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We consider orientifold field theories [i.e., SU�N� Yang-Mills theories with fermions in the two-index
symmetric or antisymmetric representations] on R3 � S1 where the compact dimension can be either
temporal or spatial. These theories are planar equivalent to supersymmetric Yang-Mills theory. The latter
has ZN center symmetry. The famous Polyakov criterion establishing confinement-deconfinement phase
transition as that from ZN symmetric to ZN broken phase applies. At the Lagrangian level the orientifold
theories have at most a Z2 center. We discuss how the full ZN center symmetry dynamically emerges in the
orientifold theories in the limit N ! 1. In the confining phase the manifestation of this enhancement is
the existence of stable k strings in the large-N limit of the orientifold theories. These strings are identical
to those of supersymmetric Yang-Mills theories. We argue that critical temperatures (and other features) of
the confinement-deconfinement phase transition are the same in the orientifold daughters and their
supersymmetric parent up to 1=N corrections. We also discuss the Abelian and non-Abelian confining
regimes of four-dimensional QCD-like theories.
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I. INTRODUCTION

In this paper we consider dynamical aspects of four-
dimensional orientifold field theories compactified on
R3 � S1. The compactified dimension S1 is either temporal
or spatial. Whether we deal with thermal or spatial for-
mulation of the problem depends on the spin connection of
fermions along the compact direction. In the latter case we
arrive at a zero-temperature field theory where phase tran-
sitions (if any) are induced quantum mechanically. In
either case, if the radius of S1 is sufficiently large we return
to four-dimensional theory, R3 � S1 ! R4.

By orientifold field theories we mean SU�N� Yang-Mills
theories with Dirac fermions in two-index representations
of SU�N�—symmetric or antisymmetric.1 Our starting
point is the large-N equivalence between these theories
and N � 1 super-Yang-Mills (SYM) theory [1–5] (see
also Ref. [6] for the relation with string theory). Since
supersymmetric gauge theories are better understood than
nonsupersymmetric, we hope to learn more about non-
supersymmetric daughters from planar equivalence. This
expectation comes true: the center symmetry of SYM
theory turns out to be an emergent symmetry of the ori-
entifold daughters in the large-N limit. This fact was first
noted in [7] while the first mention of the problem of center
symmetry on both sides of planar equivalence can be found
in [8]. Here we investigate the reasons that lead to the
emergence of the center symmetry and its implications, as
they manifest themselves at small and large values of the
S1 radius.

For SU(3) the orienti-AS theory reduces to one-flavor
QCD. If the large-N limit is applicable to N � 3, at least
semiquantitatively, we can copy SYM theory data to
strongly coupled one-flavor QCD. A concrete example is
the temperature independence observed in [9]. It was
shown that certain observables of SYM theory are tem-
perature independent at large N and so is the charge-
conjugation-even subset of these observables in the
large-N orientifold field theory. It implies a very weak
(suppressed by 1=N) temperature dependence of certain
well-defined observables in the confining phase of QCD.
This analytical result is supported by lattice simulations
[10–12]. For a recent review, see [13]. The planar equiva-
lence between SYM theory and oreinti-AS is valid in any
phase which does not break the charge conjugation sym-
metry (C invariance). This implies coinciding Polyakov
loop expectation values in the low-temperature confined
and high-temperature deconfined phases and the equality
of the confinement-deconfinement transition temperature
in orienti and SYM theories in the large-N limit. Other
features of the phase transition are predicted to coincide
too.

In the spatial compactification of SYM theory, the center
symmetry is unbroken at any radius. For orienti-AS, it is
dynamically broken, along with C and CPT, at small radii,
and restored at a critical radius of the order of ��1 [14,15].
These zero-temperature, quantum phase transitions are
observed in recent lattice simulations by two independent
groups [16,17]. The unbroken center symmetry in the small
S1 regime of the vectorlike gauge theories, unlike the
dynamically broken center symmetry, leads to Higgsing
of the theory. The long-distance dynamics of such QCD-
like theories are intimately connected to the Polyakov

1They will be referred to as orienti-S and orienti-AS,
respectively.
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model [18]. We discuss both the strong-coupling and weak-
coupling confinement regimes. At weak coupling we get
Polyakov (Abelian) confinement which is analytically trac-
table. The region of validity of the Abelian confinement in
QCD-like theories is a vanishingly small window which
diminishes with increasing N. The fact that the Abelian
confinement regime is vanishingly small is a consequence
of volume independence. We discuss this issue in some
detail.

Summarizing, our findings are as follows:
Orientifold field theories on R3 � S1 exhibit a number of

a priori unexpected features. These theories are planar
equivalent to supersymmetric Yang-Mills theory. The latter
has ZN center symmetry. The famous Polyakov criterion
establishing confinement-deconfinement phase transition
as that from ZN symmetric to ZN broken phase applies.
At the Lagrangian level the orientifold theories have at
most a Z2 center. The full ZN center symmetry dynamically
emerges in the orientifold theories in the limit N ! 1. In
the confining phase the manifestation of this enhancement
is the existence of stable k strings in the large-N limit of the
orientifold theories. These strings are identical to those of
supersymmetric Yang-Mills theories. The critical tempera-
tures of the confinement-deconfinement phase transitions
are the same in the orientifold daughters and their super-
symmetric parent up to 1=N corrections. Depending on the
size of S1 one can identify the Abelian and non-Abelian
confining regimes of four-dimensional QCD-like theories.

The organization of the paper is as follows. In Sec. II we
outline basic facts on planar equivalence, define the
Polyakov line, and spatial Wilson lines. Section III is
devoted to the center symmetry in SYM theory, QCD
with fundamental fermions and orienti-S/AS. It gives an
alternative derivation of the approximate, exact, and emer-
gent center symmetries. In Sec. IV we discuss the strong-
coupling manifestation of the emergent center symmetry:
existence and stability of k strings. In Sec. V we discuss
strong versus weak coupling regimes. Section VI is de-
voted to Polyakov’s mechanism of Abelian confinement. In
particular, we address the issue of how it can be general-
ized to theories with adjoint and two-index fermions. We
confront the thermal confinement-deconfinement phase
transitions in SYM and orienti theories in Sec. VII. Here
we prove the equality of the critical temperatures at N !
1. Finally, Sec. VIII briefly summarizes our results. One-
loop potentials are derived in the Appendix.

II. PLANAR EQUIVALENCE AND POLYAKOV
LINE

Planar equivalence is equivalence in the large-N limit of
distinct QCD-like theories in their common sectors. A
great deal of attention has been given to the equivalence
between supersymmetric gluodynamics and its orientifold
and Z2 orbifold daughters. The Lagrangian of the parent
supersymmetric theory is

 L � �
1

4g2
P

Ga
��Ga

�� �
i

g2
P

�a�D� _�
��a _�; (1)

where �a� is the gluino (Weyl) field in the adjoint repre-
sentation of SU�N�, and g2

P stands for the coupling constant
in the parent theory. The orientifold daughter is obtained
by replacing �a� by the Dirac spinor in the two-index
(symmetric or antisymmetric) representation (to be re-
ferred to as orienti-S or orienti-AS). The gauge coupling
stays intact. To obtain the Z2 orbifold daughter we must
pass to the gauge group SU�N=2� � SU�N=2�, replace �a�

by a bifundamental Dirac spinor, and rescale the gauge
coupling, g2

D � 2g2
P [19–23]. We will focus on orienti-AS.

Consideration of orienti-S runs in parallel, with the same
conclusions.

Planar equivalence between the parent and daughter
theories can be applied in arbitrary geometry, in particular,
on S1 � R3, S1 � S3, and R4. The equivalence implies that
correlation functions of the daughter theory are equal to the
correlation functions of the parent theory at N ! 1.
Hence, in those cases where the underlying ‘‘microscopic’’
symmetries of the planar-equivalent partners do not coin-
cide, the theory with a lower microscopic symmetry will
reflect the symmetries of the parent theory, which are
naively absent in the daughter (or vice versa) [4]. The
most profound effect of such a symmetry mismatch—
and enhancement—occurs when one dimension is com-
pactified onto a circle, and the symmetry under considera-
tion is the center symmetry. The corresponding order
parameter is the Polyakov line which we define below.

Assume that one dimension is compactified (it may be
either time or a spatial dimension). For definiteness, we
will assume z to be compactified. The Polyakov line
(sometimes called the Polyakov loop) is defined as a
path-ordered holonomy of the Wilson line in the compac-
tified dimension,

 U � P exp
�
i
Z L

0
azdz

�
� VUVy; (2)

where L is the size of the compact dimension while V is a
matrix diagonalizing U. Moreover,

 U � diagfv1; v2; . . . ; vNg � eiaL; (3)

where

 a �
X

Cartan gen

acT
c � diagfa1; a2; . . . ; aNg;

XN
k�1

ak � 0:

(4)

It is obvious that

 ai � �i lnvi mod 2�: (5)

The planar equivalence implies definite relations among
the expectation values of the Polyakov loops in SU�N�
SYM and orienti theories—two gauge theories with dis-
tinct center symmetries at the Lagrangian level. In the next

ADI ARMONI, MIKHAIL SHIFMAN, AND MITHAT ÜNSAL PHYSICAL REVIEW D 77, 045012 (2008)

045012-2



section, we will discuss the vacuum structure of these
theories from the center symmetry viewpoint.

III. CENTER SYMMETRY (EXACT AND
APPROXIMATE)

In SYM theory all dynamical fields—gluons and glui-
nos—are in the adjoint representation of SU�N�. This
means that the gauge group is

 G � SU�N�=ZN (6)

rather than SU�N�. This fact manifests itself as a ZN
symmetry on the elementary cell of fa1; a2; . . . ; aNg.
Under SU�N� transformations from ZN

 U ! e2�ik=NU; k � 0; 1; . . . ; N � 1: (7)

The ZN symmetry, usually referred to as the center sym-
metry, may or may not be spontaneously broken. There is a
famous Polyakov criterion regarding confinement/decon-
finement transition in SU�N� Yang-Mills theories. If one
considers the Polyakov line along the compactified direc-
tion, and its expectation value hTrUi does not vanish, the
center symmetry is broken implying deconfinement. On
the other hand, if hTrUi � 0 the center symmetry is un-
broken implying confinement.2

Introducing fundamental dynamical fermions removes
the center symmetry (see Ref. [24]). However, one can still
make sense out of the center symmetry as an approximate
symmetry. The simplest way to study the impact of the
fundamental fermions is to integrate them out implying the
following (formal) result:

 logdet�i��D
F
� �m� �

X
n2Z

X
Cn

��Cn�TrU�Cn� (8)

where the superscript F stands for fundamental, ��Cn� are
coefficients scaling with N as O�N0�. The integer n is the
winding number of the loop C along the S1 circle which is
valued in the first homotopy group of S1,

 �1�S1� � Z:

A small mass m is inserted as an infrared regulator. Note
that log of the determinant in (8), the fermionic contribu-
tion to the action expressed in terms of the gluonic observ-
ables, scales as N1.

The n � 0 sector has net winding number zero. Hence,
the corresponding term in (8) is neutral under the center

symmetry transformations. However, for instance, the n �
1 sector operators are Polyakov loops charged under the
center group transformations. Thus, the fermion contribu-
tion (8) to the action is explicitly noninvariant with respect
to the center symmetry.

A typical term in the sum from the winding class n
transforms as

 TrU�Cn� ! hn TrU�Cn�; (9)

where h 2 ZN . Despite this fact, the center symmetry is an
approximate symmetry, since the contribution of the fun-
damental fermions (8) is suppressed as 1=N relative to the
pure glue sector whose action sales as N2. At N � 1, the
fundamental fermions are completely quenched and the
center symmetry becomes exact. The connected correlators
or expectation values of the gluonic observables—includ-
ing the Polyakov loop correlators—are the same as in pure
Yang-Mills theory.3

For orienti-AS the dynamical AS fermions are not sup-
pressed in the large-N limit. The above rationale applicable
to fundamental fermions no longer holds. However, planar
equivalence will lead us to the same conclusion—emer-
gence of an approximate center symmetry at large N.

The Lagrangian of the orientifold theories has the form

 L � �
1

4g2 G
a
��G

a
�� �

i

g2  
�
ijD� _�

� _�ij; (10)

where  ij is the Dirac spinor in the two-index antisym-
metric or symmetric representation. Obviously, there is no
ZN symmetry at the Lagrangian level. The center symme-
try is Z2 for even N and none for odd N. Indeed, the two-
index fermion field, unlike that of gluino, does not stay
intact under the action of center elements. The action of a
center group element on an adjoint fermion is trivial, �!
h�hy � �. The action on an AS fermion is  ! h h �
h2 . Thus, for N even (odd), h � 	1 (h � �1) are the
center group elements which leave the AS fermion invari-
ant, in accordance with at most a Z2 center symmetry for
orienti-AS theory.

As was mentioned, the antisymmetric fermions are not
suppressed in the large-N limit. Integrating out the two-
index antisymmetric fermion yields
 

logdet�i��DAS
� �m� � N2

X
n2Z

X
Cn

��Cn�
2

��
Tr

N
U�Cn�

�
2

�
1

N
Tr

N
U2�Cn�

�
: (11)

In the large-N limit we can ignore the single-trace terms

2In QCD-like theories with fermions, the boundary conditions
on fermions—antiperiodic versus periodic—(to be denoted as
S
) determine interpretation of the center symmetry. If the
fermions obey S�, the partition function has a thermal inter-
pretation; a change in the (temporal) center symmetry realization
must be interpreted in terms of the jump in the free energy of the
system. If the fermions obey S�, then the partition function is of
the twisted type, Tr��1�Fe��H, and realization of the spatial
center symmetry has interpretation in terms of the jump in the
vacuum energy.

3The above suppression is analogous to the isotopic symmetry
in QCD. Since the two lightest flavors are very light compared to
the strong scale, mu;d=�� 1, QCD possesses an approximate
SU(2) invariance despite the fact that the up and down quark
masses differ significantly. The appropriate parameter mu;d=�
plays the same role as 1=N.
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since they are suppressed by 1=N compared to the O�N2�
double-trace term. The single-trace term contribution
scales as that of the fundamental fermions, and is quenched
in the same fashion.

A typical double-trace term �TrU�Cn��2 is O�N2� and is
a part of the leading large-N dynamics. Thus, the impact of
the two-index antisymmetric fermions on dynamics is as
important as that of the glue sector of the theory. The
double-trace term is explicitly noninvariant under the ZN
center transformations.

We see that in orientifold theories the center symmetry
implementation is much less trivial than in theories with
fundamental quarks. As was argued in [7], the center
symmetry emerges dynamically in the planar limit N !
1. Here we will carry out a thorough consideration and
present independent albeit related arguments.

The action of the pure glue sector is local and manifestly
invariant under the ZN center. Integrating out fermions
induces a nonlocal sum (11) over gluonic observables.
This sum includes both topologically trivial loops with
no net winding around the compact direction (the n � 0
term) and nontrivial loops with nonvanishing winding
numbers. The topologically trivial loops are singlet under
the ZN center symmetry by construction, while the loops
with nonvanishing windings are noninvariant.

Let us inspect the N dependence more carefully. If we
expand the fermion action in the given gluon background
we get

 

�
exp

�
�N2

X
n�0

X
Cn

��Cn�
2

�
Tr

N
U�Cn�

�
2
��
; (12)

where h� � �imeans averaging with the exponent combining
the gluon Lagrangian with the zero winding number term.
This weight function is obviously center-symmetric. If h is
an element of the SU�N� center, a typical term in the sum
(12) transforms as

 

�
Tr

N
U�Cn�

Tr

N
U�Cn�

�
! h2n

�
Tr

N
U�Cn�

Tr

N
U�Cn�

�

� h2n
��

Tr

N
U�Cn�

��
Tr

N
U�Cn�

�

�

�
Tr

N
U�Cn�

Tr

N
U�Cn�

�
con

�
;

(13)

where we picked up a quadratic term as an example. The
connected term in the expression above is suppressed
relative to the leading factorized part by 1=N2, as follows
from the standardN counting, and can be neglected at large
N. As for the factorized part, planar equivalence implies
that all expectation values of multiwinding Polyakov loops
are suppressed in the large N limit by 1=N,

 

�
1

N
TrU�Cn�

�
SYM
� 0;

�
Tr

N
U�Cn�

�
AS
� O

�
1

N

�
! 0; n 2 Z� f0g;

(14)

where the first relation follows from unbroken center sym-
metry in the SYM theory and the latter is a result of planar
equivalence (in the C-unbroken, confining phase of orienti-
AS).

Consequently, the noninvariance of the expectation
value of the action under a global center transformation is

 h�Si � hS�hn TrU�Cn�� � S�TrU�Cn��i � O
�

1

N

�
hSi;

(15)

which implies, in turn, dynamical emergence of center
symmetry in orientifold theories in the large-N limit. Let
us emphasize again that the fermion part of the Lagrangian
which explicitly breaks the ZN symmetry is not subleading
in large N. However, the effect of the ZN breaking on
physical observables is suppressed at N ! 1.

This remarkable phenomenon is a natural (and straight-
forward) consequence of the large-N equivalence between
N � 1 SYM theory and orienti-AS. Despite the fact that
the center symmetry in the orienti-AS Lagrangian is at
most Z2, in the N � 1 limit all observables behave as if
they are under the protection of the ZN center symmetry.
(This point is also emphasized in [25].) We will refer to this
emergent symmetry of the orienti-AS vacuum as the cus-
todial symmetry. The custodial symmetry becomes exact in
the N � 1 limit, and is approximate at large N.

The immediate implication of this discussion is as fol-
lows: when we integrate out fermions in the N � 1 limit,
the dynamical pattern in orienti-AS/S in the confined phase
simplifies. The sum over all homotopy classes in (11)
reduces to a single term—the one over the loops with
the vanishing winding number,

P
n2Z��Cn� ! ��C0�.

Thus,

 logdet�i��D
AS
� �m� � N

2
X
C0

��C0�

2

�
Tr

N
U�C0�

�
2
: (16)

Consequently, the action and other observables of the N �
1 orienti-AS/S are indistinguishable from the ‘‘reduced’’
theory with action

 Sreduced � SYM �
X
C0

��C0�

2

�
Tr

N
U�C0�

�
2
: (17)

Clearly, the ZN center is a manifest symmetry of the
reduced theory. Our derivation also provides a direct deri-
vation of the temperature independence [9] of the orienti-
AS theory in the confining low-temperature phase. See also
Sec. VII.
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The ZN-symmetric vacuum structure at low tempera-
tures, in the C-unbroken phase, can also be phrased in
terms of the eigenvalue distribution of the Polyakov loop.
We want to argue that the vacuum of the orienti-AS theory
is invariant under the custodial ZN center symmetry (which
is the symmetry of the supersymmetric parent). Let 	�
�
denote the distribution of the eigenvalues of the Polyakov
loop in orienti-AS in the confined phase. Let us decompose
	�
� into its Fourier modes,

 	�
� �
1

2�

X
k2Z

ei
k	k:

All moments (other than that with k � 0) are restricted to
be O�1=N� due to planar equivalence in the low-
temperature phase,

 	k�
�

Tr

N
Uk
�
�

1

N

XN
i�1

eiaik!
Z
d
	�
�ei
k�

1

N
; k� 0:

(18)

Consequently, in the N � 1 limit, the eigenvalue distri-
bution of the orientifold theory is flat,

 	�
� �
1

2�
: (19)

This implies, in particular, that under the action of a center
group element, U ! U expf2�ikN g, the eigenvalue distribu-
tion

 	�
� ! 	
�

�

2�k
N

�
� 	�
� (20)

remains invariant.
In line with our conclusion are recent calculations on

S3 � S1 [25,26] (based on techniques developed in
[27,28]) showing that the vacuum of the large-N orienti-
fold theory in the confining phase is characterized by the
distribution (19), i.e., supports the ZN center symmetry
rather than the naively expected Z2. The authors of
Refs. [25,29] also reached the conclusion that perturbative
transitions which take place on S3 � S1 capture the nature
of the nonperturbative transition taking place in the semi-
decompactification limit of R3 � S1, as probed in lattice
simulations.

IV. MANIFESTATION OF ZN AT STRONG
COUPLING

If the circumference of S1 is large enough, L > L, we
are in the non-Abelian confinement regime both in SYM
and orientifold theories.4 The signature of the ZN center in
SYM theory is the existence of the k strings. The tensions
and thicknesses of the k strings are class functions of the

center group ZN . The planar equivalence implies that the
orienti-AS theory must have the very same k strings despite
the presence of the dynamical fermions charged under the
center group. Below we discuss how this arises.

The simplest SYM string is a (chromoelectric) flux tube
that connects heavy (probe) color sources in the funda-
mental representation. Usually it is referred to as the
fundamental string. The flux tubes attached to color
sources in higher representations of SU�N� are known as
k strings, where k denotes the n-ality of the color repre-
sentation under consideration. The n-ality of the represen-
tation with ‘ upper and m lower indices (i.e., ‘
fundamental and m antifundamental) is defined as

 k � j‘�mj: (21)

It is clear that for stable strings the maximal value of k �
�N=2� where � � denotes the integer part. The stability of
these �N=2� varieties of strings is a question of energetics.
For Tk � kT1, which is the observation in lattice studies
and certain supersymmetric theories, all k strings are stable
[30,31].

On the other hand, in the orientifold-AS theory at finite
N (with N even) the only stable k string is the fundamental
one. If N is odd, there are no stable k strings at all, as in
QCD with fundamental matter [32]. This is due to the fact
that probe charges with even n-alities can be completely
screened by two-index antisymmetric quarks, while those
with odd n-alities can be screened down up to a single
fundamental index (if N is even) or completely (if N is
odd). A similar screening takes place in the orientifold-S
theory with the quark  �ij� replaced by  fijg.

However, at N ! 1 the breaking amplitude of a color
singlet into two is 1=N suppressed. Note that the same
breaking amplitude in large-N QCD with fundamental
fermions dies off as 1=

				
N
p

. Consequently, in the limit N !
1 all k strings become stable against breaking, and iden-
tical to those of the SYM theory. The k-string tension, in
leading order in N, is Tk � kT1, where T1 is the tension of
the fundamental string, and is marginally stable.

LetWk�C� denote a large Wilson loop in a representation
with n-ality k, with C being the boundary of a surface �.
The expectation values of such Wilson operators in orienti-
AS with odd N is given by the formula

 hWk�C�iAS � e�TkA��� �
1

N
e��kP�C�; (22)

where Tk is the string tension, A��� denotes the area of the
surface spanned by the loop C, and P�C� its perimeter (see
Sec. 10 of [33]). This formula captures two asymptotic
regimes and exhibits noncommutativity of the long-
distance and large-N limits, a general and quite obvious
feature,

 lim
R!1

lim
N!1

�
loghWk�C�iAS

R

�
� lim

N!1
lim
R!1

�
loghWk�C�iAS

R

�
:

(23)

4The value of L will be discussed in Sec. V. Since neither
parent nor daughter theories have massless states in the limit
L! 1, where we recover R4 geometry, the limit must be
smooth.
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At any finite N, at asymptotically large distances, the
perimeter law dominates, and the potential asymptotes to
a constant, i.e.,

 lim
R!1

V�R� � const:

In this regime, infinite separation of probe color charges
costs only a finite energy. However, if we take the large-N
limit first, linear confinement holds at large distances, i.e.,

 lim
R!1

V�R� � TkR:

Planar equivalence, which implies taking the limit N ! 1
first, guarantees equality of the string tensions in N � 1
SYM theory and orienti-AS,

 TSYM
k � TAS

k ; for all k; N � 1: (24)

We stress again that, unlike fundamental fermions which
are quenched in the large-N limit, the two-index antisym-
metric (symmetric) fermions are not suppressed. The emer-
gence of �N=2� varieties of chromoelectric flux tubes is
associated with the suppression of quantum fluctuations in
the large-N limit. This is a nontrivial dynamical effect.

V. STRONG VERSUS WEAK COUPLING

SYM theory is planar equivalent to the orientifold theo-
ries provided C (charge conjugation) invariance is not
spontaneously broken [14,15]. So far we discussed the
large-L limit, i.e., L� ��1 where � is the dynamical
scale parameter. In this limit both SYM theory and its
nonsupersymmetric daughters are expected to confine
much in the same way as pure Yang-Mills theory on R4.
We will refer to this regime as non-Abelian confinement.

On the other hand, if

 L� ��1; (25)

the gauge coupling is small at the compactification scale.
SYM theory with periodic spin connection (which pre-
serves supersymmetry) undergoes gauge symmetry break-
ing at the high scale �L�1. The running law of the four-
dimensional gauge coupling is changed at the scale where
the gauge coupling is still small; i.e., we are in the weak-
coupling Higgs regime. In further descent of the scale the
corresponding evolution of the coupling constant is deter-
mined by a three-dimensional theory.

In the fully Higgsed regime ai � aj for all i; j �
1; . . . ; N. If one chooses a generic set of all different ai’s,
SYM theory is maximally Higgsed; more exactly, SU�N�
gauge symmetry is broken down to the maximal Abelian
subgroup U�1�N�1. The gauge fields from the Cartan sub-
algebra (as well as the fermions) remain massless in per-
turbation theory5 (they will be referred to as ‘‘photons’’),
while all other gauge fields acquire masses (they will be

referred to ‘‘W bosons’’). For generic sets of ai there is no
regular pattern in the W boson masses. However, if the
Higgsed theory is described by ZN-symmetric expectation
values of the diagonal elements vk,

 vk � e2�ik=N; k � 1; . . . ; N (26)

(or permutations), see Fig. 1, the pattern of the W boson
masses is regular. N lightest W bosons [corresponding to
simple roots and affine root of SU�N�] are degenerate and
have masses 2�

LN , while all others can be obtained as k 2�
LN

where k is an integer. Thus, there are �N2 gauge bosons
whose mass scales as 1=L and �N gauge bosons whose
mass scales as 1=�LN�.

In the Higgs regime one can consider two distinct sub-
regimes. If

 L & L �
1

�N
; (27)

there exists a clear-cut separation between the scale of the
lightest W bosons 2�

LN and nonperturbatively induced pho-
ton masses� expf� 8�2

Ng2g, where g is the gauge coupling in

the four-dimensional Lagrangian (1) or (10). How the
nonperturbative photon mass is generated and why it leads
to linear Abelian confinement is explained in Sec. VI. In
this regime, the vast majority of W bosons acquire masses
that scale as N and, therefore, decouple in the large-N
limit. Thus, below the scale L�1

 we deal with three-
dimensional Abelian theory at weak coupling. In this
theory Abelian confinement sets in due to a generalization
of the Polyakov mechanism. If the vacuum field is chosen
according to (26) the Polyakov order parameter vanishes.
We are in the ZN-symmetric regime, much in the same way
as in non-Abelian confinement at L>��1. Note that
Eq. (26) implies that

FIG. 1. ZN symmetric vacuum fields vk. For definitions see
Eq. (3).

5The nonperturbative mechanism which generates mass gap
� expf� 8�2

Ng2g is discussed in Sec. VI.
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 fakLg � �
2��N=2�

N
;�

2���N=2� � 1�

N
; . . . ;

2��N=2�

N
;

(28)

where �A� stands for the integer part of A.
On the other hand, if we increase L, starting from L and

eventually approaching ��1, the masses of ‘‘typical’’ W
bosons become of order � (the number of such typical W
bosons�N2), while the masses of ‘‘light’’ W bosons scale
as �=N (the number of light W bosons �N1). In this case
the effective low-energy description of the theory at N !
1 must include light W’s along with the exponentially
light photons. The expectation value of the Polyakov loop
still vanishes.

This suggests that the L dependence (in one-flavor theo-
ries) of all physical quantities is smooth across the board:
from L & L to L� ��1. Rather than a phase transition
there may be a crossover. Theoretical considerations at the
moment do not allow us to prove or disprove the above
conjecture.

The general features of the L behavior are expected to be
similar to those of the � evolution of the Seiberg-Witten
solution of N � 2 Yang-Mills theory [34]. (Here � is the
N � 2 breaking parameter in Ref. [34].) If j�j is small,
the Seiberg-Witten solution applies exhibiting Abelian
confinement. As j�j evolves to larger values, eventually
becoming � �, non-Abelian confinement is expected to
set in. Since � is a holomorphic parameter one does not
expect to have a phase transition on the way; the � evolu-
tion is expected to be smooth.

The nature of the transition between Abelian and non-
Abelian confinement is a good question for lattice studies.
In terms of the expectation value of the Polyakov loop,
hTrUi � 0 in all regimes. However, at small L, this is due
to the fact that the eigenvalues of the Polyakov line are, at
zeroth order, frozen at the roots of unity as in Fig. 1
(Higgsing), and fluctuations are negligibly small. At large
L, these eigenvalues are strongly coupled and randomized
over the �0; 2�� interval. Consequently, there is no gauge
symmetry breaking (non-Abelian confinement).

The set of fields in Eq. (28) is automatically invariant
under the C transformation. Therefore, planar equivalence
between SYM and orientifold theories must hold both in
the Higgs regime and at strong coupling where C invari-
ance was argued to hold too [7,15].

We would like to stress that the set of fields in Eq. (28)
should be considered, for the time-being, as a fixed back-
ground field configuration. Generally speaking, it does not
minimize the energy functional. For instance, in the ther-
mal compactification this field configuration realizes the
maximum of the effective potential, rather than the mini-
mum. To get the set of fields Eq. (28) as a vacuum con-
figuration (i.e., that minimizing the effective potential) we
have to change the pattern of compactification (e.g., S3 �
S1) or introduce a deformation of the theory through addi-
tion of source terms or both. What is important for us here

is that this is doable and it is perfectly reasonable to
quantize the theory in the ZN invariant background (28)
which realizes maximal Higgsing.

Then, it is instructive to illustrate how planar equiva-
lence between SYM and orientifold theories works in this
regime by examining the one-loop example. Given the
background fields (4) the effective potential for the SYM
theory is
 

Veff �
1

24�2

� XN
i;j�1

�ai � aj�2�2�� �ai � aj��2 �
8

15
�4N

� 2
XN
i<j�1

�ai � aj�2�2�� �ai � aj��2
�
; (29)

where everything is measured in the units of L. The effec-
tive potential for the orientifold-AS theory (see Appendix)
 

Veff �
1

24�2

� XN
i;j�1

�ai � aj�
2�2�� �ai � aj��

2 �
8

15
�4N

� 2
XN
i<j�1

�ai � aj�
2�2�� �ai � aj��

2

�
: (30)

For the ZN symmetric background (4) the expressions (29)
and (30) are identical up to terms suppressed by powers of
1=N.

VI. POLYAKOV’S 3D CONFINEMENT

Long ago Polyakov considered three-dimensional SU(2)
Georgi-Glashow model (a Yang-Mills adjoint Higgs sys-
tem) in the Higgs regime [18]. In this regime SU(2) is
broken down to U(1), so that at low energies the theory
reduces to compact electrodynamics. The dual photon is a
scalar field � of the phase type (i.e., it is defined on the
interval �0; 2��)

 F�� �
g2

3

4�
"��	�@

	��; (31)

where g2
3 is the three-dimensional gauge coupling with

mass dimension �g2
3� � �1. In perturbation theory the

dual photon � is massless. However, it acquires a mass
due to instantons (technically, the latter are identical to the
’t Hooft–Polyakov monopoles, after the substitution of one
spatial dimension by imaginary time). In the vacuum of the
theory, one deals with a gas of instantons interacting
according to the Coulomb law. The dual photon mass is
due to the Debye screening. In fact, it is determined by the
one-instanton vertex,

 m� �m
5=2
W g�3

3 e�S0=2; (32)

where S0 is the one-instanton action,

 S0 � 4�
mW

g2
3

; (33)
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mW is theW boson mass. As a result, the low-energy theory
is described by a three-dimensional sine-Gordon model,

 L � �
g2

3

32�2 �@���
2 � c1m

5
Wg
�4
3 e�S0 cos�; (34)

where c1 is an undetermined prefactor. This model sup-
ports a domain line6 (with� field vortices at the end points)
which in 1� 2 dimensions must be interpreted as a string.
Since the � field dualizes three-dimensional photon, the �
field vortices in fact represent electric probe charges in the
original formulation, connected by the electric flux tubes
which look like domain lines in the dual formulation.

As is well known [35], addition of one (or more) Dirac
fermions in the adjoint representation eliminates the above
Abelian confinement in the Polyakov model. This is due to
the fact that the instanton monopole acquires fermion zero
modes due to the Callias index theorem [36,37]. Instanton
monopoles, instead of generating mass for the � field
through the potential ei� � e�i�, produce a vertex with
compulsory fermion zero modes attached to it. For one-
flavor theory, this is given by

 e�S0�ei�  � e�i� � � �: (35)

The three-dimensional microscopic theory with an adjoint
fermion possess a nonanomalous U(1) fermion number
symmetry. This U(1) invariance is manifest in Eq. (35); it
intertwines the fermion global rotation with a continuous
shift symmetry for the dual photon,

  ! ei� ; �! �� 2�: (36)

The continuous shift symmetry (unlike a discrete one)
prohibits any mass term (or potential) for the � field. As
was shown in [35], the U(1) fermion number is sponta-
neously broken, and the dual photon � is the associated
Goldstone particle. Thus, the � field remains massless
nonperturbatively, and linear confinement does not occur.
This is because domain lines become infinitely thick (infi-
nite range) in the absence of the dual photon mass. One
does need a nonvanishing dual photon mass to make the
domain line thickness of the order of m�1

� . Only then, at
distances � m�1

� linear confinement will set in.
As was noted in [38], this obstacle is circumvented if we

consider a three-dimensional model obtained as a low-
energy reduction of the four-dimensional model compac-
tified on S1 � R3. The adjoint Weyl fermion in four di-
mensions becomes an adjoint Dirac fermion in three
dimensions. In this case, there is no U(1) fermion number
symmetry. There is an anomalous U�1�A; because of the
anomaly only a discrete subgroup of U�1�A is a valid
symmetry. For SYM, the anomaly free subgroup is Z2N;A.
As stated earlier, the discrete shift symmetry does not
prohibit a mass term for the dual photon; hence, it must
be generated [38]. Whatever nonperturbative object is

responsible for the dual photon mass, it should have no
fermionic zero mode ‘‘attached.’’ Otherwise, it will gen-
erate vertices as in (35) which do not result in the bosonic
potential.

The microscopic origin of the mass term can be traced to
the compactness of the adjoint Higgs field whenever we
consider a theory on S1 � R3. This is the feature which is
absent in the Polyakov model [18] and its naive fermionic
extension [35]. When the adjoint Higgs field is compact as
in Fig. 1, in additional to N � 1 ’t Hooft–Polyakov mono-
pole instantons [whose existence is tied up to �1�S1� � 0]
there is one extra, which can be referred to as the Kaluza-
Klein (KK) monopole instanton.7 Each of these monopoles
carries two zero modes; hence, they cannot contribute to
the bosonic potential. The bound state of the ’t Hooft–
Polyakov monopole instanton with magnetic charge�i and
antimonopole with charge ��i�1 has no fermion zero
mode: in the sense of topological charge, it is indistin-
guishable from the perturbative vacuum. Hence, such a
bound state can contribute to the bosonic potential. If we
normalize the magnetic and topological charges of the
monopoles as

 

�Z
F;
Z
F ~F

�
�

�
�i;

1

N

�
; (37)

where �i stand for roots of the affine Lie algebra, then the
following bound states are relevant:

 

�
�i;

1

N

�
�

�
��i�1;�

1

N

�
� ��i ��i�1; 0�: (38)

This pair is stable, as was shown in Ref. [38], where it is
referred to as a magnetic bion. Thus, we can borrow
Polyakov’s discussion of magnetic monopoles and apply
directly to these objects. The magnetic bions will induce a
mass term for the dual photons via the Debye screening,
the essence Polyakov’s mechanism.

In the SU�N� gauge theory on R3 � S1, which is
Higgsed, SU�N� ! U�1�N�1, the bosonic part of the effec-
tive low-energy Lagrangian is generated by the pairs (38),
and hence the potential is proportional to e�2S0 , rather than

6Similar to the axion domain wall.

7The eigenvalues shown in Fig. 1 may be viewed as Euclidean
D2 branes. N split branes support a spontaneously broken U�1�N
gauge theory, whose U(1) center of mass decouples, and the
resulting theory is U�1�N�1. The N � 1 Bogomolny-Prasad-
Sommerfield monopoles may be viewed as the Euclidean D0
branes connecting eigenvalues �a1 ! a2�; �a2 !
a3�; . . . ; �aN�1 ! aN�. Clearly, we can also have a monopole
which connects �aN ! a1� which owes its existence to the
periodicity of the adjoint Higgs field, or equivalently, to the
fact that the underlying theory is on S1 � R3. Usually it is called
the KK monopole. The Euclidean D0 branes with the opposite
orientation, connecting �aj  aj�1�, j � 1; . . . ; :N are the anti-
monopoles. This viewpoint makes manifest the fact that the KK
and ’t Hooft–Polyakov monopoles are all on the same footing.
The magnetic and topological charges of the monopoles con-
necting �aj $ aj�1� is	��j;

1
N� where the direction of the arrow

is correlated with the sign of the charges.
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e�S0 in the Polyakov problem. If we introduce an �N �
1�-component vector �,

 � � ��1; . . . ; �N�1�; (39)

representing N � 1 dual photons of the U�1�N�1 theory,
and �i (i � 1; . . . ; N) are the simple and affine roots of the
SU�N� Lie algebra, the bosonic part of the effective
Lagrangian can be written as
 

L��1; . . . ; �N�1� �
g2

3

32�2 �@���
2

� cm5
Wg
�4
3 e�2S0

�
XN
i�1

cos��i ��i�1��; (40)

where c is an undetermined coefficient and g3 is the three-
dimensional coupling constant,

 g2
3 � g2L�1: (41)

We remind the reader that �i (i � 1; . . . ; N � 1) represent
the magnetic charges of �N � 1� types of the ’t Hooft–
Polyakov monopoles while the affine root

 � N � �
XN�1

i�1

�i (42)

is the magnetic charge of the KK monopole. Note that the
configurations that contribute to the effective Lagrangian
have magnetic charges�i � �i�1 and vertices ei��i��i�1�� ,
corresponding to a product of a monopole vertex ei��i with
charge �i, and antimonopole vertex e�i�i�1� with charge
��i�1. We used Eq. (28) to guarantee that the vacuum
configuration is ZN symmetric; hence the actions (fugac-
ities) e�2S0 are all equal.

Equation (40) implies that nonvanishing masses are
generated for all �, proportional to e�S0 , albeit much
smaller than the masses in the Polyakov model in which
they are �e�S0=2. There are N � 1 distinct U(1)’s in this
model, corresponding to N � 1 distinct electric charges.
These are the electric charges qi of all color components of
a probe nondynamical quark Qi (i � 1; . . . ; N) in the fun-
damental representation of SU�N�.8 Correspondingly, there
are N � 1 types of Abelian strings (domain lines). Their
tensions are equal to each other and proportional to e�S0 .
Linear confinement develops at distances larger than eS0 .

Needless to say, the physical spectrum in the Higgs/
Abelian confinement regime is much richer than that in
the non-Abelian confinement regime. If in the latter case
only color singlets act as asymptotic states, in the Abelian
confinement regime all systems that have vanishing N � 1
electric charges have finite mass and represent asymptotic
states.

VII. THERMAL COMPACTIFICATION

As was already mentioned, the requirement for planar
equivalence to hold is to have a vacuum with an unbroken
C conjugation symmetry. In the non-Abelian confinement
regime C parity is unbroken. In the Higgs regime this
depends on the choice of vk’s. The set (26) automatically
guarantees C parity. Now we abandon this choice and will
focus on the case ak � 0; � relevant to the thermal com-
pactification. The vacuum field ak � 0 or ak � � for all k
is not ZN symmetric while, as we already know, the non-
Abelian confinement regime is ZN symmetric. Hence, we
expect a phase transition at a deconfinement temperature
T.

When the temperature is high, namely T > T (the
deconfining phase), the Polyakov loop expectation value
in orienti-AS/S does not vanish; the minimal energy states
are C preserving vacua ak � 0 or ak � � for all k. If we
choose the same minima of the effective potential in the
high-temperature phase of the SYM theory, planar equiva-
lence will hold. Namely, the SYM theory and orienti-AS/S
will have the same Green functions, condensates, spectra,
etc. in the common sector.

Since all the eigenvalues of the Polyakov line coincide in
the high-temperature phase, say at ak � 0 for all k, the
high-temperature theory is not Higgsed. The would-be W
bosons remain massless. Its dynamics is that of the non-
Abelian theory, albeit three dimensional rather than four
dimensional. It is believed that the phase transition at T
separates the ZN symmetric phase from that with broken
ZN in pure Yang-Mills or SYM theory. The orientifold
theories seemed puzzling from this standpoint [8]. Now
we understand that the phase transition at T in orienti-AS/
S is quite similar: it separates the high-temperature phase
with no ZN center symmetry (at best, it is Z2 for even N
which is spontaneously broken) from the low-temperature
phase with emergent unbroken ZN.

The physical observables in the common sector of SYM
theory and orienti-AS/S must coincide throughout the
whole phase diagram, since charge conjugation symmetry
is unbroken in neither phase of the theory. This implies, in
particular, the phase transition temperatures must coincide,

 TSYM
 � Torienti-AS=S

 ; N !1: (43)

The same applies to the Polyakov order parameter. At N �
1,

 

�
1

N
TrU

�
SYM;orienti-AS=S

�

�
0; T < T
	1; T > T;

(44)

where the sign double-valuedness corresponds to two pos-
sible vacuum fields, ak � 0,8 k or ak � �,8 k. (In SYM
theory these two minima correspond to the ones invariant
under the naive C, where the comparison is straightfor-
ward.) In other words, the notions of high and low tem-
peratures, defined relatively to the deconfinement
transition temperature, must coincide in the two theories.8qi are subject to the condition

PN
i�1 qi � 0.
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Otherwise we would get an inconsistency among the com-
mon sector observables. This gives us a nontrivial dynami-
cal result, at finite N,

 TSYM
 � Torienti-AS=S



�
1�O

�
1

N

��
: (45)

This prediction of planar equivalence should be easily
testable on lattices.

VIII. CONCLUSIONS

The strong coupling dynamics of nonsupersymmetric
vectorlike gauge theories, despite many efforts over the
years, remains elusive. Currently, the nonperturbative
large-N equivalences provide deep hints into the structure
of the vectorlike gauge theories. One of the most profound
examples of the large-N equivalences is that between
N � 1 SYM theory and its orientifold daughters. The
parent and daughter theories are clearly distinct, with
different fundamental symmetries and dynamics. At the
Lagrangian level, SYM theory is supersymmetric and has
ZN center symmetry, while orienti theories are nonsuper-
symmetric and have at most a Z2 center.

However, the large-N equivalence tells us that these
theories become indistinguishable in their neutral sector
in the large-N limit. More specifically, it tells us that the
physical Hilbert spaces of these two theories in the C-even
subsectors coincide, their confinement-deconfinement
temperatures are identical, and the k-string tensions must
match.

Apparently, all these observables are associated with
certain symmetries which are explicit in the parent theory,
but not in the daughter ones. In the large-N limit the
correlators of the daughter theories carry benchmarks of
the custodial symmetries of its parent. We refer to such
symmetries, which are absent at the Lagrangian level but
appear dynamically in the neutral correlators, as emergent
symmetries. In orienti-AS, the ZN center symmetry and
supersymmetry (protecting the degeneracy of the bosonic
spectrum) are emergent symmetries in this sense.

At the level of the Schwinger-Dyson equations (or loop
equations), the equivalence is a consequence of the quan-
tum fluctuation suppression in the large-N limit. The (sup-
pressed) fluctuations are well aware of distinctions in the
parent/daughter theories, which have no place in the lead-
ing large-N dynamics. This is true for orienti-AS/S, as well
as for orbifold SU�N� � SU�N� Yang-Mills theory with
bifundamental quark (assuming unbroken Z2 interchange
symmetry). This is also valid for one-flavor QCD with
orthogonal and symplectic gauge groups with AS/S repre-
sentation fermions [39]. In our opinion, attempts to under-
stand such universal behavior (which is a natural
consequence of planar equivalence) may provide insights
into the strongly coupled regimes of QCD, and other
strongly coupled systems. This question is left for future
work.
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APPENDIX: ONE-LOOP POTENTIALS

The one-loop effective potentials for Polyakov lines in
the case of SYM theory and orienti-AS are
 

VSYM
eff �U� �

2

�2L4

X1
n�1

1

n4 ���1� an�jTrUnj2�VA
eff�U�

�
2

�2L4

X1
n�1

1

n4

�
�jTrUnj2

� an

�
�TrUn�2 � TrU2n

2
� c:c:

��
; (A1)

where the first terms are due to gauge boson (and ghosts),
and the second term is due to fermions endowed with spin
structure

 an �
�
��1�n for S�

1 for S�:
(A2)

In the large N limit, the single-trace term can be neglected
since it is suppressed by O�1=N� relative to the double-
trace terms. In terms of the simultaneous eigenstates of the
C and center symmetry,

 Tr �n
	 � TrUn 	 Tr�U�n; CTr�	 � 	Tr�	;

(A3)

the potential takes the form
 

VAS
eff ���;��� �

2

�2L4

X1
n�1

1

4n4 ���1� an�jTr�n
�j

2

� ��1� an�jTr�n
�j

2�: (A4)

The form of the one-loop potential in QCD(AS) is not
surprising. The first class of terms jTr�n

�j
2 is the images

of the jTrUj2. The second category is the square of the
twisted (non-neutral) C-odd operators, which are not the
image of any operator in the orienti partner. They do,
however, get induced via a one-loop Coleman-Weinberg
analysis. Whether or not the twisted operator Tr�� ac-
quires a vacuum expectation value and induces the sponta-
neous breaking of charge conjugation is correlated with the
spin structure S	 of fermions along the S1 circle. In
thermal case (S�), despite the presence of such operators,
C is unbroken at high temperature. In spatial compactifi-
cation (S�), C is broken at small S1. Regardless of spin
structure, C is preserved at large radius (either temporal or
spatial) continuously connected to R4.
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[9] P. Kovtun, M. Ünsal, and L. G. Yaffe, J. High Energy Phys.

06 (2007) 019.
[10] B. Lucini, M. Teper, and U. Wenger, J. High Energy Phys.

02 (2005) 033.
[11] B. Lucini, M. Teper, and U. Wenger, J. High Energy Phys.

06 (2004) 012.
[12] R. Narayanan and H. Neuberger, Phys. Rev. Lett. 91,

081601 (2003).
[13] R. Narayanan and H. Neuberger, arXiv:0710.0098.
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[25] M. Ünsal, Phys. Rev. D 76, 025015 (2007).
[26] T. J. Hollowood and A. Naqvi, J. High Energy Phys. 04

(2007) 087; see also [25].
[27] B. Sundborg, Nucl. Phys. B573, 349 (2000).
[28] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas,

and M. Van Raamsdonk, Adv. Theor. Math. Phys. 8, 603
(2004).

[29] C. Hoyos-Badajoz, B. Lucini, and A. Naqvi,
arXiv:0711.0659.

[30] B. Lucini and M. Teper, Phys. Rev. D 64, 105019 (2001).
[31] A. Armoni and B. Lucini, J. High Energy Phys. 06 (2006)

036.
[32] S. Kratochvila and P. de Forcrand, Nucl. Phys. B671, 103

(2003).
[33] A. Armoni and M. Shifman, Nucl. Phys. B671, 67 (2003).
[34] N. Seiberg and E. Witten, Nucl. Phys. B426, 19 (1994);

B430, 485 (1994).
[35] I. Affleck, J. A. Harvey, and E. Witten, Nucl. Phys. B206,

413 (1982).
[36] C. Callias, Commun. Math. Phys. 62, 213 (1978).
[37] R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).
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