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We calculate Lorentz-invariant and gauge-invariant quantities characterizing the productP
aDR�T

a�Fa��, where DR�T
a� denotes the matrix for the generator Ta in the representation R �

fundamental and adjoint, for color SU(3). We also present analogous results for an SU(2) gauge theory.
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I. INTRODUCTION

Although the properties and interactions of quarks and
gluons require for their description a quantum field theory,
quantum chromodynamics (QCD), it has proved useful to
consider the semiclassical limit of this theory in certain
cases. For example, successful models of high-energy
particle production and hadronization have made use of a
non-Abelian Yang-Mills generalization of the Schwinger
mechanism [1,2] in which the chromoelectric field inside a
flux tube between an initial quark-antiquark pair is respon-
sible for subsequent nonperturbative production of q �q pairs
and hadronization [3–7]. The Schwinger calculation itself
described the nonperturbative production of a charged
fermion-antifermion pair by a constant classical electric
field, the result of which can also be obtained from the
imaginary part of the Euler-Heisenberg effective action
[2]. The semiclassical limit of chromoelectric fields has
also been used in certain models of relativistic heavy ion
collisions [8–11]. For the case of a classical SU(3) gauge
field that is constant in space and time and is such that the
chromomagnetic field vanishes and all group components
of the chromoelectric field point in the same direction (e.g.,
Ea � Eaẑ8a), general formulas for the nonperturbative
production of gluon pairs gg and q �q pairs have recently
been given [12,13].

Proceeding from the special case of static, spatially
constant classical fields to the general case of spacetime-
dependent classical fields, one recalls that Euclidean solu-
tions of classical non-Abelian gauge theories with non-
trivial topological index, i.e., instantons, have played an
important role in understanding the properties of these
theories [14–17]. In particular, analyses of semiclassical
effects due to instantons have shown that, in the case of
weak SU�2�L, these lead to nonperturbative violation of B
and L (conserving B� L) [15] and may be significant for
baryogenesis at the electroweak phase transition [18],
while in the color SU(3) case, these analyses of instanton
effects have explained, among other things, the breaking of
the global axial vector isoscalar U�1�A symmetry and hence
the fact that the �0 meson is not an almost Nambu-
Goldstone boson [19]. Classical solutions have also been
relevant for classification of Yang-Mills theories (mainly in
the SU(2) case) [20–22].

Given this importance of semiclassical color fields, it
seems useful to have a set of gauge-invariant quantities that
characterize these fields. Accordingly, in this paper, we
present such a set. We consider an SU�N� gauge theory,
concentrating on the case of color, N � Nc � 3, but also
giving some results for the simpler case N � 2. We calcu-
late certain gauge-invariant and Lorentz-invariant quanti-
ties that characterize the product

 �F R��� �
X
a

DR�T
a�Fa��; (1.1)

where DR�Ta� denotes the matrix for the generator Ta �
Ta of SU�N� in the representation R, a sum over the group
index a from 1 to N2 � 1 is understood, and we consider
the case of R being the fundamental and adjoint represen-
tation. The dimension of the representation R is denoted
dR. We recall that for the fundamental representation,
�Dfund�T

a��ij � �T
a�ij, 1 � i, j � N and for the adjoint,

�Dadj�T
a��bc � �icabc, 1 � a, b, c � N2 � 1, where the

structure constants cabc of the SU�N� Lie algebra are
defined via �Ta; Tb� � icabcTc with normalization deter-
mined by the standard condition Tr�TaTb� � �1=2��ab. We
also recall the relation, for SU�N�, fTa; Tbg � �1=N��ab 	
1N
N � dabcTc. The field strength tensor is Fa�� �
@�Aa� � @�Aa� � gcabcAb�Ac�, where g is the gauge cou-
pling (taken positive without loss of generality).

One may contrast the way in which the results of calcu-
lations are expressed in terms of gauge-invariant quantities
in classical and quantum field theory. In perturbative quan-
tum field theory calculations involving internal gauge bo-
son lines, this entails the cancellation of the associated
gauge parameter between different Feynman diagrams
contributing to the amplitude for a given process. In a
nonperturbative quantum field theory calculation of some
gauge-invariant operator O, one actually performs the
average over the gauge fields in the path integral, e.g., in
the widely used lattice gauge theory formulation,

 hOi �

R
�
Q
n;�
dUn;�d nd � n�Oe

�S

R
�
Q
n;�
dUn;�d nd � n�e�S

; (1.2)

where S denotes the (Euclidean) action and both the mea-
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sure and action are gauge invariant. For example, in pure
gluodynamics with a Euclidean action S �
��

P
plaq:�1=N�Re�Trf�Uplaq:�� where Trf is the trace in

the fundamental representation, Uplaq: denotes the product
of U0s around a plaquette, and � � 2N=g2

0, a strong-
coupling expansion of a glueball mass would be conven-
iently expressed in a series in � or, equivalently, as a
character expansion. The situation in a (semi)classical
gauge theory calculation is different from either of these
types of calculations in quantum field theory, since it
depends directly on the field strengths. This was already
evident from the Schwinger calculation of the production
of a fermion-antifermion pair by an electric field E that is
constant in space and time, namely,

 

dW

d4x
�
�qeE�2

4�2

X1
n�1

n�2e�n�m
2=�jqjeE�; (1.3)

where q denotes the charge of the fermion. We recall how
this is expressed in terms of Lorentz-invariant and gauge-
invariant quantities. In this Abelian case the field strength
tensor F�� � @�A� � @�A� itself is gauge invariant, in
contrast to the non-Abelian case. Particle production oc-
curs only if jEj> jBj, and in this case one can transform to
an inertial frame in which the magnetic field is zero,
whence the result in Eq. (1.3).

This calculation was generalized recently to the non-
Abelian color group SU�3�c in the special case in which
(i) there is only a chromoelectric field, Ea, i.e., the chro-
momagnetic field Ba � 0, (ii) Ea is a constant in space and
time, and (iii) all of the group components of Ea point
along the same spatial direction. In this case the production
rates for gluon pairs gg and quark-antiquark pairs q �q
[12,13] were calculated. For example, for q �q it was found
that

 

dWq �q

d4xd2pT
� �

1

4�3

X3

j�1

jg�q;jj ln�1� e���p
2
T�m

2�=jg�q;jj�;

(1.4)

where pT denotes the momentum of the quark transverse to
the direction of the chromoelectric field Ea � Eaẑ and
where the �q;j depends on two gauge-invariant, Lorentz-
invariant quantities

 C1 �
X
a

�Ea�2 (1.5)

and

 C2 �

�X
a;b;c

dabcE
aEbEc

�
2
; (1.6)

where the sums of SU�3�c group indices a, b, c are from 1
to 8. Integration over pT yields

 

dWq �q

d4x
�

1

4�2

X3

j�1

�g�q;j�2
X1
n�1

n�2e�n�m
2
q=jg�q;jj: (1.7)

As was noted by Schwinger [1], it is necessary to take
account of the renormalization of the gauge coupling in the
presence of a constant electric field, and the same is true for
the non-Abelian case. Thus, strictly speaking, where we
write e or g, these refer to running couplings, which run as
a function of (invariants of) the respective gauge fields.

II. GENERALITIES ON QUANTITIES
CHARACTERIZING �FR���

We now proceed to analyze the general case where both
a non-Abelian electric and magnetic field are present and
where neither is a constant in space or time. Under a (local)
SU�N� gauge transformation generated by the unitary ma-
trix U,

 �F R��� ! DR�U��F R���DR�U��1; (2.1)

where DR�U�1� � �DR�U���1. �F R��� is a matrix (of
dimension dR 
 dR) in group space. Given that �F R���
transforms as in Eq. (2.1), it follows that the characteristic
polynomial equation for �F R��� is invariant under a gauge
transformation, and hence so are its roots, the eigenvalues.

Since we will carry out various matrix manipulations
with the field strength tensor, it will be convenient to use
the pseudo-Euclidean metric, in which there is no distinc-
tion between covariant and contravariant indices. In this
case, with the ordering of the indices given by x� � �x; it�,
the field strength tensor takes the form

 Fa�� �

0 Ba3 �Ba2 �iEa1
�Ba3 0 Ba1 �iEa2
Ba2 �Ba1 0 �iEa3
iEa1 iEa2 iEa3 0

2
6664

3
7775 (2.2)

for a � 1; . . . ; N2 � 1. The dual field strength tensor is
then ~Fa�� � �i=2����	
F	
, where ���	
 is totally anti-
symmetric, with �1234 � 1. For each group index a, Fa��
changes via a similarity transformation under a (homoge-
neous) Lorentz transformation U, viz.,

 Fa !UFaU�1 (2.3)

in a notation suppressing explicit Lorentz indices.
Therefore, the characteristic polynomial equation for this
matrix, and its roots, are Lorentz invariant. For an individ-
ual a, these eigenvalues are not gauge invariant, but they
will be useful at intermediate steps in our calculation of the
gauge-invariant quantities characterizing �F R���. The ei-
genvalues are determined from the characteristic polyno-
mial equation

 det�Fa � � 	 1� � 0; (2.4)

where here 1 is the 4
 4 identity matrix. We use the
following relations, which hold individually for each group
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index a:

 Tr Lor:��Fa�2� � Fa��Fa�� � 2�jEaj2 � jBaj2� (2.5)

and

 Tr Lor:��Fa�4� � Fa��Fa�	Fa	
Fa
�

� 2�jEaj2 � jBaj2�2 � 4�Ea 	 Ba�2: (2.6)

(Note also that TrLor:�F
a ~Fa� � F�� ~F�� � �4Ea 	Ba.)

With these inputs, the characteristic polynomial equation
takes the form, for each a,

 ��a�4 � �jEaj2 � jBaj2���a�2 � �Ea 	Ba�2 � 0: (2.7)

The solutions are

 �a1 � ��
a
3 �

�����
xa1

p
; (2.8)

 �a2 � ��
a
4 �

�����
xa2

p
; (2.9)

where
 

xa1;2 �
1
2�jE

aj2 � jBaj2 � ��jEaj2 � jBaj2�2

� 4�Ea 	Ba�2�1=2�

� 1
4�F

a
��Fa�� � ��Fa��Fa���2 � �Fa�� ~Fa���2�1=2�: (2.10)

Although a parity or time reversal transformation flips the
sign of Fa�� ~Fa��, it leaves the xa1;2 invariant since they
depend on Fa�� ~Fa�� only via its square.

For the general SU�N� case we define

 Ck1 �
X
a

��ak�
2 (2.11)

and

 Ck2 �

�X
a;b;c

dabc�
a
k�

b
k�

c
k

�
2
; (2.12)

where the sums over the SU�N� group indices run over
a; b; c � 1; . . . ; N2 � 1, and

 rk �
3Ck2

�Ck1�
3 : (2.13)

These quantities will be used below.

III. INVARIANTS FOR �FR���: GENERAL
METHOD FOR SU�N�

We next use these Lorentz-invariant eigenvalues �ak to
calculate the gauge-invariant quantities characterizing
�F R���. For a dR 
 dR dimensional matrix A in group

space we denote TrR�A� �
PdR
i�1 Aii. Taking the trace

over group indices and Lorentz indices, we have

 

TrR�TrLor:h�F R�� �
X4

k�1

TrRfh�Ta�ak�g

�
X4

k�1

TrR�h�Vk��

�
X4

k�1

XdR
‘�1

h��k‘�; (3.1)

where �k‘ for ‘ � 1; . . . ; dR are the eigenvalues of

 �Vk�ij �
X
a

�DR�T
a��ij�

a
k; 1 � i; j � dR (3.2)

for each k. To find the gauge-invariant and Lorentz-
invariant quantities characterizing �F R���, one can evalu-

ate the group traces of the set of matrices Vk; V2
k ; . . . ; VdRk .

IV. INVARIANTS FOR �F I��� FOR SU(2)

We label the representations of SU(2) by an isospin, T,
taking on integral or half-integral values. The single di-
agonal generator has the form T3 � diag��I;�I �
1; . . . ; I � 1; I�, so that the components of a representation
are jI; I3i satisfying T2jI; I3i � I�I � 1�jI; I3i and
T3jI; I3i � I3jI; I3i. Applying our procedure, we find that
for this theory,

P
aDI�Ta�Fa�� is characterized by the in-

variants

 �k‘ � I‘Ck1; (4.1)

where I‘ � I3, with Ck1 evaluated for N � 2 in Eq. (2.11).
�k‘ does not depend on Ck2 since dabc � 0 for SU(2).

V. INVARIANTS FOR �F f ��� IN SU�3�c

We first consider a function h that has a Taylor series
expansion in powers of ��F �R���; we then apply this for
the case where R is the fundamental (f) representation of
SU�3�c, for which we need the traces over group indices of
Vk, V2

k , and V3
k . We find, for each k,

 

X3

‘�1

�k‘ � 0; (5.1)

 

X3

‘�1

��k‘�
2 �

1

2

X
a

��ak�
2; (5.2)

 

X3

‘�1

��k‘�
3 �

1

4

X
a;b;c

dabc�ak�
b
k�

c
k: (5.3)

For a particular k, the solution of the above equations is as
follows:

 �k‘ �

��������
Ck1

3

s
cos

�
�k �

2�‘� 1��
3

�
; ‘ � 1; 2; 3;

(5.4)
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where �k is given by

 cos 2�3�k� � rk (5.5)

and here Ck1 and Ck2 are given by Eqs. (2.11) and (2.12)
evaluated for N � 3, and rk by Eq. (2.13). (Note that 0 �
3Ck2=C

3
k1 � 1.) Because of the symmetries �a1 � ��

a
3 and

�a2 � ��
a
4 , there are thus 4 independent invariants here,

which can be taken to be Ck1 and Ck2 for k � 1, 2. For the
case of identically zero chromomagnetic field, Ba � 08a,
C21 � C22 � 0, while C11 and C12 reduce to the quantities
denoted C1 and C2 in Eqs. (1.5) and (1.6).

VI. INVARIANTS FOR �F adj���

We next calculate the invariants for �F adj��� using the
relation �Dadj�T

a��bc � �icabc. Again, we focus on the
case of color, N � 3, setting cabc � fabc, and first evaluate
the determinant

 Det �fabc�ak ���bc� � �2��6 �Ak�
4 �Bk�

2 � Ck�

� �2�3
‘�1��� i�k‘���� i�k‘�:

(6.1)

Since fabc�ck�
a
k � 0, it follows that �ak is an eigenvector of

the matrix �Vk�ab � fabc�ck with zero eigenvalue. Since for
N � 3, Vabk � fabc�ck is an even-dimensional real antisym-
metric matrix, its eigenvalues (i) are comprised of
opposite-sign pairs, and (ii) are pure imaginary (so the
eigenvalues of �ifabc�ck, which are the �k‘, are real),
whence
 

�Dadj�Ta�bc�ck�eigenvalues � ��k1;�k2;�k3; 0;��k1;

��k2;��k3; 0�: (6.2)

The coefficients Ak;n of �n in Eq. (6.1) are Ak;8 � 1 and

 A k �
3
2C1k; (6.3)

 B k �
9
16C

2
1k; (6.4)

and

 C k �
C3

1k

16
�1� rk�: (6.5)

From Eq. (6.1) we find

 

X3

‘�1

�2
k‘ �Ak; (6.6)

 �2
k1�2

k2 ��2
k2�2

k3 ��2
k3�2

k1 � Bk; (6.7)

and

 �2
k1�2

k2�2
k3 � Ck: (6.8)

We define

 cos�3�k� � 2rk � 1: (6.9)

The solution of these three equations is

 �k‘ �

�
Ck1

2

�
cos

�
�k �

2�‘� 1��
3

���
1=2

(6.10)

for ‘ � 1, 2, 3. Again, owing to the symmetries (2.8) and
(2.9), these eigenvalues depend on four functionally inde-
pendent invariants, which may be taken to be Ck1 and Ck2

for k � 1, 2. We note that an equivalent set of solutions for
the �k‘ is

 

�
Ck1

2
�1� cos�0k�

�
1=2

;
�
Ck1

2

�
1� cos

�
�
3
� �0k

���
1=2
;

(6.11)

where [23]

 cos�3�0k� � �1� 2rk: (6.12)

VII. SOME FURTHER REMARKS

We add here some further remarks. First, since the
invariants for �F f��� and �F adj��� depend on the same
set of four independent invariants, they clearly can be
related to each other. We note parenthetically that the
Schwinger mechanism for pair production in an electric
field was generalized to an expression for pair production
in an oscillatory electric field in Refs. [24,25] (see also
[26]). Expressions for dW=d4x were given for the case of a
general time-dependent electric field and also for the
SU�3�c case with general time-dependent Ea � Ea�t�ẑ in
Ref. [27]. Our set of invariants may be used for the still
more general problem of nonperturbative particle produc-
tion for spacetime-dependent classical gauge fields.

VIII. DISCUSSION AND CONCLUSION

In this paper we have given a general method for calcu-
lating the gauge-invariant and Lorentz-invariant quantities
characterizing the products

P
aDR�T

a�Fa�� for an SU�N�
gauge group. We have applied our method to compute
these quantities for all representations of SU(2) and for
the fundamental and adjoint representations of SU(3). Our
results apply for the most general case of spacetime-
dependent gauge fields and can provide a convenient set
of quantities in terms of which to express calculations for
classical chromodynamics.
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