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Based on the permutation group formalism, we present a discrete symmetry algebra in QCD. The
discrete algebra is hidden symmetry in QCD, which is manifest only on a space-manifold with nontrivial
topology. Quark confinement in the presence of dynamical quarks is discussed in terms of the discrete
symmetry algebra. It is shown that the quark deconfinement phase has ground-state degeneracy depending
on the topology of the space, which gives a gauge-invariant distinction between the confinement and
deconfinement phases. We also point out that new quantum numbers relating to the fractional quantum
Hall effect exist in the deconfinement phase.
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The purpose of this paper is to present an argument for
classification of quantum phases in QCD. Classification of
phases in QCD is an old but unsolved problem in quantum
field theory. (For recent reviews, see [1,2].) As is well
known, behaviors of the Wilson loop [3] (or Polyakov
line [4]) and the ’t Hooft loop [5,6] are useful to classify
the quark confinement and deconfinement phases in pure
Yang Mills theories, but once dynamical quarks are in-
cluded, they are no longer sufficient to distinguish them.
Therefore, the quark confinement has been investigated
indirectly by the chiral condensation (for a review, see
[7]) or the percolation theory [8]. Here we present a direct
argument for the quark confinement in the presence of
dynamical quarks. It will be shown below that there exist
quantum numbers which distinguish these two phases at
zero temperature.

This work is motivated by recent developments of
understanding of quantum phases. While many quantum
phases and phase transitions can be described by sponta-
neous symmetry breaking and local order parameters, in
recent years it has become increasingly clear that in a wide
class of strongly correlated many-body systems, a phase
transition driven by a nonthermal parameter may occur at
zero temperature which can not be understood by any local
order parameter. The characteristic signature of the novel
phase is finite ground-state degeneracy depending on the
topology of the space, and the underlying order of the
novel phase is dubbed as topological order [9,10]. The
Laughlin state for the fractional Hall effect is known to
have a topological order [11]. At present, many systems
including bosonic ones and those at zero magnetic field are
identified as possessing topological orders [12–20].

Recently, we have argued that the topological degener-
acy in a class of topological orders is due to the emergence
of a discrete symmetry [21], which contains three frac-
tional parameters: quasiparticle charge, anyon statistics,
and the fractional quantum Hall conductivity. In particular,
it is notable that the emergence of collective excitations
having fractional quantum numbers with respect to con-
stituent particles in the Hamiltonian is closely related to the

existence of the topological order [21–23]. Such charge
fractionalization has an interesting similarity to quark de-
confinement, which also gives fractional charged excita-
tions. In spite of the essential difference that quarks are not
collective excitations but elementary particles, this moti-
vates us to study the quark confinement in terms of topo-
logical order.

In the following, we will show that the quark deconfine-
ment phase in QCD indeed has a topological order.
Generalizing the argument in [21], we will derive a discrete
symmetry algebra in QCD, which we dub topological
discrete algebra. The existence of the center of the gauge
group is crucial for the derivation. By using the topological
discrete algebra, it will be shown that the quark deconfine-
ment phase in QCD has ground-state degeneracy depend-
ing on the topology of the system. The topological
degeneracy in the thermodynamic limit is a gauge-
invariant quantum number that distinguishes the decon-
finement phase from the confinement one.

For definiteness we will consider the lattice QCD in the
following. The generalization to the continuum one is
straightforward. The action of the link variable Un;� 2

SU�3� is given by

 SG �
X

P

1

g2 tr�1�UP�; (1)

with the plaquette variable UP � Un;�Un��̂;�U
y
n��̂;�U

y
n;�,

and that of the quark  fn is
 

SF � �
1

2

X
f

X
n;�

� � fn��Un;� 
f
n��̂ �

� fn��̂��U
y
n;� 

f
n�

�
X
f;n

mf
� fn 

f
n; (2)

where n � �n1; n2; n3; n4� denotes the site on the lattice, �̂
the unit vector in the n� direction �� � 1; 2; 3; 4�, and f
the index of the flavor of the quark. To remove the dou-
blers, we also add the Wilson term SW. In addition, any
term with a nonthermal parameter that may control quan-
tum phases in QCD can be added if the electric charge is
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preserved. For example, chemical potential terms for
quarks can be included. The partition function Z is given
by

 Z �
Z

DUD D � e��SG�SF�SW�����: (3)

The topological discrete algebra we will consider is
defined only if the topology of the space-manifold is non-
trivial, so let us consider the system on a three dimensional
torus T3. (The space-time is four dimensional.) On the
torus T3, the site at n � �n1; n2; n3� is identified with one
at n� âNa �a � 1; 2; 3�, where â is the unit vector in the
na direction, and Na is an integer [24]. The volume of the
torus is N1N2N3, and we assume that it is large enough. In
the thermodynamic limit, we take N1N2N3 ! 1. In prac-
tice, the torus is realized by imposing the periodic bound-
ary conditions in all the spatial directions. The torus T3 is
topologically equivalent to a direct product of three one-
dimensional spheres, T3 � S1 � S1 � S1, so it has three

independent spatial noncontractable loops Ca�a � 1; 2; 3�
along the na direction. In addition, there are three holes
ha�a � 1; 2; 3� encircled by the noncontractable loops Ca.
See Fig. 1.

To define the topological discrete algebra, we introduce
an external U�1� electromagnetic gauge field ei�n;� .
Consider an adiabatic insertion of the magnetic flux �a
through the hole ha encircled by the noncontractable loop
Ca. This process induces the externalU�1� electromagnetic
gauge field ei�n;� with �n;� � ��;a�a=Na. Note that the
U�1� field strength on T3 remains to be zero after the flux
insertion.

Here one can show that the spectrum of the system is
periodic in �a with the period 2�. To see this, let us
consider the partition function Z��a� with the inserted
flux �a. Since upper quarks (u, c, and t) and lower quarks
(d, s, and b) have 2=3 and �1=3 electric charges, respec-
tively, then by the following unitary transformation,

 

 n ! e�i2na�a=3Na n; � n ! ei2na�a=3Na � n; for upper quarks;

 n ! eina�a=3Na n; � n ! e�ina�a=3Na � n; for lower quarks; (4)

the induced U�1� electromagnetic gauge field is eliminated
in the action except on the links between the sites n �
�n; n4� with na � Na and those with na � 1. The kinetic
terms of the quarks on these links acquire the following
U�1� phase after the transformation (4),

 ei2�a=3 � n�aUn;a n�â; for upper quarks;

e�i�a=3 � n�aUn;a n�â; for lower quarks;
(5)

where n satisfies na � Na. (Note that the site n� â with
na � Na is identified with the site n with na � 1.) If �a is
2�, these U�1� phases coincide with an element of the
center of SU�3�, e�2�i=3. So by changing the integral
variable in (5) as Un;a ! e2�i=3Un;a, one finds

 Z �2�� � Z�0�: (6)

Therefore, the spectrum of the system is periodic in �a
with the period 2�. The adiabatic insertion of the unit flux,

�a � 2�, defines a kind of symmetry of the system, and
we denote it by Ua.

Let us first consider the quark deconfinement phase. In
the quark deconfinement phase, the physical states are
classified by the representation of the permutation group
for quarks. For N identical quarks on T3, the permutation
group consists of �i �i � 1; � � � ; N � 1�, which exchanges
the ith and �i� 1�th quarks, and �ai �a � 1; 2; 3; i �
1; � � � ; N�, which represents moving the ith quark along
the noncontractable loop Ca in the na direction. The per-
mutation group on T3 is given by
 

�2
k � 1; 1� k� N� 1;

��k�k�1�
3 � 1; 1� k� N� 2;

�k�l � �l�k; 1� k� N� 3; jl� kj 	 2;

�ai�1 � �i�
a
i �i; 1� i� N� 1; a� 1;2;3;

�a1�j � �j�
a
1 ; 2� j� N; a� 1;2;3;

�ai �
b
j � �

b
j �

a
i ; i; j� 1; � � � ;N; a;b� 1;2;3:

(7)

These generators have nontrivial commutation relations
with Ua �a � 1; 2; 3� since quarks have fractional charges.
If we apply �ai after the flux insertion Ua, the induced
gauge field ei�n;� will give rise to an Aharanov-Bohm phase
e�i2�=3. (Both upper and lower quarks acquire the same
U�1� phase.) Therefore, we obtain

 �ai Ua � e�2�i=3Ua�
a
i ; (8)

where a � 1, 2, 3 and i � 1; � � � ; N. On the other hand,

C

h

a

a

FIG. 1. The noncontractable loop Ca and the hole ha on S1.
Each S1 in T3 � S1 � S1 � S1 has the noncontractable loop and
the hole.
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because �bi �b � a� and �i do not encircle the inserted flux
by Ua, we have

 �bi Ua � Ua�bi ; �iUa � Ua�i (9)

with a � b.
Now from the commutation relations (8) and (9), it is

easy to verify that UaUbU
�1
a U�1

b �a � b� commutes with
all the permutation group generators. So by Schur’s
lemma, for any irreducible representation of the permuta-
tion group, UaUbU�1

a U�1
b is a (unimodular) c-number.

Therefore, we have the following commutation relation,

 UaUb � e2�i	a;bUbUa; 	a;b � �	b;a: (10)

Here it can be shown that 	a;b is given by

 	a;b �
ka;b
3
; (11)

with an integer ka;b. This is because thatU3
a also commutes

with all the permutation group generators, which implies
U3
aUb � UbU3

a for any irreducible representation of the
permutation group. Comparing this to (10), we obtain (11).

We also notice that 	a;b is zero if the time-reversal
symmetry is preserved. For time-reversal invariant sys-
tems, we have the time-reversal transformation T with
TUaT�1 � caU

y
a (ca is a constant.) Applying T to (10)

and using the anti-Hermiticity of T, we find

 UyaU
y
b � e�2�i	a;bUybU

y
a : (12)

From (10) and (12), it is found that 	a;b � 0 in time-
reversal invariant systems.

The constants 	a;b are new quantum numbers in the
deconfinement phase. Later, we will show that they are
closely related to the fractional quantum Hall effects.

Since quarks are fermions, then the exchange operator
�i in (7) satisfies �i � �1 [25]. In this case, the permu-
tation group representation is uniquely determined as

 �ai � Ta (13)

with matrices Ta satisfying

 TaTb � TbTa: (14)

Therefore, the commutation relations (8)–(10) now reduce
to

 TaUb � e��2�i=3��a;bUbTa; UaUb � e2�i	a;bUbUa;

(15)

with a, b � 1, 2,3. The topological discrete algebra in the
quark deconfinement phase consists of the flux insertion
operator Ua and the quark winding operator Ta with the
commutation relations (14) and (15).

Now we show our main claim in this paper: If there is a
mass gap to excitations above the ground state, then the
quark deconfinement phase has at least 33 -fold ground-
state degeneracy on T3.

To show this, consider the following process. First,
create a pair of quark and antiquark out of a vacuum,
then move the quark by Ta�
 �ai �. After the quark returns
to the original position, we pair annihilate the quark and
the antiquark. Suppose that there is a mass gap to excita-
tions above the vacuum space and these operations do not
close the mass gap, then these processes define the opera-
tion of Ta from a vacuum to a vacuum. Since Ta �a �
1; 2; 3� commutes with each other, we take the basis of the
vacuum space which diagonalizes T1, T2, and T3 simulta-
neously,

 Taj�i � ei
a j�i; � � �
1; 
2; 
3�: (16)

Then by applying Ua �a � 1; 2; 3� to this and using (15),
we have

 T1�Ur
1U

s
2U

t
3j�i� � ei�
1�2�r=3�Ur

1U
s
2U

t
3j�i;

T2�Ur
1U

s
2U

t
3j�i� � ei�
2�2�s=3�Ur

1U
s
2U

t
3j�i;

T3�U
r
1U

s
2U

t
3j�i� � ei�
3�2�t=3�Ur

1U
s
2U

t
3j�i;

(17)

where r, s, and t are integers. Because theses new states
have 33 distinct sets of eigenvalues of Ta ’s, we find that the
ground state (vacuum) in the quark deconfinement phase
has at least 33-fold degeneracy on T3.

Note that the ground-state degeneracy obtained in the
quark deconfinement phase depends on the topology of the
space-manifold. This is easily seen by considering the
system in a 3-dimensional box with the free boundary
conditions, which is homotopic to a 3-dimensional ball
B3. Because no noncontractable loop exists on this space-
manifold, the operator �ai does not exist and the permuta-
tion group consists of only the exchange operator �i.
Moreover, the operator Ua �a � 1; 2; 3� can not be defined
since there is no hole in B3. So on B3 no topological
discrete algebra is derived and no ground-state degeneracy
is obtained from this algebra. In general, if the space-
manifold on which the system is defined has l independent
spatial noncontractable loops, then the minimal ground-
state degeneracy in the deconfinement phase is 3l.

Let us now consider the quark confinement phase. In
contrast to the quark deconfinement phase, the topological
discrete algebra on T3 becomes trivial and no topological
degeneracy is required in the quark confinement phase as
follows. In the quark confinement phase, the permutation
group for hadrons, not for quarks, classifies the physical
states. The permutation group for hadrons on T3 is also
defined by (7) if �i and �ai are interpreted as those for
hadrons, however, all the generators of the permutation
group for hadrons commute with the flux insertion opera-
tors Ua �a � 1; 2:3�,

 �ai Ub � Ub�ai ; �iUa � Ua�i; �a; b � 1; 2; 3�:

(18)

This is because any hadron has an integer electric charge,
so the movement �ai of a hadron around the inserted flux
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�a � 2� gives only the trivial Aharanov-Bohm phase.
Then from (18) and the Schur’s lemma, it is found that
the flux insertion operator Ua reduces to a unimodular
constant for any irreducible representation of the permuta-
tion group for hadrons. In addition, since the representation
of the permutation group for a hadron is fermion or boson,
�ai for a hadron is again uniquely determined as

 �ai � ~Ta (19)

with mutually commuting matrices ~Ta �a � 1; 2; 3�,

 

~T a
~Tb � ~Tb ~Ta: (20)

Because all the elements of the topological discrete alge-
bra, ~Ta and Ua, commute with each other, no additional
ground-state degeneracy is required on T3 in this phase.

Our results here indicate that the deconfinement phase in
QCD is topologically ordered, and it is distinguished
clearly from the quark confinement phase in the concept
of topological order.

In the static limit of QCD, the minimal topological
degeneracy obtained above is reproduced by the following
conventional argument using the Wilson loop. In this limit,
all quarks are infinitely heavy and decoupled from the
dynamics. So the system is effectively described by the
pure SU�3� gauge theory. The pure SU�3� gauge theory is
invariant under the transformations,

 Un;a ! e2�im=3Un;a; �m � 1; 2; 3�; na fixed;

(21)

which rotate all spacelike links in the na direction at a fixed
na by an element of the center of SU�3�. On T3, we can
introduce the Wilson loop W�Ca� along the noncontract-
able loop Ca,

 W�Ca� � tr
Y
n2Ca

Un;a; (22)

and it is transformed by this center symmetry (21) as

 W�Ca� ! e2�im=3W�Ca�: (23)

So the expectation value hW�Ca�i is a gauge-invariant order
parameter for the center symmetry. In the quark confine-
ment phase, from the area law, it follows that in the
temporal gauge

 hW�Ca; ��W
y�Ca; �

0�i � e��Naj���
0j; (24)

with a positive constant �, and the imaginary times � � it
and �0 � it0. Thus using the cluster property

 hW�Ca; ��W
y�Ca; �

0�i !
j���0j!1

jhW�Ca�ij
2; (25)

we have

 hW�Ca�i � 0: (26)

So the center symmetry is not broken, and no additional
ground-state degeneracy is required on T3 in the quark

confinement phase. On the other hand, in the quark decon-
finement phase, it is possible that hW�Ca�i � 0 since it
obeys the perimeter law, and the center symmetry can be
spontaneously broken. If hW�Ca�i � 0 for all Ca’s �a �
1; 2; 3�, we have 33 different set of hW�Ca�i’s, which are
related to each other by the center symmetry. Thus the
ground-state degeneracy is 33-fold, and it coincides with
the minimal ground-state degeneracy on T3 obtained from
the topological discrete algebra.

Now we will address the physical meaning of 	a;b. For
this purpose, consider the degenerate ground states �K �
j�iK �K � 1; � � � ; d� with inserted fluxes � �
��1;�2;�3�. Since Ua inserts the unit flux 2� adiabati-
cally, they satisfy

 Uaj�iK � ei�a���j�� â2�iK; (27)

where �a��� is the quantum holonomy given by

 �a��� � i
Z �a�2�

�a

d�a

�
�K

�������� @
@�a

���������K

�
: (28)

In general the degenerate ground states are related to each
other by the operators Ua and Ta, or some other symmetry,
so �a��� is independent of K. From UaUb �
e2�i	a;bUbUa, it follows

 �a��� b̂2�� � �b��� � �b��� â2�� � �a���

� 2�	a;b � 2�M; (29)

where M is an integer. Then by the Stokes’s theorem, the
Hall conductance �ab �a � b� [26]
 

�ab � �
e2

hd

Xd
K�1

Z 2�

0

Z 2�

0

d�ad�b

2�i

��
@�K

@�a

��������@�K

@�b

�

� ��a $ �b�

�
(30)

is rewritten as
 

�ab��
e2

hd

Xd
K�1

Z 2�

0

Z 2�

0

d�ad�b

2�i

�
@
@�a

�
�K

�������� @
@�b

���������K

�

���a$�b�

�

�
e2

hd

Xd
K�1

1

2�

�
�b�â2����b�0���a�b̂2����a�0�

�

��
e2

h
�	a;b�M�: (31)

This indicates clearly that a fractional 	a;b implies the
fractional quantum Hall effect.

So far, we have considered the electromagnetic gauge
field in order to derive the topological discrete algebra.
This is not unique. If the baryon number is preserved, we
can use another U�1� gauge field obtained by gauging the
baryon number. This gauge field is fictitious but useful. In
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particular, the topological discrete algebra is easily gener-
alized to SU�N c� QCD by using the fictitious U�1� gauge
field as follows. In SU�N c� QCD, a baryon consists of
N c quarks, so we assign the baryon number QB � 1=N c

to each quark. Then, consider an adiabatic insertion of the
fictitious U�1� flux by 2� through the hole ha of T3. By
using the center of SU�N c�, it is shown again that the
spectrum of the system is periodic in the flux insertion.
Since quarks have a fractional baryon number, a nontrivial
Aharanov-Bohm phase arises when a quark goes around
the flux. Therefore, a similar analysis to the above leads to
the following nontrivial discrete algebra on T3 in the quark
deconfinement phase,

 TaTb � TbTa; TaUb � e�2�i=N c��a;bUbTa;

UaUb � e2�ika;b=la;bUbUa; �a; b � 1; 2; 3�
(32)

where Ua denotes the flux insertion operator for the ficti-
tious U�1� gauge field, Ta is the quark winding operator
defined in the same way as (13), ka;b and la;b are coprime
integers, and la;b is a divisor of N c. Using these relations,
we find that the minimal ground-state degeneracy on T3 in
the quark deconfinement phase is N 3

c . For N c � 3, it
reproduces the result obtained by using the electromag-
netic gauge field. On the other hand, in the quark confine-
ment phase, the topological discrete algebra is trivial and
no topological degeneracy arises on T3 because the baryon
number of any hadron is an integer.

The topological discrete algebra constructed above has a
similarity to the ’t Hooft algebra [5,6]. For example our
relations

 TaUb � e��2�i=3��a;bUbTa (33)

in (15) and

 TaUb � e�2�i=N c��a;bUbTa (34)

in (32) correspond to the following relation given by the ’t
Hooft,

 W�C�B�C0� � B�C0�W�C�e2�in=N c ; (35)

where C and C0 denote closed curves in 3-dimensional
space, n the number of times the curve C0 winds around
C in a certain direction, and B�C0� the ’t Hooft loop along
C0. However, there exist essential distinctions between

them. First of all, the ’t Hooft algebra is defined when
dynamical quarks are absent, but our topological discrete
algebra is defined in the presence of dynamical quarks.
Second, the topological discrete algebra in the quark de-
confinement phase is different from that in the quark
confinement phase, but the ’t Hooft algebra is the same
in both phases. Third, new quantum numbers 	a;b, which
are missing in the ’t Hooft algebra, exist in the topological
discrete algebra.

Throughout this paper, we have assumed that the system
has a finite gap. While color charges are screened in the
presence of the gluon mass gap, our result indicates that the
quark confinement is not synonymous with the color
screening. In addition, the topological discrete algebra
(14) and (15) [or (32)] itself is valid even in gapless
systems. The concept of ground-state degeneracy becomes
subtle in gapless systems, but the degeneracy could be
identified by examining the finite scaling carefully.

Finally, we would like to mention possible generaliza-
tions of this work. First, the present argument can be
generalized to other gauge groups if there are the centers
in the gauge groups. It is also applicable even when the
system contains bosonic matter fields such as the Higgs
fields since it is irrespective of fermionic nature of the
matter field.

Another interesting issue is generalization of the present
consideration to the finite temperature case. We have no-
ticed that the present argument is based on the notion of
ground-state degeneracy, so its meaning is not clear at
finite temperature. The thermo field dynamics formalism
[27,28], which introduces ‘‘temperature dependent vac-
uum’’ in finite temperature systems, might be useful for
this purpose.

To conclude, we have argued phases in QCD by using a
discrete symmetry algebra which is manifest only on a
space with nontrivial topology. The topological degeneracy
of the ground state, which indicates the presence of a
topological order, is derived and it is found that even in
the presence of dynamical quarks it is a good quantum
number distinguishing the quark confinement phase from
the deconfinement one.

The author would like to thank H. Kawamura for helpful
discussions.

[1] J. Greensite, Prog. Part. Nucl. Phys. 51, 1 (2003).
[2] K. Rajagopal and F. Wilczek, in Handbook of QCD, edited

by M. Shifman (World Scientific, Singapore, 2001),
Vol. 3, p. 2016.

[3] K. G. Wilson, Phys. Rev. D 10, 2445 (1974).
[4] A. M. Polyakov, Phys. Lett. 72B, 477 (1978).
[5] G. ’t Hooft, Nucl. Phys. B138, 1 (1978).

[6] G. ’t Hooft, Nucl. Phys. B153, 141 (1979).
[7] F. Karsch, Lect. Notes Phys. 583, 209 (2002).
[8] H. Satz, Nucl. Phys. A642, c130 (1998).
[9] X. G. Wen, Int. J. Mod. Phys. B 4, 239 (1990).

[10] The ground-state degeneracy depending on the topology
of the space is dubbed as topological degeneracy.

[11] X. G. Wen and Q. Niu, Phys. Rev. B 41, 9377 (1990).

TOPOLOGICAL DISCRETE ALGEBRA, GROUND-STATE . . . PHYSICAL REVIEW D 77, 045013 (2008)

045013-5



[12] X. G. Wen, Phys. Rev. B 44, 2664 (1991).
[13] X. G. Wen and A. Zee, Phys. Rev. B 44, 274 (1991).
[14] N. Read and S. Sachdev, Phys. Rev. Lett. 66, 1773 (1991).
[15] T. Senthil and M. P. A. Fisher, Phys. Rev. B 62, 7850

(2000).
[16] R. Moessner and S. L. Sondhi, Phys. Rev. Lett. 86, 1881

(2001).
[17] G. Misguich, D. Serban, and V. Pasquir, Phys. Rev. Lett.

89, 137202 (2002).
[18] L. Balents, M. P. A. Fisher, and S. M. Girvin, Phys. Rev. B

65, 224412 (2002).
[19] O. I. Motrunich and T. Senthil, Phys. Rev. Lett. 89, 277004

(2002).
[20] M. Freedman, C. Nayak, K. Shthegel, K. Walker, and Z.

Wang, Ann. Phys. (N.Y.) 310, 428 (2004).
[21] M. Sato, M. Kohmoto, and Y.-S. Wu, Phys. Rev. Lett. 97,

010601 (2006).
[22] Y. S. Wu, Y. Hatsugai, and M. Kohmoto, Phys. Rev. Lett.

66, 659 (1991).

[23] M. Oshikawa and T. Senthil, Phys. Rev. Lett. 96, 060601
(2006).

[24] In this paper, the greek index � has the range 1, 2, 3, 4 and
the latin a and b have the range 1, 2, 3. The italic n denotes
a four dimensional vector n � �n1; n2; n3; n4�, and the
bold n denotes a three dimensional vector n �
�n1; n2; n3�.

[25] We notice that the statistical property of the matter field
are not relevant to the following argument. Even if �i � 1,
the permutation group representation is simplified as (13)
with (14).

[26] Q. N. Niu, D. J. Thouless, and Y.-S. Wu, Phys. Rev. B 31,
3372 (1985).

[27] Y. Takahashi and H. Umezawa, Collective Phenomena 2,
55 (1975).

[28] H. Umezawa, H. Matsumoto, and M. Tachiki, Thermo
Field Dynamics and Condensed States (North-Holland,
Amsterdam, 1982).

MASATOSHI SATO PHYSICAL REVIEW D 77, 045013 (2008)

045013-6


