a
relevant numerical factor):

 =�T F �2p� � � lim
�!m2

�

X2p�1

i�1

X2p
j�i�1

=�T F �2p�

i;j ����; (3.9)

Cut

Eχχ

ki

kj

FIG. 1 (color online). An example of the Feynman diagram
which gives rise to the imaginary part of h’jT̂ j’i. The white dot

 indicates ’� insertion while the black dot � is for ’�
insertion. In this example, p � 8 and, with the cut shown in
the figure, N’ � 3. (Notice that other cuts are also possible with
this diagram.)
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where

 

=�T F �2p�

i;j ���� � 2�2L3TSF

���������A’2

��������2p

�
Z d4 ~k

�2��4
��k2

i � �i���k
2
j � �j�

�
Y
I�i;j

�k2
I � �I�

�1: (3.10)

(For details, see Appendix A.) =�T F �2p�

i;j � is the contribu-
tion from the diagram in which the cut is on ith and jth

propagators. For=�T F �2p�

i;j �, we define the energy flow from
one side of the cut to the other, which we denote E��; with
the following non-negative integer,

 N’ �
�������� Xj
I�i�1

"I

��������; (3.11)

the energy flow is given by

 E�� � N’m’: (3.12)

Notice that =�T F �2p�

i;j � contributes only to the decay rate of
the process in which N’ of ’ in the condensation simul-
taneously annihilates into two � because we neglect the
fluctuations of the ’ field. At the perturbative level, such a
decay process is kinematically allowed when E�� > 2m�.

B. Small-amplitude limit

In this and the next subsections, we concentrate on the
case where the amplitude of ’ is small. In this case, the
leading-order contribution to the E’ � N’m� mode is
from the diagram with 2N’ external ’ with ’� and ’�
being completely separated by the cut. (See Fig. 2.)
Concentrating on such a leading-order diagram, the imagi-
nary part of the T-matrix element is given by

 

=�T
�N’�
Leading� � L3T�2

���������A’2

��������2N’Z d4 ~k

�2��4
��~k2 �m2

��

� ���~k� N’Q’�
2 �m2

��

�
YN’�1

I�1

��~k� IQ’�
2 �m2

��
�2: (3.13)

Constraints from the �-functions give ~kQ’ �
1
2N’m

2
’.

Thus,

 

YN’�1

I�1

��~k� IQ’�
2 �m2

��
�1 ! m

�4�N’�1�
’ ��N’ � 1�!��4;

(3.14)

and hence

 =�T
�N’�
Leading� � L3T

	N’
32�

m4
’

��N’ � 1�!�4

���������A’2m2
’

��������2N’
;

(3.15)

where, for N’m’ > 2m�, the velocity 	N’ is given by

 	N’ �

�����������������������
1�

4m4
�

N2
’m

2
’

vuut ; (3.16)

while 	N’ � 0 for N’m’  2m�.
The decay rate of the coherent state j’i per unit volume

is evaluated as

 �Decay rate per unit volume� �
Prob�j’i ! all�

L3T
;

(3.17)

and hence is given by

 �
�N’�
Leading �

	N’
16�

m4
’

��N’ � 1�!�4

���������A’2m2
’

��������2N’
: (3.18)

The above expression is consistent with the result given in
the study of the parametric resonance [8]. In addition, the
decay rate for the N’ � 1 mode is related to the decay rate
of single particle, which is given in Eq. (3.2), as

 �
�N’�1�
Leading � n’�’!��: (3.19)

Thus, when the amplitude of ’ is small, decay of the
coherent state can be treated as the decay of individual
particles in the condensation, which justifies the conven-
tional treatment of the decay processes of scalar
condensations.

We also comment here that the decay rate given in
Eq. (3.18) is also derived from the tree-level calculation
of the �� pair creation rate in the external oscillating ’

field; �
�N’�
Leading is equal to the production rate of �� pair per

unit volume with total energy of E�� � N’m’. In general,
at the leading order of A’, the decay rate of the coherent

Cut

FIG. 2 (color online). Feynman diagram which gives the
leading-order contribution to the decay rate in the small-
amplitude limit. The white dot 
 indicates ’� insertion while
the black dot � is for ’� insertion.
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state is also obtained by calculating the tree-level produc-
tion rate of the final-state particles treating the scalar
condensation as an external field. If we consider higher
order contributions, however, such a calculation breaks
down; treating the scalar condensation as the external field,
denominators of some propagators vanish in certain types
of diagrams. Notice that, in Eq. (3.9), such a difficulty does
not exist. (See also the following discussion.)

C. Small velocity limit

In the previous subsection, we have calculated leading-
order contributions to the decay rates of each mode in the
small-amplitude limit. Calculations of the contributions
which are higher order in the amplitude are straightfor-
ward. In this subsection, we discuss when the small-
amplitude expansion breaks down, taking the N’ � 1
mode as an example.

If we calculate O�jA’j2p� contributions to the decay rate
of such a mode, which are from diagrams with 2p external
’ insertions, one finds that the imaginary part of the
T-matrix element is inversely proportional to the powers
of 	1 in the m’ ! 2m� limit. First, let us derive such a
behavior with explicit calculation.

For the N’ � 1 mode, the most important Feynman
diagrams in the m’ ! 2m� limit are those in which ’�
and ’� insertions are next to each other. (See Fig. 3.) As
we will discuss, other types of diagrams with fixed p have
less singular behavior when	1 ! 0. We also note here that
the diagram in Fig. 3 contributes only to the N’ � 1 mode.
(The imaginary part of the T-matrix vanishes when N’ �
0.)

Taking into account the diagram shown in Fig. 3, the
T-matrix element becomes
 

iT
�N’�1�
	1!0 � L3T

1

2p

���������A’2

��������2p

�
Z d4 ~k

�2��4
�~k2 �m2

� � i0���p

� ��~k�Q’�
2 �m2

� � i0���p; (3.20)

and the imaginary part of T
�N’�1�
	1!0 is given by

 =�T
�N’�1�
	1!0 � � �

L3T
32�

m4
’	1

���������A’2

��������2 �4p� 7�!!

p!�p� 1�!

�

�������� �A’
2m2

’	2
1

��������2�p�1�
�O�	7�4p

1 �; (3.21)

where �2p� 1�!! �
Qp
I�1�2I � 1� for p � 1, and

��3�!! � �1. (For details, see Appendix B.) Hereafter,
we neglect the O�	7�4p

1 � contribution in Eq. (3.21), and
the decay rate of the coherent state becomes
 

�
�N’�1�
	1!0 � �

1

16�
m4
’	1

���������A’2

��������2X1
p�1

�4p� 7�!!

p!�p� 1�!

�

�������� �A’
2m2

’	
2
1

��������2�p�1�
: (3.22)

As discussed in Appendix B, the inverse powers of 	1

stem from the derivative of the function B�m2
�; �i; �j�

given in Eq. (A7) with respect to �i or �j. The order of
the derivatives is equal to the number of the propagators
whose denominators vanish in the on-shell limit �i ! m2

�

(i � 1� 2p). The number of such propagators is maxi-
mized for the diagram given in Fig. 3. Thus, we safely
neglect other types of diagrams in studying the case of
	1 ! 0.

As we mentioned, �
�N’�1�
	1!0 becomes singular when	1 !

0. In other words, for the N’ � 1 mode, the small-
amplitude expansion breaks down when jA’j is compa-
rable to ��1m2

’	
2
1. These behaviors are related to the fact

that instability bands appear in the solution to the classical
wave equation of the scalar field (i.e., � in our argument)
which couples to a oscillating scalar field (i.e.,’). With the
interaction given in Eq. (3.1), the wave equation of � (with
the 3-momentum k) in the oscillating background is given
by the Mathieu equation:

 

d2�k

dt2
� �k2 �m2

� ��jA’j cosm’t��k � 0: (3.23)

Parametrizing the momentum of � as

 k 2 � 1
4m

2
’�	2

1 � 
�; (3.24)

the lowest instability band in the small-amplitude limit is
given by [8]

 � � < 
 < �; (3.25)

where

 � �
2�jA’j

m2
’

: (3.26)

From the study of the parametric resonance, the momen-
tum of � produced by the decay of the scalar condensation
is in the range given by Eq. (3.25). For the consistency
of the calculation, the mass of the initial-state particle
’ should be large enough so that k2 is positive even for

FIG. 3 (color online). Feynman diagrams which give the most
singular behavior for the N’ � 1 process in the small 	1 limit.
The white dot 
 indicates ’� insertion while the black dot � is
for ’� insertion.
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���; otherwise, O��2� contributions may be also im-
portant. This argument gives the limitation of the small-
amplitude approximation; 	1 � �1=2 is required, which
results in jA’j � ��1m2

’	
2
1.

The above argument is supported by the fact that �
�N’�1�
	1!0

given in Eq. (3.22) is equal to the decay rate obtained by the

parametric-resonance analysis. Indeed, �
�N’�1�
	1!0 is also ex-

pressed as

 �
�N’�1�
	1!0 �

1

2
m’

Z
jkj�<jkj<jkj�

d3k
�2��3

��N’�1��k�

�
1

128�2 m
4
’

Z �

��
d


��������������������������������������
�	2

1 � 
���
2 � 
2�

q
; (3.27)

where, in the first equality, jkj� � 1
2m’

���������������
	2

1 � �
q

, and

��N’�1� � 1
2

����������������
�2 � 
2
p

is the ‘‘growth-rate factor’’ for the
N’ � 1 mode obtained in the study of the Mathieu equa-
tion [8]. The equivalence of Eqs. (3.22) and (3.27) can be

seen by expanding
���������������
	2

1 � 

q

in the integrand of Eq. (3.27)

around 
 � 0 (assuming 	1 > �1=2). Equation (3.27) is
nothing but the decay rate of the scalar condensation in
the small-amplitude limit derived from the parametric-
resonance analysis.

Equation (3.27) [and Eq. (3.18)] also shows the fact that,
at least at the small-amplitude limit, the results from the
parametric-resonance analysis is obtained in our procedure
where the quantum state describing the scalar condensation
is postulated to be the coherent state. The equivalence of
two approaches is also expected from the fact that the basic
equations governing the behavior of the parametric reso-
nance is derived in our framework. In particular, we can
calculate the density matrix of the final-state particle � in
the quantum field theory. We can see that the Mathieu
equation shows up in the calculation and that the resultant
density matrix is the same as the one obtained in the study
of parametric resonance. These subjects will be discussed
in the next subsection.

D. Calculation of the density matrix

In the classical treatment of the parametric resonant
system, it is well known that the Mathieu equation appears
as the equation of motion for the � field. Thus, the equation
is also expected to be obtained in the quantum-field-theory
treatment. In this subsection, we show the derivations of
the Mathieu equation and the density matrix of �
explicitly.

Since we are interested in the case where the scalar field
’ initially forms the scalar condensation oscillating around
the minimum of its potential, we describe the initial state
(which is taken at t � 0 in this subsection) as

 jii � j’i � j0i�; (3.28)

where the first and second kets represent the states for ’

and �, respectively. In addition, j0i� is the vacuum of the �
field. (In the following, we omit the subscript �.)

For our argument, it is convenient to use the density
matrix of the total system in the Schroedinger picture. The
density matrix at the time T is simply given by

 �̂ tot�T� � e�iĤT jiihijeiĤT; (3.29)

with Ĥ being the Hamiltonian of the total system. We
consider the properties of �̂tot in the coordinate basis:

 jq � Xi � jqi � jXi; (3.30)

where jqi and jXi are eigenstates of the field operators ’̂
and �̂, respectively:

 ’̂�t;x�jqi � q�x�jqi; �̂�t;x�jXi � X�x�jXi: (3.31)

Then, the density matrix in the coordinate basis,
�tot�q; X; q0; X0� � hq � Xj�̂tot�T�jq

0 � X0i, is given by
 

�tot�q; X; q0; X0� �
Z

Dqi
Z

Dq0i
Z

DXi
Z

DX0ihqij’i

� hXij0ih’jq0iih0jX
0
iiK�q; X; qi; Xi�

� K	�q0; X0; q0i; X
0
i�: (3.32)

The kernel is represented in the path integral form as

 K�q; X; qi; Xi� �
Z ��T;x��X�x�

��0;x��Xi�x�
D�

Z ’�T;x��q�x�

’�0;x��qi�x�
D’eiStot ;

(3.33)

where Stot is the total action. For the explicit form of the
kernel, see [15].

In order to study the behavior of the � field, we derive
the reduced density matrix of � by tracing out q and q0

variables:

 �red�X;X0� �
Z

Dq�tot�q; X; q; X0�: (3.34)

For this purpose, we define

 ~q k � L�3=2
Z
d3xq�x�e�ikx; (3.35)

 

~X k � L�3=2
Z
d3xX�x�e�ikx: (3.36)

Then, with the use of the properties of the coherent state,
we obtain the following relations:
 

hqj’i � exp
�
�

1

2
m’�~q0 � L

3=2A’�
2

�

�
Y
k�0

exp
�
�

1

2
Ekj~qkj

2

�
; (3.37)

 hXj0i �
Y

k

exp
�
�

1

2
!kj ~Xkj

2

�
; (3.38)

where, in this subsection, we consider the case where A’ is
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real. (A’ can be taken to be real with a relevant shift of the
time variable.) In addition, !2

k � k2 �m2
�. In Eqs. (3.37)

and (3.38), we omit unimportant numerical constants.
Using Eq. (3.37), the reduced density matrix becomes
 

�red�X;X0� �
Z

DXiDX0ihXij0ih0jX
0
ii
Z ��T;x��X

��0;x��Xi
D�

�
Z �0�T;x��X0

�0�0;x��X0i

D�0ei �S����i �S��0��C��;�0�; (3.39)

where

 

�S��� �
Z T

0
dt
Z
d3x

�
1

2
@��@���

1

2
m2
��2

�
1

2
�A’�2 cosm’t

�
; (3.40)

while C gives the collision terms:

 C ��; �0� � �
�2

4

Z T

0
dt
Z t

0
dt0

Z
d3x

Z
d3x0

Z d3k
�2��32Ek

� cosk�x� x0���2�x� � �02�x��

� �e�iEk�t�t0��2�x0� � eiEk�t�t0��02�x0��:

(3.41)

It can be seen that the periodic perturbation term,
�2 cosm’t, appears in the reduced density matrix.
Collision terms, which are proportional to �4, �04, and
�2�02, also appear after the integration. Since no approxi-
mation was made to derive the density matrix, the above
formula can be used at any amplitude of the ’ field, A’.
Furthermore, we can derive the kinetic equation by calcu-
lating the correlation function of the � field on the reduced
density matrix, which allows us to describe the nonlinear
dynamics of the � system, as pointed out in [16].

When the amplitude A’ is small enough, we can treat the
collision terms as perturbations. Then, the reduced density
matrix is, at the leading-order calculation, written by using
the wave functional of the � field:

 �red�X;X0� � ��T; X� ��	�T;X0�; (3.42)

where

 ��T; X� �
Z

DXihXij0i
Z ��T;x��X

��0;x��Xi
D�ei �S���: (3.43)

The wave functional is written as a product of an infinite set
of wave functions of harmonic oscillators as

 ��T; X� �
Y

k

Z 1
�1

d ~Xi;k exp
�
�

1

2
!kj ~Xi;kj2

�

�
Z ~�k�T�� ~Xk

~�k�0�� ~Xi;k
D~�ke

i �Sk�~�k�; (3.44)

where

 

�Sk�~�k� �
Z T

0
dt
�

1

2
j _~�kj

2

�
1

2
�k2 �m2

� ��A’ cosm’t�j~�kj
2

�
; (3.45)

with the ‘‘dot’’ being the derivative with respect to time.
��T; X� satisfies the boundary condition ��0; X� �Q

ke
�!kj ~Xkj

2=2 (up to normalization), and its evolution is
governed by the wave equation derived from the action
given in Eq. (3.45). Thus, ��T; X� is nothing but the wave
functional obtained in [8]:

 ��T; X� �
Y

k

1������������
uk�T�

p exp
�
i
2

_uk�T�
uk�T�

j ~Xkj
2

�
; (3.46)

where uk�t� is the solution to the Mathieu equation:

 

d2uk

dt2
� �!2

k ��A’ cosm’t�uk � 0; (3.47)

with the conditions uk�0� �
�������������
�=!k

p
and _uk�0� � i

�����������
!k�
p

.
This fact supports that the scalar condensation is well
described by the coherent state in the quantum field theory.

Before closing this section, we emphasize that the quan-
tity =�h’jT j’i� is relatively easily calculated with a wide
variety of interactions and final states. Thus, for some
applications, our procedure is more powerful than the
approach using the Mathieu equation.

IV. DECAY VIA ANOMALY

Next, let us consider the case where a complex scalar
field � may decay via chiral and conformal anomalies. As
the fundamental theory, we expect that there exists chiral
fermions which have gauge quantum numbers and that the
complex scalar field couples to the chiral fermions through
a Yukawa interaction. To make our discussion definite, we
consider SU�Nc� gauge interaction; chiral fermionsQL and
Qc
R are in fundamental and antifundamental representa-

tions of SU�Nc�, respectively, while � is singlet.
The complex scalar field couples to chiral fermions QL

and Qc
R via the Yukawa interaction

 L Yukawa � �y��QLQ
c
R � H:c:�: (4.1)

It should be noted that, in this model, there exists anoma-
lous U�1� symmetry, which we call U�1�A; charges of �,
QL, and Qc

R are 1, � 1
2 , and � 1

2 , respectively.
When the amplitude of � is large, fermions QL and Qc

R
acquire Dirac mass. Thus, when m� � yj�j, effective
mass of the fermions is much larger than the mass of �.
In this case, the decay process �! QLQc

R is expected to
be kinematically forbidden.
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Whenm� � yj�j, it is rather convenient to consider the
low-energy effective field theory by integrating out the
fermions. The relevant (light) fields in the low-energy
effective field theory are � and gauge fields as far as the
effective mass of the fermions are much larger than m�. In
the following, we concentrate on such a case; thus, we
assume that the inequality m� � yj��x�j always holds at
any point of the trajectory of �.

We first consider the effects of the operator induced by
the chiral anomaly:

 L eff � �i�I�ln�� ln�y�F� ~F�; (4.2)

where F� is the field-strength tensor and

 

~F� � 1
2

���F��: (4.3)

In Eq. (4.2) and hereafter, summation over the adjoint
gauge index is implicit. In addition,

 �I �
g2

32�2 TR; (4.4)

with g being the gauge coupling constant of SU�Nc�, and
TR �

1
2 .

Now, let us discuss the decay of the coherent state given
in Eq. (2.17). At the leading order in �I, which is of O��2

I �

in the calculation of h�jT̂ j�i, we obtain
 

h�jiT̂ j�i � �
1

2
�2

I

Z
d4xd4x0h0jTF̂��x� ~̂F

�
�x�F̂�00 �x0�

� ~̂F
�00
�x0�j0i�ln��x� � ln�y�x��

� �ln��x0� � ln�y�x0��: (4.5)

In the following, we consider the case that A� � A ��.
Then, we expand ln��x� as

 ln��x� � ln�A�e�iQ�x� �
X1
n�1

��1�n�1

n

�A	��
A�

�
n
e2niQ�x;

(4.6)

where Q� � �m�; 0�. At the lowest order in �I, the decay
rate of the coherent state can be obtained by calculating the
two-point functions of several types of operators with
relevant momentum injection. For the local operator
Ô�x�, let us define

 I O�Q� � �i
Z
d4x1d4x2h0jTÔ�x1�Ô�x2�j0ieiQ�x1�x2�:

(4.7)

Then, by using the fact that F� ~F� is expressed as a total
derivative,

 F� ~F� � @�K�

� 1
2@��


���A�@�A�� � �gauge field�3�; (4.8)

Eq. (4.5) becomes

 

h�jT̂ j�i � �2�2
IIQ�

�K�
�0� � �2

I

X1
n�1

1

n2

��������A ��

A�

��������2n

� IF� ~F��2nQ��: (4.9)

It is notable that IQ�
�K�
�0� has no imaginary part because

there is no momentum injection into the internal gauge-
boson lines from the Q�

�K�-vertex. Thus, the coherent
state does not decay if A� � 0 or A �� � 0. (This statement
holds even after taking into account the higher order terms
in �I.) This fact can be understood by the conservation of
the U�1�A charge. With a fixed value of the total energy of
the system, U�1�A charge is maximized when A� � 0 or
A �� � 0. Thus, ifU�1�A charge is conserved, the decay of�
in the condensation into the gauge bosons is forbidden. Of
course, the interaction given in Eq. (4.2) breaks U�1�A
symmetry because Leff is not invariant under the U�1�A
transformation. This is due to the fact that Leff is induced
by the chiral anomaly. However, we can add new fermions,
which we call Q0L and Q0cR , to have conserved U�1� sym-
metry. Indeed, with Q0L and Q0cR , which are in fundamental
and antifundamental representation of SU�Nc�, respec-
tively, we can define nonanomalous U�1�A symmetry by
assigning charge � 1

2 to both of Q0L and Q0cR . (Notice that
Q0L and Q0cR do not have to couple to �.) In this case,
conservation of the U�1�A charge is obvious and the decay
of � into the gauge bosons is completely forbidden. Thus,
the U�1�A charge stored in the scalar condensation cannot
be released by the interaction given in Eq. (4.2). This fact
may have some relevance in the study of the decay of scalar
condensations in various cosmological scenarios, in par-
ticular, in the Affleck-Dine scenario [5]. In the absence of
Q0L and Q0cR , instanton effects may generate new interac-
tions which explicitly breaks U�1�A symmetry. In such a
case, decay of the coherent state occurs via such new
interactions.

Using the relation

 =�IF� ~F��Q�� � �
N2

c � 1

4�
�Q2�2L3T; (4.10)

the decay rate is given by

 �F ~F �
Prob�j�i ! all�

L3T

�
8

�
�N2

c � 1��2
Im

4
�

X1
n�1

n2

��������A ��

A�

��������2n
: (4.11)

Since the decay rate vanishes if A� � 0 or A �� � 0, the
decay of the coherent state in this case should be under-
stood as an annihilation between � and �� in the conden-
sation; the same number of � and �� annihilates into the
gauge-boson pair.

In the study of the decay of coherent state, the energy-
loss rate is also important. Using the fact that the imaginary
part of IF� ~F��2nQ�� is from the decay process into two
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gauge bosons with the total energy of 2nm�, the energy-
loss rate can be calculated. So far, we have considered the
case where A� � A ��. However, the decay rate for the case
of A�  A �� is derived by interchanging A� $ A �� in the
result. Thus, we obtain

 

�d��
dt

�
F ~F
� �

16

�
�N2

c � 1��2
Im

5
�

X1
n�1

n3

�min�n�; n ���

max�n�; n ���

�
n
;

(4.12)

where we have used the fact that the number densities of�
and �� are proportional to jA�j2 and jA ��j

2, respectively.
[See Eqs. (2.21) and (2.22).] One may simplify the above
energy-loss rate by using

 

X1
n�1

n3rn �
r�1� 4r� r2�

�1� r�4
: (4.13)

Here, we emphasize that the results given in Eqs. (4.11)
and (4.12) can be used for any value of the amplitude (as
far as the effective mass ofQL andQc

R are much larger than
m�). When n� � n �� or n� � n ��, which corresponds to
the case where the classical motion of the scalar conden-
sation is almost circular, the energy-loss rate is well ap-
proximated by the leading term in Eq. (4.12). On the
contrary, in the limit of n �� ! n�, higher order terms
become important and the energy-loss rate is enhanced.
In this case, however, one should note that, at some point of
the classical trajectory, j�j approaches to the origin. Then,
the effective mass of the fermions QL and Qc

R may become
so small that the effective field theory, which is obtained by
integrating out these fermions, may break down. We also
note that, with the ratio n�=n �� being fixed, the decay and
energy-loss rates are independent of the amplitude of the
scalar condensation.

Before closing this section, we also present the result for
the case where the scalar field � couples to the gauge field
as

 L eff � �R�ln�� ln�y�F�F�: (4.14)

This type of interaction is also generated by integrating out
particles which acquire masses from the condensation of�
(like QL and Qc

R). At the leading order in �R, the energy-
loss rate is given by

 

�d��
dt

�
FF
� �

16

�
�N2

c � 1��2
Rm

5
�

X1
n�1

n3

�min�n�; n ���

max�n�; n ���

�
n
:

(4.15)

V. SUMMARY

In this paper, we have discussed the decay processes of
the scalar condensation. We postulated that the quantum
state corresponding to the scalar oscillation is the so-called

coherent state in the quantum field theory. Then, by using
the S-matrix unitarity, we have developed the method to
calculate the decay rate of the coherent state. We believe
that our procedure can be applied to a large class of models
which may contain various types of interactions.

Then, in order to demonstrate how the decay rate is
calculated, we considered two examples. First, we studied
the case where the scalar field ’ couples to another scalar
field � via three-point interaction. Using the small-
amplitude approximation, we have calculated the decay
rate for the process whereN’ (N’ � 1; 2; 3; . . . ) of’ in the
condensation simultaneously annihilate into a pair of �.
For the case of N’ � 1, we have seen that the result is the
same as that in the conventional approach where the decay
rate of the scalar condensation is estimated by the product
of the decay rate of single ’ in the vacuum and the number
density of ’. We have also pointed out that the small-
amplitude approximation breaks down when the amplitude
becomes close to ��1m2

’	
2
1, where � is the coupling

constant and 	1 is the velocity of � in the N’ � 1 mode.
Such a behavior is also expected from the discussion based
on the parametric resonance. Indeed, our procedure repro-
duced the decay rate of the scalar condensation calculated
from the parametric-resonance analysis.

The second example was the case where the complex
scalar-field decays into gauge bosons via the interaction
induced by the chiral anomaly. We have considered the
case where the scalar potential has U�1�A symmetry to
rotate �! ei�� at the classical level, which is broken
by the effect of the chiral anomaly. In this case, we could
calculate the decay rate without using the small-amplitude
approximation. We have seen that the decay process is
forbidden unless both the particle � and its antiparticle
�� exist in the condensation, and that the ‘‘decay’’ of the

coherent state is due to the annihilation between them.
Thus, U�1�A charge stored in the condensation cannot be
released by the effective interaction induced by the chiral
anomaly.

Finally, we comment on the effects of the cosmic ex-
pansion, which were neglected in our analysis. With the
cosmic expansion, scalar field should be quantized in non-
flat background in which the wave function of the scalar
field is modified. In such a case, creation and annihilation
operators mix each other due to the change of the vacuum
state [17]. In addition, the Hubble friction term also in-
duces the damp of the amplitude of the scalar field ’. In
general, in the expanding universe, these effects should be
taken into account and the decay rates obtained in our
analysis are expected to be modified. However, if the
expansion rate of the universeH is small enough compared
to the mass of the scalar field m’, wave function of ’ is
well approximated by that obtained in the flat background
(i.e., �e�ikx) for the time scale �m�1

’ . Thus, we expect
that our procedure provides a good approximation of the
decay rate when H� m’; effects of the Hubble friction
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term can be taken into account as an adiabatic decrease of
the amplitude.
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APPENDIX A: CALCULATION OF THE
IMAGINARY PART

Although the technique which will be explained here is
well known, in this Appendix, we show how Eq. (3.9) is
derived for the sake of some of the readers. For this
purpose, we calculate the imaginary part of the following
quantity:

 IF �Q’� � �i
Z d4 ~k

�2��4
Y2p
I�1

�k2
I �m

2
� � i0��2: (A1)

Here,

 kI � ~k�
XI
J�1

"JQ’; (A2)

where "I � �1 (with "1 � � � � � "2p � 0), and Q’ �

�m’; 0�.
In order to calculate the imaginary part of IF , it is

convenient to rewrite IF as

 IF � �i lim
�!m2

�

Z d4 ~k

�2��4
Y2p
I�1

�k2
I � �I � i0

���1; (A3)

where the limit �! m2
� indicates that �I ! m2

� (I � 1�
2p); before taking the limit, �I are all set to be different.

The integrand of Eq. (A3) has poles at ~k0 �

�m’
PI
J�1 "J �

�����������������
k2
I � �I

q
(I � 1� 2p) and, after

~k0-integration, IF becomes

 

IF � �� lim
�!m2

�

X2p
i�1

Z d3 ~k
�2��4

�
1

2~k0

Y
I�i

�k2
I � �I � i0

���1

�
~k0��m’

P
I
J�1

"J�
�����������
k2
I��I

p

� �� lim
�!m2

�

X2p
i�1

Z d4 ~k

�2��4
��k2

i � �i�
Y
I�i

�k2
I � �I � i0

���1; (A4)

where, in the second equality, the ~k0-integration is per-
formed in the region where ki0 � 0. Using the relation
�x� i0���1 � P�x�1� � i���x� (where ‘‘P’’ is for the
principal value), we obtain
 

=�IF � � 2�2 lim
�!m2

�

X2p�1

i�1

X2p
j�i�1

Z d4 ~k

�2��4
��k2

i � �i�

� ��k2
j � �j�

Y
I�i;j

�k2
I � �I�

�1: (A5)

Substituting the above expression into Eq. (3.5), we obtain
Eq. (3.9).

With the quantity N’ � j
Pj
I�i�1 "Ij, ki and kj are re-

lated as ki � kj � N’Q’ (or ki � kj � N’Q’). Thus, if
N’ � 0, ki � kj and the imaginary part vanishes. Notice
also that the constraints from the �-functions can be
solved; by shifting the integration variable ~k, ki and kj
can be taken to be ~k and ~k� N’Q’, respectively. Then, the
constraints from the �-functions become ~kQ’ �

1
2N’m

2
’.

Consequently, the product
Q
I�i;j�k

2
I � �I�

�1 becomes
~k-independent. The remaining part is proportional to the
two-body phase space for the process where the parent
particle with mass N’m’ decays into two daughter parti-

cles with masses �1=2
i and �1=2

j :

 

Z d4 ~k

�2��4
��k2

i � �i���k
2
j � �j� �

1

32�3 B�N
2
’m2

’;�i; �j�;

(A6)

where, for
������
Q2

p
> �1=2

i � �1=2
j ,

 B�Q2; �i; �j� �
1

Q2

�������������������������������������������������������������������������
�Q2�2 � 2��i � �j�Q2 � ��i � �j�2

q
;

(A7)

while B�Q2; �i; �j� � 0 for
������
Q2

p
 �1=2

i � �1=2
j . Notice

that the function B is related to 	N’ given in Eq. (3.16) as

 	N’ � B�N2
’m

2
’;m2

�;m
2
��: (A8)

APPENDIX B: DERIVATION OF EQ. (3.21)

In this Appendix, we calculate the imaginary part of the
following integral:
 

IFig: 3 � �i
Z d4 ~k

�2��4
�~k2 �m2

X � i0
���p

� ��~k�Q’�
2 �m2

X � i0
���p; (B1)

to derive Eq. (3.21) from Eq. (3.20). Using the procedure
given in Appendix A, we express IFig: 3 as
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IFig: 3 � �i lim
��0�!m2

X

Z d4 ~k

�2��4
Yp
I�1

�~k2 � �I � i0
���1

�
Yp
J�1

��~k�Q’�
2 � �0J � i0

���1: (B2)

The imaginary part of this quantity is obtained with
 Yp
I�1

�~k2��I� i0
���1!�i�

Xp
i�1

Y
I�i

��i��I�
�1��~k2��i�;

(B3)

and with the similar replacement of the second product.
Then, the imaginary part of IFig: 3 becomes
 

=�IFig: 3� �
1

16�
lim

��0�!m2
X

Xp
i�1

Xp
j�1

Y
I�i

��i � �I�
�1

�
Y
J�j

��0j � �
0
J�
�1B�m2

’; �i; �
0
j�: (B4)

We can use the relation

 lim
x1!x
� � � lim

xp!x

Xp
i�1

f�xi�
Y
j�i

�xi � xj��1

�
1

�p� 1�!

dp�1

dxp�1 f�x�; (B5)

to obtain

 =�IFig: 3� �
1

16�
1

��p� 1�!�2

�
@�p�1�

@��p�1�

�
@�p�1�

@�0�p�1�
B�m2

’;�; �0�
�
���0�m2

X

: (B6)

Taking the O�	1�4�p�1�
1 � term from the above expression,

which is the most singular one when 	1 ! 0, Eq. (3.21) is
derived.
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