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Creation of scalar massless particles in two-dimensional Minkowski space-time—as predicted by the
dynamical Casimir effect—is studied for the case of a semitransparent mirror initially at rest, then
accelerating for some finite time, along a trajectory that simulates a black hole collapse (defined by
Walker and Carlitz and Willey), and finally moving with constant velocity. When the reflection and
transmission coefficients are those in the model proposed by Barton, Calogeracos, and Nicolaevici
[r�!� � �i�=�!� i�� and s�!� � !=�!� i��, with � � 0], the Bogoliubov coefficients on the
backside of the mirror can be computed exactly. This allows us to prove that, when � is very large (as
in the case of an ideal, perfectly reflecting mirror) a thermal emission of scalar massless particles obeying
Bose-Einstein statistics is radiated from the mirror (a blackbody radiation), in accordance with results
previously obtained in the literature. However, when � is finite (semitransparent mirror, a physically
realistic situation) the striking result is obtained that the thermal emission of scalar massless particles
obeys Fermi-Dirac statistics. We also show here that the reverse change of statistics takes place in a
bidimensional fermionic model for massless particles, namely, that the Fermi-Dirac statistics for the
completely reflecting situation will turn into the Bose-Einstein statistics for a partially reflecting, physical
mirror.
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I. INTRODUCTION

The Davies-Fulling model [1,2] describes the creation of
scalar massless particles by a moving perfect mirror fol-
lowing a prescribed trajectory. This phenomenon is also
termed as the dynamical Casimir effect. Recently, the
authors of the present paper introduced a Hamiltonian
formulation in order to address some problems associated
with the physical description of this effect in the time
interval while the mirror is moving [3,4]; in particular, of
the regularization procedure, which turns out to be decisive
for the correct derivation of physically meaningful quanti-
ties. A basic difference with previous results was that the
motion force derived within the new approach contains a
reactive term—proportional to the mirror’s acceleration.
This term is of the essence in order to obtain particles with
a positive energy all the time while the oscillation of the
mirror takes place, and which always satisfy the energy
conservation law. Those results followed essentially from
the introduction of physically realistic conditions, e.g. a
semitransparent or partially transmitting mirror, which is
perfectly reflecting for low frequencies but becomes trans-
parent to very high ones.

Here we will study a different aspect of the introduction
of physically plausible, semitransparent mirrors, namely,
the particle spectrum produced—in the conditions of the
Fulling-Davies effect—by a mirror of this sort which is
initially at rest, then accelerates during a large enough (but

finite) time span, u0, along a trajectory that simulates a
black hole collapse, as defined by Walker [5] and Carlitz
and Willey [6]:

 v �
1

k
�1� e�ku� (1)

(in lightlike coordinates, where k is some frequency), and
finally, for u � u0, is left alone moving with constant
velocity in an inertial trajectory.

We will be interested in calculating the radiation emitted
by the mirror from its back (e.g. right) side. As is well
known, a perfect mirror that follows this kind of trajectory
produces a thermal emission of scalar massless particles
obeying Bose-Einstein statistics. More precisely, for 1�
!0=k� eku0 and 1� !0=!� eku0 , one has [7–9]

 j�R;R!;!0 j
2 � j��out	

!;R ;�in
!0;R�j

2 

1

2�!0k
�e2�!=k � 1��1:

(2)

Turning to the case of a partially reflecting mirror—in
which we will be mainly interested in this paper—in order
to obtain the radiation on its right-hand side, we also need
to calculate the Bogoliubov coefficient: �R;L!;!0 �
��out	

!;R ;�in
!0;L�

	.
We thus first obtain the ‘‘in’’ modes on the right-hand

side of the mirror when the reflection and transmission
coefficients are r�!� � �i�

!�i� and s�!� � !
!�i� , with � �

0, that is, when the Lagrangian density is given by [10–12]
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 L �
1

2
��@t��2 � �@z��2� � �

�������������������
1� _g2�t�

q
�2��z� g�t��;

(3)

where z � g�t� is the trajectory in the �t; z� coordinates.

A. The main results

We now state the main results that will be obtained in
this paper (for 1� !0=k� eku0 and 1� !0=!� eku0 ).

(1) For a perfectly reflecting mirror, i.e., when !0 � �,
we will see that

 j�R;R!;!0 j
2 


1

2�!0k
�e2�!=k � 1��1;

j�R;L!;!0 j
2 
 0;

(4)

namely, a thermal radiation of massless particles
obeying Bose-Einstein statistics is produced.

(2) For a perfectly transparent mirror, i.e., when � 
 0,
we will get that

 j�R;R!;!0 j
2 
 0; j�R;L!;!0 j

2 
 0: (5)

In other words, there is no particle production.
(3) In the physically more realistic case of a partially

transmitting mirror (transparent to high enough fre-
quencies [3]), i.e., when �� !0, what we obtain is

 j�R;R!;!0 j
2 


1

2�!k

�
�
!0

�
2
�e2�!=k � 1��1;

j�R;L!;!0 j
2 

1

!!0
O

��
�
!0

�
2
�
:

(6)

And, since j�R;L!;!0 j � j�
R;R
!;!0 j, we then conclude that

a semitransparent mirror emits a thermal radiation
of scalar massless particles obeying Fermi-Dirac
statistics.

Moreover, Eq. (6) does show that there are no ultraviolet
divergences when the mirror is semitransparent (in agree-
ment with previous conclusions in [3,4,13]) and, conse-
quently, the number of produced particles in the ! mode,
namely, N !, is finite. In fact, with good approximation we
have calculated that

 N ! 

1

2�!

�
�
k

�
2
�e2�!=k � 1��1: (7)

It must be here remarked that this phenomenon will in no
way occur for a perfectly reflecting mirror, where the
number of produced particles in a prescribed mode di-
verges linearly with time [8,9].

Actually, the same kind of effect—but now reversed—
occurs if a bidimensional fermionic model of massless
particles is considered, where in the perfectly reflecting
case the mirror emits a thermal radiation of fermions
obeying the Fermi-Dirac statistics. When the mirror be-
comes semitransparent (the physically realistic case), the
emitted thermal radiation will obey Bose-Einstein statis-

tics. We interpret these results as a proof of the fact that the
spectrum of the radiation produced by a mirror which
follows a trajectory that simulates black hole collapse
does not depend on the statistics of the field, being just
determined by the interaction of the mirror with the radia-
tion field. In our case this interaction is given by the
reflection and transmission coefficients which depend on
the parameter �, that determines the spectrum of the
emitted radiation.

Here it is important to emphasize that the word ‘‘statis-
tics’’ refers all the time to the �-Bogoliubov coefficient
characterizing the spectrum of the radiated particles and
not to the algebra obeyed by the creation and annihilation
operators, that always satisfy the corresponding canonical
commutation relations (anticommutation, in the fermionic
case). That is, e.g. in the second case studied the original
particles continue to be fermions, but the spectrum of the
radiated emission corresponds to bosonic ones, when the
mirror becomes physical, that is, semitransparent. As a
consequence, the fermionic number is not actually
violated.

Related phenomenons of a similar kind have been re-
ported to occur also in other situations:

(1) In the case of an electric charge following the tra-
jectory v � 1

k �1� e
�ku�. When the radiation field

has spin 1, the radiation emitted by the charge obeys
Bose-Einstein statistics, but when a scalar charge,
and consequently a scalar radiation field, is consid-
ered, the emitted radiation will obey Fermi-Dirac
statistics (see [14] for more details).

(2) When measuring the spectrum of a scalar field by
using a DeWitt detector which follows a uniformly
accelerated worldline in Minkowski space-time, one
can show that, when the dimension of the space-
time is even the Bose-Einstein statistics is obtained;
however, when this dimension is odd the reverse
change of statistics occurs (see [15] for further
details).

Finally, in an appendix we will specify some sufficient
conditions in order to ensure the convergence of the total
number of produced particles and of their associated
energy.

II. PERFECTLY REFLECTING, MOVING MIRROR

Consider a massless scalar field � in two-dimensional
Minkowski space-time interacting with a moving mirror.
Assume that the mirror trajectory simulates a black hole
collapse [2,16], this is, that it reduces to the following form
in the lightlike coordinates u � t� z and v � t� z:

 v � V�u� �

8<
:
u if u � 0
1
k �1� e

�ku� if 0 � u � u0

V�u0� � A�u� u0� if u � u0;
(8)

with A � e�ku0 , where k is a frequency and u0 � 1. Note
that this trajectory can also be written as follows:
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 u � U�v� �

8<
:
v if v � 0
� 1

k ln�1� kv� if 0 � v � v0

U�v0� � A
�1�v� v0� if v � v0:

(9)

For a perfectly reflecting mirror, the sets of in and ‘‘out’’
mode functions are [17]

 

8><
>:
�in
!;R�u; v� �

1����������
4�j!j
p �e�i!v � e�i!V�u����v� V�u��

�in
!;L�u; v� �

1����������
4�j!j
p �e�i!u � e�i!U�v����u�U�v��

(10)

and

 

8><
>:
�out
!;R�u; v� �

1����������
4�j!j
p �e�i!u � e�i!U�v����v� V�u��

�out
!;L�u; v� �

1����������
4�j!j
p �e�i!v � e�i!V�u����u�U�v��;

(11)

respectively. Our main objective in this section will be to
calculate the beta Bogoliubov coefficient

 �R;R!;!0 � ��
out	
!;R ;�in

!0;R�
	; with !;!0 > 0; (12)

where the brackets on the right-hand side denote the usual
product for scalar fields (see, e.g., Birrell-Davies [16]). In
order to compute this coefficient we choose the right null
future infinity domain, J�R . There, we have
 

�R;R!;!0 � 2i
Z
R
du�out

!;R@u�
in
!0;R

�
1

2�i
����������
!!0
p

!0

!�!0

�
1

2�i
����������
!!0
p e�i!u0e�i!

0V�u0�
!0A

!�!0A

�
1

2�k

������
!0

!

s Z 1�A

0
ds�1� s�i!=ke�i!

0=ks: (13)

Taking into account that 1� !0=k� A�1 and 1�
!0=k� A�1, we get with good approximation
 

�R;R!;!0 

1

2�i
����������
!!0
p �

1

2�k

������
!0

!

s

�
Z 1�A

0
ds�1� s�i!=ke�i!

0=ks: (14)

To obtain an explicit expression for the second term on the
right-hand side, we consider the domain
 

D � fz 2 CjRez 2 �0; 1� A�; Imz 2 ���; 0�;

with k=!0 � �� 1g (15)

and going through the same steps as in [9], we easily obtain

 �R;R!;!0 

1

2�i
����������
!!0
p e�i!

0=k
�
ik
!0

�
i!=k

��1� i!=k�: (16)

As a consequence, using that j��1� i!=k�j2 � �!=k
sinh��!=k�

(see [18]) we get the announced result, that for a perfect
reflecting mirror the relevant Bogoliubov coefficient is

 j�R;R!;!0 j
2 


1

2�!0k
�e2�!=k � 1��1: (17)

III. PARTIALLY REFLECTING, MOVING MIRROR

Now we start by reducing the problem to comoving
coordinates ��; 	�, that is, those for which the mirror
remains at rest, � being the proper time of the mirror,
and we take 	 such that its trajectory be given by 	 � 0.
Introducing the lightlike coordinates � �u; �v�, defined as

 

�u � �� 	; �v � �� 	; (18)

we will calculate the mirror’s trajectory in the coordinates
� �u; �v�. Along this trajectory, the length element obeys the
identity [19]

 d�2 � d �u2 � d �v2 � V 0�u�du2 � U0�v�dv2: (19)

An easy calculation yields then the relations

 �v � �u�u� �

8><
>:
u if u � 0
2
k �1� e

�ku=2� if 0 � u � u0

�u�u0� �
����
A
p
�u� u0� if u � u0

(20)

and

 �u � �v�v� �

8><>:
v if v � 0
2
k �1�

���������������
1� kv
p

� if 0 � v � v0

�v�v0� � A�1=2�v� v0� if v � v0:

(21)

When the semitransparent mirror is at rest, scattering is
described by the analytical S matrix (see [4,20] for full
details)

 S�!� �
s�!� r�!�e�2i!L

r�!�e2i!L s�!�

� �
; (22)

where x � L is the position of the mirror. The S matrix is
taken to be real in the temporal domain, causal, unitary,
and the identity at high frequencies [20], being r�!� and
s�!� the reflection and transmission functions, which are
analytic and such that tend in modulus to �1 and 0,
respectively, as !! 0 (to 0 and 1, as !! 1). The in
modes in the coordinates � �u; �v� are [10]
 

gin
!;R� �u; �v� �

1�������������
4�j!j

p s�!�e�i! �v�� �u� �v� �
1�������������

4�j!j
p

� �e�i! �v � r�!�e�i! �u��� �v� �u�; (23)
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gin
!;L� �u; �v� �

1�������������
4�j!j

p �e�i! �u � r�!�e�i! �v��� �u� �v�

�
1�������������

4�j!j
p s�!�e�i! �u�� �v� �u�: (24)

Note that the in modes in the coordinates �u; v�, namely,
�in, are defined in the right null past infinity J�R by

 �in
!;R �

1�������������
4�j!j

p e�i!v; �in
!;L � 0; (25)

and, in the left null past infinity J�L , by

 �in
!;R � 0; �in

!;L �
1�������������

4�j!j
p e�i!u: (26)

From these definitions it is clear that �gin
!;k�u; v� �

gin
!;k� �u�u�; �v�v�� with k � R, L are not such modes.

However, the modes �gin
!;k do actually constitute an ortho-

normal basis of the space of solutions of our problem. As a
consequence, if we use the fact that �gin

�!;k � �gin	
!;k, we can

obtain the following relation:

 �in
!;k �

Z
R
d!0
�!0�� �gin

!0;k;�
in
!;k� �g

in
!0;k; k � R;L

(27)

with 
�!0� the sign function. To be remarked is that
Eq. (27) is to be interpreted as follows:

 �in
!;k � lim

�!1

Z
R
d!0
�!0�� �gin

!0;k;�
in
!;k� �g

in
!0;kF��!

0�; (28)

being F��!0� a frequency cutoff, as for instance �2

�2��!0�2
.

To calculate the in modes explicitly, we have chosen the
coefficients r�!� � �i�

!�i� and s�!� � !
!�i� with � � 0. In

this case, on the right-hand side of the mirror we obtain

 �in
!;R�u; v� �

1�������������
4�j!j

p e�i!v ��refl
!;R�u�;

�in
!;L�u; v� � �trans

!;L �u�;

(29)

where

 �refl
!;R�u� �

8>>>>>>>><
>>>>>>>>:

1����������
4�j!j
p �i�

!�i� e
�i!V�u�; u � 0

1����������
4�j!j
p �i�

!�i� e
�� �u�u� � 2�

k
����������
4�j!j
p e�i�!=k�

R�k=2� �u�u�
0 dse�i!=k��s�1��k=2� �u�u��2e��2�s=k�; 0 � u � u0

1����������
4�j!j
p �i�

!�i� e
�� �u�u� � 1����������

4�j!j
p i����

A
p

!�i�
�e�i!V�u� � e�i!V�u0�e��� �u�u�� �u�u0���

� 2�

k
����������
4�j!j
p e�i�!=k�e��� �u�u�� �u�u0��

R�k=2� �u�u0�
0 dse�i!=4��s�1��k=2� �u�u0��

2
e��2�s=k�; u � u0

and

 �trans
!;L �u� �

8>>>>>>>><
>>>>>>>>:

1����������
4�j!j
p !

!�i� e
�i!V�u�; u � 0

1����������
4�j!j
p e�i!u � 1����������

4�j!j
p �i�

!�i� e
�� �u�u� � 2�

k
����������
4�j!j
p

R�k=2� �u�u�
0 ds�s� 1� �k=2� �u�u��2i�!=k�e��2�s=k�; 0 � u � u0

1����������
4�j!j
p �i�

!�i� e
�� �u�u� � 1����������

4�j!j
p e�i!u0

!�i�
���
A
p �!e�i�!=

���
A
p
�� �u�u�� �u�u0�� � i�

����
A
p

e��� �u�u�� �u�u0���

� 2�

k
����������
4�j!j
p e��� �u�u�� �u�u0��

R�k=2� �u�u0�
0 ds�s� 1� �k=2� �u�u0��

2i�!=k�e��2�s=k�; u � u0:

Note that (as already advanced) in the case of perfect
reflection, that is when �! 1, we get

 �refl
!;R�u� ! �

1�������������
4�j!j

p e�i!V�u�; �trans
!;L �u� ! 0; (30)

and when the mirror is transparent, i.e., when �! 0, we
have

 �refl
!;R�u� ! 0; �trans

!;L �u� !
1�������������

4�j!j
p e�i!u: (31)

We are interested in the particle production on the right-
hand side of the mirror; for this reason we must now obtain,
for !, !0 > 0

 �R;R!;!0 � ��
out	
!;R ;�in

!0;R�
	; and �R;L!;!0 � ��

out	
!;R ;�in

!0;L�
	:

(32)

In order to calculate these products we better choose the
right null infinity J�R , because here the out modes acquire
a simple form, namely,

 �R;R!;!0 � ��
out	
!;R ;�refl

!0;R�
	; and �R;L!;!0 � ��

out	
!;R ;�trans

!0;L�
	:

(33)

We start by calculating �R;R!;!0 � 2i
R
R du�

out
!;R@u�

refl
!0;R,

with the result
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�R;R!;!0 

1

2�
����������
!!0
p

�
!0 � i�

�

�
1�

�
k

Z 1

A
dxxi!=k�1=2e�2��1�

��
x
p
�=k
�

�
�

2�ki
����������
!!0
p e�i!

0=k
Z 1

A
dxxi!=k�1=2ei!

0x=k

�

�
1�

2�
k

Z 1�
��
x
p

0
ei!

0�s2�2s
��
x
p
�=ke�2�s=k

�
: (34)

Now, provided that !0 � �, Eq. (34) turns into Eq. (14).
As a consequence, we precisely obtain the same behavior
as for a perfectly reflecting mirror. However, in the case
�� !0,

 �R;R!;!0 

�

2�ki
����������
!!0
p e�i!

0=k
�
i
k
!0

�
i!=k�1=2

��1=2� i!=k�;

(35)

and using the identity j��1=2� i!=k�j2 � �
cosh��!=k� (see

[18]), we conclude that

 j�R;R!;!0 j
2 


1

2�k!

�
�
!0

�
2
�e2�!=k � 1��1: (36)

Finally, a simple but rather cumbersome calculation
yields the results

 j�R;L!;!0 j
2 
 0; !0 � �; (37)

and

 j�R;L!;!0 j
2 

1

!!0
O

��
�
!0

�
2
�
; �� !0: (38)

Note that in the case �� !0 we indeed obtain the nice
feature that the number of created particles in the ! mode,
together with the radiated energies, are both finite quanti-
ties when u0 ! 1, in perfect agreement with the conclu-
sions in [8]. More precisely, for a partially transmitting
mirror the number of produced particles in the ! mode

 N ! �
Z 1

0
d!0�j�R;R!;!0 j

2 � j�R;L!;!0 j
2�;

is approximately
R
1
0 d!

0j�R;R!;!0 j
2. In order to calculate this

quantity, we split the domain �0;1� into two disjoints sets,
�0; k� and �k;1�, respectively. In the second domain we can
carry out the approximation (36) to obtain

 

Z 1
k
d!0j�R;R!;!0 j

2 

1

2�!

�
�
k

�
2
�e2�!=k � 1��1: (39)

In the other domain, assuming that k� 1, we have !0 �
1 and thus for incident waves of very low frequency the
mirror behaves like a perfect reflector. For this reason we
can use the formula (14) and a simple calculation yields

 

Z k

0
d!0j�R;R!;!0 j

2 O

�
k2

!�!2 � k2�

�
: (40)

Thus, since k� 1, we conclude that the number of pro-
duced particles in the ! mode is approximately

 N ! 

1

2�!

�
�
k

�
2
�e2�!=k � 1��1; (41)

and the radiated energy E �
R
1
0 d!@!N ! is, also with

good approximation,

 E 

@�2

4�2k
ln2: (42)

This completes the proof of all of the statements above.
It is appropriate to remark that there is a crucial differ-

ence with the case !0 � �, where the number of radiated
particles in the!mode diverges logarithmically with u0 !
1. In this situation the physically relevant quantity is the
number of created particles in the ! mode per unit time
t0 �

1
2 �u0 � V�u0�� 


1
2u0. This dimensionless quantity is

finite and its value is given by [8,9]

 lim
t0!1

1

t0
N ! �

1

�
�e2�!=k � 1��1: (43)

Finally, it is also interesting to calculate the detector
response function [16], namely, F �!�, for an inertial
DeWitt detector following the trajectory z � 0. This func-
tion is given by

 F �!� �
Z
R
dt
Z
R
dt0e�i!�t�t

0�h0; inj��0; t���0; t0�j0; ini;

(44)

where j0; ini denotes the in vacuum state. This function is
related to the average number of produced particles in the
! mode, through the relation [5]

 F �!� �
�
!
N !: (45)

Then, for a partially transmitting mirror, from Eq. (41), we
conclude that

 F �!� 

1

2!2

�
�
k

�
2
�e2�!=k � 1��1: (46)

However, for a perfect reflecting mirror, this quantity
diverges. In this case the relevant function is the detector
response function per unit time [15], namely, P �!� �

limt0!1
1
t0
F �!�. Using (43), one then obtains the

Planckian spectrum

 P �!� �
1

!
�e2�!=k � 1��1: (47)

IV. CASE OF THE DIRAC FIELD

In this section we consider the Dirac equation, in 1� 1
dimensions, for a massless field

 �0@t � �1@x � 0; (48)
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where here the Dirac matrices are (see [21])

 �0 �
0 1
1 0

� �
�1 �

0 �1
1 0

� �
: (49)

In the variables �u; v�, Eq. (48) is

 

0 1
0 0

� �
@u �

0 0
1 0

� �
@v � 0; (50)

and we conclude that its general solution can be written as

  �u; v� �
F�u�
G�v�

� �
: (51)

Consider now again the trajectory defined in Sec. II. The
vector normal to the trajectory is n �

1

2
��������
V0�u�
p �V0�u�;�1�

and the current vector is given by j � 2�jGj2; jFj2�. Then,
for a perfectly reflecting mirror we must impose that the
normal component of the current vanishes on the mirror
([22,23]), that is, jn � 0, and thus the condition follows
that

 V 0�u�jGj2 � jFj2 � 0: (52)

From here we can calculate the corresponding family of in
and out modes

  in
!;R�u; v� �

�
1�������
2�
p

0
1

� �
e�i!v

�

�����������
V 0�u�
2�

s
1
0

� �
e�i!V�u�

�
��v� V�u��; (53)

  out
!;R�u; v� �

�
1�������
2�
p

1
0

� �
e�i!u

�

������������
U0�v�

2�

s
1
0

� �
e�i!U�v�

�
��v� V�u��: (54)

In this case the beta Bogoliubov coefficient is given by

 �R;R!;!0 � � 
out	
!;R ; in

!0;R�
	 �

Z
� out

!;R�
t in

!0;R; (55)

where � out
!;R�

t denotes the transposed of the vector  out
!;R.

Performing the calculation in the right null future infin-
ity domain, J�R , we obtain

 �R;R!;!0 

1

2�i!0
�

1

2�k

Z 1�A

0
ds�1� s�i!=k�1=2e�i!

0s=k:

(56)

Then, as in [9], we easily get

 �R;R!;!0 

1

2�k
e�i!

0=k
�
ik
!0

�
i!=k�1=2

��1=2� i!=k�; (57)

and thus, since j��1=2� i!=k�j2 � �
cosh��!=k� (see [18]),

we finally arrive to the anticipated result that

 j�R;R!;!0 j
2 ’

1

2�!0k
�e2�!=k � 1��1: (58)

A. Partially reflecting, moving mirror

We start with the two orthonormal basis

  1;!�v� �
1�������
2�
p

0
1

� � �����������
�v0�v�

p
e�i! �v�v�;

 2;!�u� �
1�������
2�
p

1
0

� � �����������
�u0�u�

p
e�i! �u�u�;

(59)

where the functions �v and �u are defined in Sec. III. The
normal component of the mirror’s current given by each of
these two functions are 1

2� and � 1
2� , respectively.

It is interesting to observe the analogy between the
fermionic and the scalar cases. Note that the current for a
scalar field is

 j � i��@t�	 ��	@t�;��@x�	 ��	@x��; (60)

and if we choose the orthonormal basis

 �1;!�v� �
1�����������

4�!
p e�i! �v�v�;

�2;!�u� �
1�����������

4�!
p e�i! �u�u�;

(61)

we obtain the same normal component of the current as for
the respective fermionic function. We can establish the
following analogy:

  j;! $ �j;!; (62)

and using this analogy we can construct the �gin modes in
the fermionic case as follows: simply replace in formulas
(23) and (24) the functions �j;! with the functions  j;!, to
obtain
 

�gin
!;R�u; v� �

1�������
2�
p s�!�

0

1

 ! �����������
�v0�v�

p
e�i! �v�v���u�U�v��

�
1�������
2�
p

� 0

1

 ! �����������
�v0�v�

p
e�i! �v�v�

� r�!�
1

0

 ! �����������
�u0�u�

p
e�i! �u�u�

�
��v� V�u��

(63)

and
 

�gin
!;L�u; v� �

1�������
2�
p

� 1

0

 ! �����������
�u0�u�

p
e�i! �u�u� � r�!�

0

1

 !

�
�����������
�v0�v�

p
e�i! �v�v�

�
��u�U�v��

�
1�������
2�
p s�!�

1

0

 ! �����������
�u0�u�

p
e�i! �u�u���u�U�v��:

(64)
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As in the scalar case, the modes �gin are not the in modes in
the coordinates �u; v�. However, using the fact that the
modes �gin constitute an orthonormal basis of the space of
solutions, we can obtain the following expression of the in
modes:

  in
!;k �

Z
R
d!0� �gin

!0;k; 
in
!;k� �g

in
!0;k: (65)

If we choose the coefficients r�!� � �i�
!�i� and s�!� �

!
!�i� , with � � 0, on the right side of the mirror we have

  in
!;R�u; v� �

1�������
2�
p

0
1

� �
e�i!v �  refl

!;R�u�;

 in
!;L�u; v� �  trans

!;L �u�;

(66)

where

  refl
!;R�u� �

1�������
2�
p

1
0

� �
8>>>>>>>>>>><>>>>>>>>>>>:

�i�
��������
V0�u�
p

!�i� e�i!V�u�; u� 0
�i�

��������
�u0�u�
p

!�i� e�� �u�u�

�
2�e�i�!=k�

��������
�u0�u�
p

k

R�k=2� �u�u�
0 ds

�����������������������������
s� 1� k

2 �u�u�
q

e�i!=k��s�1��k=2� �u�u��2e��2�s=k�; 0� u� u0

�i�
��������
�u0�u�
p

!�i� e�� �u�u� �
i�

��������
V0�u�
p���
A
p

!�i�
�e�i!V�u� � e�i!V�u0�e��� �u�u�� �u�u0���

�
2�e�i�!=k�

��������
�u0�u�
p

e��� �u�u�� �u�u0��

k

R�k=2� �u�u0�
0 ds

�������������������������������
s� 1� k

2 �u�u0�
q

e�i!=k��s�1��k=2� �u�u0��
2
e��2�s=k�; u� u0

and

  trans
!;L �u� �

1�������
2�
p

1
0

� �
8>>>>>>>>>>><>>>>>>>>>>>:

!
��������
V0�u�
p

!�i� e�i!V�u�; u � 0
�i�

��������
�u0�u�
p

!�i� e�� �u�u� � e�i!u

�
2�

��������
�u0�u�
p

k

R�k=2� �u�u�
0 ds�s� 1� k

2 �u�u��2i!=k�1=2e�2�s=k; 0 � u � u0

�i�
��������
�u0�u�
p

!�i� e�� �u�u� � e�i!u0

!�i�
���
A
p �!e�i�!=

���
A
p
�� �u�u�� �u�u0�� � i�

����
A
p

e��
���
A
p
� �u�u�� �u�u0���

�
2�

��������
�u0�u�
p

k e��� �u�u�� �u�u0��
R�k=2� �u�u0�

0 ds�s� 1� k
2 �u�u0��

2i!=k�1=2e�2�s=k u � u0:

Note that in the case of perfect reflection, that is, when
�! 1, we have

  refl
!;R�u� ! �

�����������
V0�u�
2�

s
1
0

� �
e�i!V�u�;  trans

!;L �u� ! 0;

(67)

and when the mirror is transparent, i.e., when �! 0, it
turns out that

  refl
!;R�u� ! 0;  trans

!;L �u� !
1�������
2�
p

1
0

� �
e�i!u: (68)

To calculate the production of particles on the right-hand
side of the mirror we must obtain �R;R!;!0 � � 

out	
!;R ; in

!0;R�
	

and �R;L!;!0 � � 
out	
!;R ; in

!0;L�
	. We start by calculating �R;R!;!0 .

Choosing the right null infinity region J�R , we have
�R;R!;!0 �

R
R� 

out
!;R�

t refl
!0;Rdu, then, for 1� !0=k� eku0

and 1� !0=!� eku0 , we get
 

�R;R!;!0 

1

2�
�

!0 � i�
1

!�!0
�
�e�i!

0=k

k2�

Z 1

A
dxxi!=k�3=4

�
Z �1� ��

x
p
�

0
ds

���������������
s�

���
x
pq
e�i!

0=k��s�
��
x
p
�2e�2�s=k: (69)

Integrating by parts with respect to the s variable, we
obtain

 �R;R!;!0 
 �
�

2�i!k

�
ik
!0

�
i!=k�1

��1� i!=k�; (70)

and thus, in the case of a partially reflecting mirror, it turns
out that

 j�R;R!;!0 j
2 


1

2�!k

�
�
!0

�
2
�e2�!=k � 1��1: (71)

Finally, a simple but rather cumbersome calculation yields
the result we were looking for

 j�R;L!;!0 j
2 

1

!!0
O

��
�
!0

�
2
�
: (72)

V. CONCLUSIONS

In this paper we have studied in detail the creation of
scalar massless particles in a two-dimensional Minkowski
space-time (the Davies-Fulling theory) and specifically for
the case of a semitransparent mirror, which reflects low
frequency modes but is transparent to high enough fre-
quencies, being the reflection and transmission coefficients
analytic functions of the frequency. The considered mirror
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is initially at rest, then accelerates, during some finite time,
along a trajectory that simulates a black hole collapse (as
defined by Walker [5] and Carlitz and Willey [6]), and
finally rests moving with constant velocity.

When the reflection and transmission coefficients are
those in the model proposed by Barton, Calogeracos, and
Nicolaevici [10–12], namely, r�!� � �i�=�!� i�� and
s�!� � !=�!� i��, with � � 0, the Bogoliubov coeffi-
cients on the back side of the mirror could be computed
exactly. This has allowed us to rigorously prove that, when
� is very large (the case of an ideal, perfectly reflecting
mirror) a thermal emission of scalar massless particles
obeying Bose-Einstein statistics is radiated from the mirror
(a blackbody radiation), in accordance with previous re-
sults in the literature. Moreover, we have also seen that
when � is finite (the case of a semitransparent mirror, that
is, a physically realistic situation) the surprising result is
obtained that the thermal emission of scalar massless par-
ticles obeys Fermi-Dirac statistics. We have also shown in
detail that the reverse change of statistics takes place in a
bidimensional fermionic model for massless particles,
namely, that the Fermi-Dirac statistics for the completely
reflecting situation gives rise to the Bose-Einstein statistics
for the case of a semitransparent, physical mirror.

The results we have obtained are absolutely solid—they
do not hang on a perturbative expansion or approximation
of any sort. The physical reason for this surprising change
of statistics may be found in the fact that the form of the
spectrum is actually determined not through the statistics
of the field but rather by the specific trajectory of the mirror
and by its interaction with the radiation field. The same
kind of phenomenon occurs in the case of an electric
charge following the trajectory v � 1

k �1� e
�ku�. When

the radiation field has spin 1, the radiation emitted by the
charge obeys Bose-Einstein statistics, but when a scalar
charge, and consequently a scalar radiation field, is con-
sidered, the emitted radiation will obey Fermi-Dirac sta-
tistics [14].

Another situation where this kind of features occurs is
when one measures the spectrum of a scalar field using a
DeWitt detector [16,17] which follows a uniformly accel-
erated worldline in Minkowski space-time. In this case
when the dimension of the space-time is even the Bose-
Einstein statistic is obtained. However, when the dimen-
sion is odd, precisely the reverse change of statistics occurs
in the emitted radiation [15,24–26].
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APPENDIX

We will here derive in detail the total number of pro-
duced particles and their energy. First, we start with the
case of a perfectly reflecting mirror. Assuming that the
mirror’s velocity converges fast enough to some constant,
when juj ! 1, we have

 �R;R!;!0 �
1

2�

������
!
!0

r Z
R
due�i!ue�i!

0V�u� (A1)

and, integrating by parts, we get
 

�R;R!;!0 � �
1

2�i

����������
!!0
p Z

R
du

V 00�u�

�!�!0V 0�u��2

� e�i!ue�i!
0V�u�: (A2)

For simplicity, we will assume that the mirror’s accelera-
tion is discontinuous at the point u � a. After another
integration by parts, we obtain
 

�R;R!;!0 � �
1

2�

����������
!!0
p 1

�!�!0V0�a��3

� e�i!ae�i!
0V�a��V 00�a�� � V 00�a���

�
1

2�

����������
!!0
p Z

R
du
�

V 000�u�

�!�!0V0�u��3

�
3!0�V 00�u��2

�!�!0V0�u��4

�
e�i!ue�i!

0V�u�: (A3)

From this expression, if we further assume that the mirror’s
trajectory is asymptotically inertial, that is V 0�u�> 0,
8 u 2 R (see for example [5]), it also follows that
j�R;R!;!0 j

2 and @!j�R;R!;!0 j
2 are integrable functions in the

domain �0;1�2 n �0; 1�2.
Now, we are interested in the production of particles in

the infrared domain, that is, we want to calculate j�R;R!;!0 j
2

in �0; 1�2. We write the Bogoliubov coefficient as follows:

 �R;R!;!0 �
1

2�

������
!
!0

r Z
R
due�i�!�B!

0�ue�i!
0�V�u��Bu�; (A4)

with B> 0. After integration by parts, we obtain

 �R;R!;!0 � �
1

2�

����������
!!0
p

!� B!0
Z
R
du�V 0�u� � B�e�i!ue�i!

0V�u�;

(A5)

and thus, if the function jV 0�u� � Bj is integrable in R for
someB> 0, it can be deduced that j�R;R!;!0 j

2 and @!j�R;R!;!0 j
2

are integrable functions in the domain �0; 1�2.
An example of this kind of trajectory is

 V�u� �

8><>:
Bu u � 0
V�u� 0 � u � u0

V�u0� � B�u� u0� u � u0:
(A6)

However, if we are only interested in the convergence of
the function @!j�R;R!;!0 j

2 in the domain �0; 1�2, we only need
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trajectories that satisfy
 Z 0

�1
dujV0�u� � B1j<1 and

Z 1
0
dujV 0�u� �B2j<1

(A7)

for some nonnegative constants B1 and B2 (here it is
important to remark that one of these constants can be
zero, that is, it is not worthwhile that the trajectory be
asymptotically inertial). To prove that statement, we write
 

�R;R!;!0 �
1

2�

������
!
!0

r �Z 0

�1
due�i�!�B1!0�ue�i!

0�V�u��B1u�

�
Z 1

0
due�i�!�B2!0�ue�i!

0�V�u��B2u�
�
; (A8)

and assume, for simplicity, that V�0� � 0. After integration
by parts, we get the expression
 

�R;R!;!0 ��
1

2�

����������
!!0
p B1�B2

�!�B1!
0��!�B2!

0�

�
1

2�

����������
!!0
p

!�B1!0
Z 0

�1
du�V0�u��B1�e�i!ue�i!

0V�u�

�
1

2�

����������
!!0
p

!�B2!0
Z 1

0
du�V 0�u��B2�

�e�i!ue�i!
0V�u�; (A9)

which already proves the assertion.

In conclusion, we have here demonstrated that, for
asymptotically inertial trajectories with continuous veloc-
ity, the radiated energy is indeed finite. However, it is also
possible that an infinite production of particles with very
low frequency could take place (an infrared divergence).
To remove this divergence we must just assume that the
initial and the final mirror velocities are the same.

For completeness, we should comment on the very
interesting process of particle creation, for the case of
partially transmitting mirrors. In this situation, at high
enough frequency the mirror behaves as transparent, and
then there is no particle production, with independence of
the mirror’s trajectory. On the other hand, at very low
frequencies the mirror behaves as a perfect reflector, and
then we have the same kind of infrared problems as for the
perfectly reflecting case. As a consequence, if we are only
interested in the case when the radiated energy is finite, we
must restrict ourselves to consider trajectories with a con-
tinuous velocity V 0�u�, 8 u 2 R, which fulfill the condi-
tion (A7) as, for instance, the nonasymptotically inertial
trajectory:

 v � V�u� �
�
u if u � 0
1
k �1� e

�ku� if u � 0:
(A10)

This case can be discussed along the same lines as above.
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