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expansion, we discuss the validity ranges of the latter approximation methods.

DOI: 10.1103/PhysRevD.77.045004 PACS numbers: 12.38.�t, 11.15.�q, 11.15.Ha

I. INTRODUCTION

In field theoretic investigations one is often confronted
by the rather formidable task to evaluate the one-loop
effective action in some nontrivial background field.
Until recently, it has not been possible in four spacetime
dimensions to evaluate explicitly this renormalized quan-
tity (including its full finite part), unless some very special
background is chosen or a priori arbitrary parameters (e.g.,
mass values) are set to zero. In our recent publications [1,2]
we made some headway to this old problem by developing
an efficient calculational method—a combination of ana-
lytic and numerical schemes—for the exact computation
of fully renormalized one-loop effective actions in radially
symmetric backgrounds. For example, this method was
first applied to the accurate determination of QCD single-
instanton determinants for arbitrary quark mass values [1],
producing a result that interpolates smoothly between the
known analytical massless and heavy quark limits. In
Ref. [2] we generalized the calculational procedure to
calculate the one-loop effective action in any radially
symmetric background, not just an instanton. In the present
paper, which is a sequel to Ref. [2], we present some
explicit examples and results (including the numerical
contributions) to establish the efficiency and generality of
our method. We also examine the validity of often-used
approximation methods, such as the large-mass expansion

and the derivative expansion, compared to numerically
exact calculations.

In Ref. [2] we derived some relevant formulas needed in
the calculation of the scalar one-loop effective action (in
Euclidean spacetime), assuming SU(2) background gauge
fields of the form

 �Case 1�: A��x� � 2���ax�f�r�
�a

2
; (1.1)

 �Case 2�: A��x� � 2����iûi�x�g�r�
�3

2
; (1.2)

where �; � � 1, 2, 3, 4, r �
������
jxj

p
�

�����������x�x�
p , ���a (or

���i) are the ’t Hooft symbols [3], and ûi a unit 3-vector.
Case 1 is inherently non-Abelian, while Case 2 has a fixed
color direction and so is quasi-Abelian. These backgrounds
are characterized by the radial profile functions f�r� and
g�r�, respectively. In each case the spectral problem sepa-
rates into partial waves due to the spherical symmetry.

Our method has been deliberately developed so that it
can accommodate numerical input for f�r� and g�r�, since
this situation often arises in quantum field theory applica-
tions. But, to illustrate the method more clearly, we choose
here specific Ansätze for the radial profile functions. In
Case 1, of ‘‘non-Abelian type’’ (1.1), we choose the radial
function f�r� of the form

 f�r� �
1

r2 H�r�; H�r� �
�r=��2�

1� �r=��2�
; (1.3)

with free parameters � and � (under the regularity restric-
tion j�j � 1). [The BPST instanton solution [4] corre-
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sponds to the choice � � 1]. In Case 2, of the quasi-
Abelian type (1.2), we choose the radial function g�r� of
the form

 g�r� � Bf1� tanh���
����
B
p

r� �0�	g; (1.4)

with three free parameters �, �0, and B (all taken to be
positive). In the limit �! 0, (1.2) then approaches the
case of uniform field strength B. For finite �, (1.2) repre-
sents a spherical bubble type potential with radius �0���

B
p and

wall thickness 
 1
�
���
B
p .

In this paper we calculate the renormalized scalar one-
loop effective action (including its full finite part) in the
gauge field background pertaining to the above two types.
The effective action is computed for arbitrary choices of
the parameters characterizing the shape of the background
field, not relying on the background field being slowly or
rapidly varying, or on the particle mass being large or small
relative to the scales set by the background field. In per-
forming this analysis, we have found that significantly
greater calculational efficiency and precision can be at-
tained by making a systematic use of higher-order quantum
mechanical WKB-type approximations [5] for the large
partial-wave contributions to the effective action. This
permits the extension of the high partial-wave radial-
WKB approximation to lower and lower partial waves,
and results in dramatic numerical improvements. Finally,
we compare our results to the predictions based on the
large mass expansion and the derivative expansion. To our
knowledge, this kind of genuinely unambiguous compari-
son in four-dimensional gauge theory has not been made
before.

This paper is organized as follows. In Sec. II we give a
short outline of our numerically exact calculational scheme
and also collect, for later use in the paper, relevant for-
mulas from the large mass expansion and derivative ex-
pansion for the scalar one-loop effective action. Our
detailed study on the one-loop effective action with non-
Abelian-type backgrounds (1.1) is then presented in
Sec. III. This is followed in Sec. IV by the corresponding
study with quasi-Abelian backgrounds (1.2); in this case,
the one-loop effective action is essentially that of scalar
QED. In Sec. V we conclude with some related discussions
and comments.

II. BRIEF SUMMARY OF OUR CALCULATIONAL
SCHEME AND OTHER APPROXIMATION

METHODS

The calculational method developed in Refs. [1,2] can
be summarized and streamlined as follows. For scalar
fields in radially symmetric non-Abelian background
gauge fields A��x�, it is possible to express the correspond-
ing (Euclidean) one-loop effective action as a sum of
individual partial-wave contributions, i.e.,

P
1
J�0 �J�A;m�,

with the J-partial-wave term [including the appropriate

degeneracy factor] given by radial functional determinants

 �J�A;m� � ln
�
det�� ~D2

J �m
2�

det��~@2
J �m

2�

�
(2.1)

or, equivalently, by the proper-time representation

 �J�A;m� � �
Z 1

0

ds
s
e�m

2s
Z 1

0
dr trf~�J�r; r; s�

� ~�free
J �r; r; s�g: (2.2)

Here, m is the scalar mass, � ~D2
J (� ~@2

J) denotes the
quadratic radial differential operator relevant to the
J-partial wave in the given background (or with A��x�
set to zero), and ~�J�r; r; s�, ~�free

J �r; r; s� represent the
coincidence limits of the related proper-time Green func-
tions specified by the radial ‘‘heat’’ equations:

 �@s � ~D2
J�r�	

~�J�r; r
0; s� � 0; �s > 0�

s! 0� : ~�J�r; r
0; s� ! 	�r� r0�:

(2.3)

(The tildes over differential operators and Green’s func-
tions imply that we are here considering reduced operators/
functions after taking out various radial measure factors
[2]). While the quantities �J are finite individually, the
partial-wave series

P
1
J�0 �J diverges and should be renor-

malized. We thus introduce the intermediate partial-wave
cutoff JL (a large, but finite value of J) and express the
fully renormalized effective action by two separate terms

 �ren�A;m� � �J�JL�A;m� � �J>JL�A;m�; (2.4)

where

 �J�JL�A;m� �
XJL
J�0

�J�A;m� �
XJL
J�0

ln
�
det�� ~D2

J �m
2�

det��~@2
J �m

2�

�
;

(2.5)

 �J>JL�A;m� � lim
�!1

�
�
Z 1

0

ds
s
�e�m

2s � e��2s�
X
J>JL

FJ�s�

�
1

12

1

�4
�2
ln
�

�2

�2

�Z
d4x tr�F��F���

�

(2.6)

with

 FJ�s� �
Z 1

0
dr tr�~�J�r; r; s� � ~�free

J �r; r; s��: (2.7)

Notice that the renormalization counterterm is incorpo-
rated in the second term �J>JL�A;m�; � is the normaliza-
tion mass, and F�� � i�D�;D�	 (with D� � @� � iA�)
denotes the background Yang-Mills field strengths. The
first term, �J�JL , may be evaluated numerically using the
Gel’fand-Yaglom method [6–8] for one-dimensional func-
tional determinants. As for the second term �J>JL , analyti-
cally developed expressions valid for large enough JL were
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used in Refs. [1,2]; for this, we made essential use of the
quantum mechanical radial-WKB expansion and the
Euler-Maclaurin summation formula. A crucial observa-
tion is that even though the partial-wave sum in (2.5) is
quadratically divergent as we let JL ! 1, this divergence
is exactly cancelled by a similar term originating from the
second term �J>JL in (2.6) in the large JL limit. Thus, for
the sum of the two terms, we secure a finite result in the
large JL limit—this is the essence of our numerically
accurate scheme for the determination of the renormalized
effective action. The ‘‘low’’ partial-wave contribution is
computed numerically, and the ‘‘high’’ partial-wave con-
tribution is computed analytically in the large JL limit
using radial WKB. The ultraviolet cutoff dependence ap-
pears in the analytic high partial-wave computation, and
this allows standard renormalization techniques to be used,
leading to the finite renormalized effective action. For
details on our renormalization prescription (and on how
to go from ours to other prescriptions), see Refs. [1,2,9].

Clearly, numerical efficiency of our calculational
scheme hinges on how quickly the JL ! 1 limit is at-
tained; that is, on how much we can lower our partial-wave
cutoff JL to secure a reliable large-JL limit value for the
above sum of the two terms. (Note that if we were able to
calculate both parts, i.e., �J�JL and �J>JL exactly, their sum
would be independent of the choice of the cutoff value JL.
An interesting example of this situation is the effective
action for massless quarks in a single BPST instanton
background, where our technique reproduces exactly and
analytically [1] ’t Hooft’s result [3] ~��m � 0� � ��12� �
� 17

72�
1
6 ln2� 1

6� 2� 0��1� � 0:145 873 . . . ). In [1], we
chose the cutoff value JL to be rather large (of the order
of 50), and used the Richardson extrapolation method [10]
to reduce the numerical round-off error. There, it was
sufficient to use the expression for �J>JL with O� 1

JL
� or

smaller terms suppressed. But, in the present, more exten-
sive, study, we have found that the computation is greatly
improved, both in computing time and precision, by in-
cluding [analytically calculated] higher-order WKB terms
in the expression for �J>JL , so that it becomes valid up to
the O� 1

J4
L
� accuracy. These higher-order WKB terms can be

found straightforwardly from the 1
l expansion [2,11] for the

radial proper-time Green function. With this procedure, we
were able to ensure that the renormalized effective action
we calculate is independent of the (moderately large) JL
value with relative error of order 10�6, which is compa-
rable to the final total error involved in our numerical
computation of (2.5). In the end, we obtain comparable
precision with much lower values of JL, of the order of 10
or 20. This improved precision is demonstrated in Secs. III
and IV for the backgrounds in (1.1) and (1.2).

We also give the results of some popular approximation
schemes for the one-loop effective action, which are sup-
posed to capture accurate values in certain limits. First, we

have the large mass expansion [9,12] of the scalar one-loop
effective action which is obtained most easily with the help
of the Schwinger-DeWitt proper-time expansion (or heat
kernel expansion). Here, from the renormalized effective
action, it is convenient to separate �-dependent pieces
(and use dimensional considerations) to write

 �Case 1�: �ren�A;m� �
1

6
ln����

Z d4x
�4
�2

trF2
��

� ~��m��; (2.8)

 �Case 2�: �ren�A;m� �
1

6
ln
�
�����
B
p

�Z d4x
�4
�2

trF2
��

� ~�
�
m����
B
p

�
; (2.9)

where dimensionless constants are not indicated in an
explicit manner. The quantity ~��m�� or ~�� m���

B
p �, which is

independent of �, can be expressed for large enough m by
an asymptotic series of the following form:
 

~��m�� � �
1

6
ln�m��

Z d4x
�4
�2

trF2
��

�
X1
n�3

�n� 3�!

�m2�n�2

Z d4x
�4
�2

tran�x;x�; (2.10)

 

~�
�
m����
B
p

�
� �

1

6
ln
�
m����
B
p

�Z d4x
�4
�2

trF2
��

�
X1
n�3

�n� 3�!

�m2�n�2

Z d4x
�4
�2

tran�x;x�: (2.11)

Here an�x;x�, n � 3; 4; 5;    denote appropriate coeffi-
cient functions in the Schwinger-DeWitt expansion: ex-
plicitly, for the traces of the a3- and a4-terms, we have
[9,12]

 tra3�x;x� � �1
6 tr�i 2

15F�F�F�� �
1
20�D�F���D�F��	;

(2.12)

 

tra4�x;x�� 1
24tr�� 1

21F�F�F��F��

� 11
420F�F��F�F���

2
35F�F�F��F��

� 4
35F�F�F��F��� i

6
35F��D�F���D�F���

� i 8
105F��DF����D�F���

� 1
70�D�DF����DD�F���	; (2.13)

where DF�� � �D; F��	 and D�DF�� �
�D�; �D; F��		, etc. Note that in these expressions for
a3�x;x� and a4�x;x�, we have not assumed that A��x�
satisfies the classical equations of motion. We also com-
ment that while this large mass expansion is rather simple
to use, it is in fact an asymptotic expansion, and so its
regime of useful applicability is restricted to the mass
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being large relative to 1
� or

����
B
p

, respectively. See Secs. III
and IV for comparisons of the large mass expansions (2.10)
and (2.11) with our exact numerical answers.

There is another well-known approximation method to
the one-loop effective action, the derivative expansion. The
leading order of the derivative expansion corresponds to
using the Euler-Heisenberg constant field result [13–15],
but substituting the inhomogeneous fields for the homoge-
neous ones used to compute the Euler-Heisenberg effective
action. This approximation is very simple to implement,
and is expected to be a good approximation when the
spacetime variation in the background gauge field strengths
is sufficiently ‘‘slow’’ so that we may regard their deriva-
tives as small terms in the effective action. Subleading
derivative expansion contributions can also be computed,
but we will not consider them here. A systematic study of
the validity range of this method is still lacking (although
the Borel summability properties of the derivative expan-
sion have been analyzed in a nontrivial soluble inhomoge-
neous QED example in [16]). We remark here that if the
background gauge fields are genuinely non-Abelian (as in
our Case 1), the convergence character of the related
expansion—the so-called covariant derivative expansion
[17–20]—is less certain. In this paper we restrict ourselves
to applying the derivative expansion with our quasi-
Abelian backgrounds (1.2) only. In that case, the leading
term in the derivative expansion is given by the Euler-
Heisenberg formula [13–15]
 

~�DE

�
m����
B
p

�
� �

Z
dr
r3

4

Z 1
0

ds

s3 e
�m2s

�

�
E1s

sinh�E1s�
E2s

sinh�E2s�
� 1�

s2

6
�E2

1 � E
2
2�

�

�
1

6
ln
�
m����
B
p

�Z d4x
�4
�2

trF2
��; (2.14)

where�iE1 and�iE2 denote four eigenvalues of the 4� 4
matrix F � �F���, with

 E1 �
1
2

����������������������������������
F �

��������������������
F 2 � G2

qr
; E2 �

1
2

����������������������������������
F �

��������������������
F 2 � G2

qr
;

(2.15)

where

 F � 1
2trF��F��; G � 1

4 tr ����F��F�: (2.16)

Consult Sec. IV to see how the predictions based on this
method fare against the accurate numerical calculations.

III. NON-ABELIAN BACKGROUNDS

A. Properties of the background fields

We consider here a family of radial background fields
described by (1.1) and (1.3), which resemble the single-
instanton configuration. The parameter � is chosen to be in

the range j�j � 1, so that A��x� is well behaved at the
origin r � 0. When � takes a negative value it is conve-
nient to cast the function H�r� in the form

 H�r� �
1

1� �r=��2j�j
: (3.1)

Note that while our configuration with � � 1 is simply the
single instanton solution in the regular gauge [1], by
choosing � � �1 the single anti-instanton solution in the
singular gauge is also obtained. In Fig. 1, we have plotted
the shape of the background function H�r� for several
values of �’s.

For the gauge field (1.1), the corresponding field
strength tensor F�� is
 

F�� �
�a

2

�
4���a

H�H � 1�

r2 � 2�x���a � x���a�
x
r4

� �2H�H� 1� � rH0	
�
; (3.2)

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0 5
3

2

1

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

5

3
2

1

FIG. 1 (color online). Plots of the radial profile function H�r�
appearing in the non-Abelian gauge field (1.1), as a function of
r=�. We have drawn the cases with � � 1, 2, 3, 5 in (a), and the
cases with � � �1;�2;�3;�5 in (b). Note that H�r� behaves
like a step function if j�j becomes very large, with the step
localized at r � �.
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whereH0 � d
drH�r�. Alternatively, inserting the expression

(1.3) for H�r�, we find

 

F�� �
�a

2

�
����a � �x���a � x���a�

x
r2 �1� ��

�

�
4�r��2�

r2��2� � r2��2
: (3.3)

Note that the field strength tensor F�� has a singularity at
r � 0 when j�j< 1, and the second part of (3.3), the part
proportional to �x���a � x���a�x, vanishes if � � 1
(i.e. for the single instanton solution). For these instanton-
like radial background fields the corresponding classical
action is readily evaluated:

 

1

2

Z
d4x trF2

�� � 12
2
Z 1

0

dr
r
�r2�H0�2 � 4H2�H � 1�2	

� 4
2 1� �2

j�j
: (3.4)

Note that this result does not depend on the scale parameter
�, and has a minimum value when � � �1, i.e., for the
single instanton or single anti-instanton solution.

For the general vector potential considered here, the
topological winding number is

 

1

32
2 ����
Z
d4x trF��F� � �

Z 1
0
dr

d
dr
�2H3 � 3H2�

� �1: (3.5)

This means that all the configurations corresponding to
positive values of � belong to the class of winding number
1, and those corresponding to negative values of � to the
class of winding number �1. Further, notice that self-dual
configurations occur when 1

2

R
d4x trF2

�� �
1
2 �R

d4x trF�� ~F��, which means �2 � 1, corresponding to
the BPST instanton or anti-instanton for which � � �1.

B. Large mass expansion

Before delving into the exact calculation of the one-loop
effective action, we first present the result of the large mass
expansion. In our background fields we find for the traces
of leading coefficient functions a3�x;x� and a4�x;x� (see
(2.12) and (2.13)), the following explicit results:

 Z
d4x tr a3 �

Z 1
0

dr

�2

r6��3

15�1� r2��6
��10� 13�2 � 33�4�

� r2��5� 20�� 22�2 � 28�3 � 21�4�

� ��! ���	; (3.6)

 Z
d4x tra4 �

Z 1
0

dr

�4

r8��5

210�1� r2��8
�4r4��1���2

� �28� 112�� 105�2� 188�3� 107�4�

� 8r2���91� 273�� 21�2� 309�3

� 618�4� 1164�5� 694�6�

�
1

2
�1337� 5250�2� 3399�4� 11 992�6�

� ��!���	: (3.7)

Then, after performing the r-integration, the large-mass
expansion for the one-loop effective action is seen to take
the form (we here give the result for the quantity ~��m��,
introduced in (2.8))
 

~�LM�m����
�1��2�

12j�j
ln�m��

�

�5�10�2�11�4�6�8�

1800�6 sin�
=��

1

�m��2

���2�4���2�1�

�

��140�35�2�378�4�317�6�120�8�

88200�8 sin�2
=��

�
1

�m��4
� : (3.8)

Note that, for j�j � 1 (or 2), taking the limit j�j ! 1 (or
j�j ! 2) in the right-hand side of (3.8) should be under-
stood. This large mass expansion result (3.8) will be com-
pared with the numerically determined effective action
later.

We make a comment on the length scale parameter �
here. The modified effective action ~��m�� does not depend
on the renormalization mass scale �, and so is a function
only of the dimensionless combination m�. We may then
set the size parameter � � 1 during the calculation, with-
out loss of generality, and readily restore it in the final
result.

C. Numerically accurate calculation of the lower
angular momentum part

We now turn to our accurate effective action calculation
based on (2.4). First consider the lower angular momentum
part �J�JL , given in (2.5). Note that, in the present back-
grounds, the partial waves are specified by the quantum
numbers J � �l; j; j3; �l3�, as described in detail in Ref. [2].
We are working with isospin 1

2 , so j � l� 1
2 . Using the

notation of [2], the radial Hamiltonian, representing �D2

in the given partial-wave sector, assumes the form

 H l;j � �D2
�l;j� � �

@2

@r2 �
3

r
@
@r
� Vl;j (3.9)

with
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Vl;j�r� �
4l�l� 1�

r2 �

�
j�j� 1� � l�l� 1� �

3

4

�
4H�r�

r2

� 3
H2�r�

r2 ; (3.10)

while in the absence of the background field

 H free
l � �@2

l � �
@2

@r2 �
3

r
@
@r
�

4l�l� 1�

r2 : (3.11)

The radial Hamiltonian is independent of the quantum
numbers j3 and �l3; this introduces the degeneracy factor
�2j� 1��2l� 1� in the partial-wave sum below.

Having identified the relevant quantum numbers, the
lower angular momentum part �J�JL can be written as
(here, L serves as our partial-wave cutoff)

 �J�JL�A;m� �
XL
l�0

�2l� 1�
Xl�1=2

j�l�1=2

�2j� 1�

� ln
�

det�H l;j �m
2�

det�H free
l �m2�

�
: (3.12)

The ratio of two determinants in (3.12) is determined,
according to the Gel’fand-Yaglom method [6–8], by the
ratio of the asymptotic values of two wave functions as

 

det�H l;j �m
2�

det�H free
l �m2�

� lim
R!1

�  l;j�R�
 free
l �R�

�
: (3.13)

Here  l;j�r� and  free
l �r� denote the solutions to the radial

differential equations

 �H l;j �m
2� l;j�r� � 0; (3.14)

 �H free
l �m2� free

l �r� � 0; (3.15)

which have the same small-r behaviors, i.e.,

 r! 0:  l;j�r� 
 r2l;  free
l �r� 
 r

2l: (3.16)

Note that the solution to (3.15), which is the modified
Bessel function

  free
l �r� �

I2l�1�mr�
r

; (3.17)

grows exponentially fast at large r, as do the numerical
solutions to (3.14) for the operators H l;j �m2. Thus,
numerically, it is advantageous to consider the ratio,
 l;j�r�= free

l �r�, which stays finite for all r. In fact, since
we compute the logarithm of the determinant, we can
directly consider the logarithm of the ratio:

 S�l;j��r� � ln
 �l;j��r�

 free
�l� �r�

; (3.18)

which also has a finite value in the large r limit. This
function satisfies the differential equation

 

d2S�l;j�
dr2

�

�dS�l;j�
dr

�
2
�

�
1

r
� 2m

I02l�1�mr�
I2l�1�mr�

�dS�l;j�
dr

� U�l;j��r�; (3.19)

 U�l;j��r� � Vl;j �
4l�l� 1�

r2

�
4j�j� 1� � 4l�l� 1� � 3

r2�1� r2��
�

3

r2�1� r2��2
;

(3.20)

under the initial value boundary conditions

 S�l;j��r � 0� � 0; S0
�l;j��r � 0� � 0: (3.21)

Noting that the eigenvalues of the total angular momentum
j equal l� 1

2 for a given value of l, it is convenient to
combine the contributions S�l;l�1

2�
�r� and S�l�1

2;l�
�r�, which

come with the same degeneracy factor �2l� 1��2l� 2�.
With this understanding, it is possible to express the am-
plitude (3.12) in the form

 �J�JL�A;m� �
XL

l�0;�1=2�;1;...

�2l� 1��2l� 2�P�l�; (3.22)

 P�l� � S�l;l�1=2��1� � S�l�1=2;l��1�: (3.23)

Here S�l;l�1
2�
�1� and S�l�1

2;l�
�1� denote the asymptotic (i.e.,

r! 1) limits to the solutions of the differential equations
in (3.19) with the potentials

 Vl;l�1=2�r� �
4l�l� 1�

r2 � �4l� 3�
H�r�

r2

� 3
H�r��H�r� � 1�

r2 ; (3.24)

and

 Vl�1=2;l�r� �
4l�l� 1�

r2 � �4l� 3�
�1�H�r��

r2

� 3
�H�r� � 1�H�r�

r2 ; (3.25)

respectively. We emphasize that in order to evaluate the
low partial-wave contribution to the effective action in
(3.22) and (3.23) we solve the differential equations (3.19),
(3.20), and (3.21) once using Vl;l�1=2 and again using
Vl�1=2;l.

Note that the potentials Vl;l�1=2�r� and Vl�1=2;l�r� have
the same form except that H�r� in one expression gets
replaced by �1�H�r�� in the other. For H�r� given in
(1.3), we have �1�H�r�� � 1

�1�r�2��
, while H�r� �

1
�1�r2��

; i.e., the same expression as �1�H�r�� only with

� in the latter replaced by ��. Therefore, if we consider
the effective action with the background parameter �
replaced by ��, the only change is that two potentials
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Vl;l�1=2�r� and Vl�1=2;l�r� are interchanged, and so the two
quantities S�l;l�1=2��1� and S�l�1=2;l��1� in (3.23) are also
interchanged. This shows that each partial-wave contribu-
tion to the effective action with the background parameter
�� is the same as the one with the parameter � and thus
two effective actions with � and with �� have the same
value. (This was true for the classical action also). Similar
behaviors, concerning the cases with � � �1, were ob-
served already in Ref. [1]. Based on this observation,
consideration of the effective action for positive values of
� is sufficient.

The ordinary differential equation (ODE) system speci-
fied by (3.19), (3.20), and (3.21) can easily be solved
numerically. (With m � 0 and � � �1, the analytic solu-
tion to this equation was found in [1]). In Fig. 2 we plot the
solutions for a few cases. It clearly shows that the solutions
approach constant values in the r! 1 limit. In Fig. 3 we
plot partial-wave contributions with l � 0; 1=2;    for
m � 1 and � � 2. Note that P�l� 
O�1l� when the angular
momentum l becomes large. Since the degeneracy factor
�2l� 1��2l� 2� is quadratic, this implies that �J�JL in

(3.22) behaves as L2 in the large L limit. This divergent
behavior will be canceled when we add the higher angular
momentum contribution.

D. WKB calculation of the higher angular momentum
part

We now calculate the higher angular momentum part
�J>JL , given in (2.6). This cannot be computed numerically
(as we have done for �J�JL) because very large partial-
wave contributions lead naively to a divergent result and
require careful renormalization to ensure a finite result.
The large partial-wave contribution depends on the regu-
lating cutoff �, whose effect must be identified and iso-
lated for renormalization; and this cannot easily be done
numerically. However, this quantity (incorporating renor-
malization) can be calculated analytically in a WKB-type
asymptotic series, assuming that the partial-wave cutoff JL
is large enough. Here the higher angular momentum sum of
the partial-wave heat kernel,

P
J>JLFJ�s� with FJ�s� given

by (2.7), may be described more explicitly by the form

 

X
J�JL�1=2

FJ�s� �
Z 1

0
dr

X1
l�L�1

2

�2l� 1��2l� 2�

� f~��l;l�1=2��r; r; s� � ~��l�1=2;j�l��r; r; s�

� ~�free
�l� �r; r; s� � ~�free

�l�1=2��r; r; s�g:

(3.26)

Now, as explained in [2], we may use the 1
l expansion for

the modified radial proper-time Green function when l is
large. When ~��r; r; s� is expanded in terms with increasing
number of derivatives of the potential, the scaling is such
that when the l sum is approximated by the Euler-
Maclaurin formula, this generates the large L expansion.
For a generic radial potential V�r�, this expansion has the
following form:

2 4 6 8

3.735

3.745

3.750

3.755
5

4
3

2

1

x 105

2 4 6 8

3.785

3.780

3.775

3.770

3.765

5

4

3
2
1

x 105

FIG. 2 (color online). Plots of Sl;l�1=2�r� and Sl�1=2;l�r� when
m � 1 and l � 10. Note that the asymptotic values of Sl�1=2;l�r�
and Sl;l�1=2�r� are roughly of the same magnitude but with
opposite signs.

10 20 30 40 50

0.10

0.08

0.06
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0.00
5
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FIG. 3 (color online). Plots of partial-wave contributions as a
function of l for the cases with � � 1, 2, 3, 4, 5 (from the
bottom) and m � 1.
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~��r; r; s� �
1���������
4
s
p e�sV�r�

�
1�

�
1

12
s3�V 0�2 �

1

6
s2V00

�
�

�
1

288
�V 0�4s6 �

11

360
�V 0�2V00s5 �

1

40
�V 00�2s4 �

1

30
V0V�3�s4

�
1

60
V�4�s3

�
�

�
�V 0�6s9

10 368
�

17�V 0�4V 00s8

8640
�

83�V 0V 00�2s7

10 080
�

1

252
�V0�3V�3�s7 �

61

15 120
�V00�3s6

�
43

2520
V 0V 00V�3�s6 �

5

1008
�V 0�2V�4�s6 �

23

5040
�V�3��2s5 �

19

2520
V 00V�4�s5 �

1

280
V 0V�5�s5 �

1

840
V�6�s4

�

�O
�

1

l8

��
: (3.27)

Note that the terms are collected according to the total
number of derivatives on V. [In addition to the terms
already calculated in (3.16) of [2], we have here included
some higher-order terms as well because they will be
useful in finding the large JL expansion of �J>JL]. The
large-L series expression for �J>JL can then be found by
inserting (3.27) into (3.26) with the generic potential V
replaced by the potential Vl;j or Vfree

l in (3.24) or (3.25).
The summation over l in (3.26) can be performed using the
Euler-Maclaurin summation method. The result is tanta-
mount to the systematic WKB series, as was shown in
Ref. [2]. Since this procedure was described already in
Appendix C of [2], we will not repeat it here. The final
result in the present potential can be presented as a 1

L series
of the form

 

�J>JL �
Z 1

0
dr
�
Q2�r�L

2 �Q1�r�L�Qlog�r� lnL

�Q0�r� �Q�1�r�
1

L
�   

�
; (3.28)

where

 Q2�r� �
8H�H � 1�

r
��������������
~r2 � 4
p ; (3.29)

 Q1�r� �
8�3~r2 � 8�

r�~r2 � 4�3=2
H�H � 1�; (3.30)

 Qlog�r� � �
1

4r
�4H2�H� 1�2 � r2H02�; (3.31)

 

Q0�r� �
1

6r�~r2� 4�7=2
�4�3~r6� 49~r4� 236~r2

� 352�H2�H� 1�2� 6�22~r6� 157~r4� 352~r2

� 384�H�H� 1� � 16r�~r4� 5~r2� 4��2H� 1�H0

� r2�~r2� 4�2f�3~r2� 8�H02� 4�2H� 1�H00g	

�Qlog�r� ln
�

�r�������������
~r2� 4
p

� 2

�
; (3.32)

 

Q�1�r� �
1

r�~r2 � 4�9=2
�2�9~r6 � 36~r4 � 64~r2

� 256�H2�H� 1�2 � ��6~r8 � 25~r6 � 368~r4

� 128~r2�H�H � 1� � 8r~r2�~r4 � 3~r2 � 4�

� �2H � 1�H0 � 2r2�~r2 � 4�2f2�~r2 � 2�H02

� ~r2�2H� 1�H00g	; (3.33)

with ~r � mr
L . The r-integration, with H�r� given in (1.3),

can be performed numerically. The next higher-order
terms, which are quite lengthy and so are not given here,
can also be calculated in a straightforward manner. In fact
we have calculated the quantity �J>JL up to O� 1

L4�-terms,
and the details of this calculation will be reported else-
where [21].

E. Results for the total one-loop effective action

Let us now put together the lower and higher angular
momentum parts, (3.22) and (3.28), respectively, of the
effective action, computed separately in the previous two
subsections. Even if from the expression in (3.28) we keep
only up to the terms ofO�L0� (i.e., up to the Q0-term in the
integrand) and add it to the lower angular momentum part
found numerically in the subsection C, we obtain a finite
result in the limit of very large L, with divergent contribu-
tions from the two parts canceling each other. However, for
moderately large L the resulting sum shows dependence on
the cutoff value L. In other words, although the desired
effective action should result if L is taken to be sufficiently
large, the rate of convergence is quite slow [see Fig. 4(a)].
This causes a problem in numerical efficiency.

One can accelerate the convergence by using the
Richardson extrapolation method as described, say, in
Ref. [10], and this was in fact the method we used in the
calculation of the instanton determinant in [1]. In this work
we adopt a different, theoretically far more satisfying,
approach to this problem. As we emphasized in Sec. II,
the effective action should not depend on the choice of our
cutoff value L if the exact results for both �J�JL and �J>JL
were used. This implies that, leaving aside possible nu-
merical inaccuracy in calculating �J�JL , the L-dependence
in the sum for finite cutoff value L is really due to our
ignoring 1

L -suppressed contributions in the WKB series
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(3.28). So we can systematically improve the large L limit
by adding higher-order terms in the 1

L -series for the higher
angular momentum part �J>JL . As we mentioned already,
we have identified the 1

L -series up to terms of O� 1
L4�. When

these higher-order terms of the 1
L -series are utilized, the

situation changes dramatically: this is exhibited in
Fig. 4(b). From the figure we see that it is possible to
achieve an L-independent result even for relatively lower
and lower values of L if we include higher and higher-order
terms in 1

L for the large angular momentum part. Even L

10 produces good convergence. This reduces the number of
numerical computations to be done in the low partial-wave
piece (3.22). Thus, use of the systematic WKB series for
�J>JL plays a pivotal role in reducing the computer time in
our calculation.

By the above procedure we have evaluated with high
precision the renormalized effective action in given non-
Abelian radial backgrounds. The results are shown in
Fig. 5. In Fig. 5 we plot (as a function of m�) our numeri-
cally accurate results for the modified effective action ~�,

defined in (2.8), with the choices � � 1, 2, 3, 4, 5 for the
shape parameter in the radial profile function f�r� in (1.3).
We also plot, with solid lines, the predictions for the same
quantity based on the large mass expansion (considered up
to the order 1

�m��4
). The large mass expansion is generally

quite good when m� is large. But the validity range of the
large mass expansion varies with the value of �; as �
becomes large, the large mass expansion is reliable only
when m� is significantly larger than the corresponding
value of m� with small �. This is understandable, for the
‘‘small’’ quantity in the large mass expansion is really the
ratio of typical values of the fields and the derivatives of
fields to the mass. The derivatives have larger values when
� becomes large, and thus the ratio becomes small only
when the mass has a comparatively larger value.

We now comment on the case with m � 0. In this case
our numerical approach is not directly applicable.
Solutions to (3.19), S�l;l�1=2��r� and S�l�1=2;l��r�, behave
like lnr and � lnr in the r! 1 limit, so the sum is finite.
Analytic solutions to these equations, for the case of � �
1, can be found in [1]. In this instanton case, the m! 0
limit was shown to be smooth, and furthermore to repro-
duce exactly ’t Hooft’s analytic massless result. We have
found here that for other values of �, the m! 0 limit is
once again smooth, and from the numerical values of the
effective action for m � 1

100 ;
2

100 ;    ;
10
100 , we have found

the following numerical extrapolations. In the case of � �
1 the extrapolation is

 

~��m� � A1 � A2m2 lnm

� 0:145 873�29� � 0:499�17�m2 lnm: (3.34)

In this case, analytic expressions for two leading coeffi-
cients in the small mass expansions are known, with
the results: A1 � �

17
72�

1
6 �1� ln2� � 2� 0��1� �

0:145 873 31    [3]; and A2 �
1
2 [9,22]. Note the remark-

10 20 30 40 50
L

0.02

0.02

0.04

0.06

0.08

10 20 30 40 50
L

0.0171

0.0170

0.0169

0.0168

FIG. 4 (color online). We have plotted L-dependence of the
sum of lower and higher angular momentum parts. In (a) the
upper (black) dots denote the case with all O�1L� terms ignored in
�J>JL , and slow convergence is evident. The lower (gray)
squares, the results after incorporating O�1L� corrections, show
better convergence. In (b) the (gray) squares, (purple) crosses,
(blue) stars, and (red) dots represent the cases obtained after we
incorporate 1

L , 1
L2 , 1

L3 , and 1
L4 corrections successively.
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0.5

0.4

0.3

0.2

0.1

0.1

FIG. 5 (color online). Plots of the modified effective action as
a function of m�. The (blue) dots, (black) stars, (brown) squares,
(red) crosses, and (purple) diamonds denote the values we get
numerically for � � 1, 2, 3, 4, 5 and the solid lines are for the
associated large mass approximations.

RENORMALIZED EFFECTIVE ACTIONS IN RADIALLY . . . PHYSICAL REVIEW D 77, 045004 (2008)

045004-9



able agreement between these analytic results and the
numerical extrapolation in (3.34). Numerically determined
(through extrapolation) values of A1 and A2 for the cases
with other values of� are presented in Table I. We have not
yet found simple analytic expressions for these leading
small mass terms, although we suspect this should be
possible.

IV. QUASI-ABELIAN BACKGROUND FIELDS

In this section we consider the cases of quasi-Abelian
background fields, where an Abelian gauge field is em-
bedded in the SU(2) Yang-Mills gauge fields. Using an
appropriate isospin rotation we can take the nonvanishing
components only in the 3rd direction. Then the vector
potential can be written as in (1.2), and we take the radial
profile function g�r� in the steplike form (1.4). Recall that
there are three arbitrary parameters �, �0, and B. When
� � 0 it corresponds to the case of uniform field strength
studied in [2]. When � � 0, this potential describes a
bubble shape with a radius R0 � �0=

����
B
p

, and the dimen-
sionless parameter � is related to the thickness of the
bubble. Illustrative graphs of the radial function g�r� for
various values of R0 are drawn in Fig. 6.

The field strength tensor of the quasi-Abelian gauge
fields is
 

F�� � �2���iûig�r��3

�
x
r
�x���i � x���i�û

ig0�r��3: (4.1)

The classical action can be evaluated as
 

1

2

Z
d4x trF2

�� � 4
2
Z 1

0
dr r3�8g�r�2 � 4rg0�r�g�r�

� r2g0�r�2	 (4.2)

 �
20
2

�4 �PolyLog�3;�e2R0� � PolyLog�5;�e2R0��:

(4.3)

In the large R0 limit, this quantity can be approximated as
 

1

2

Z
d4x trF2

�� �
20
2

�4

�
4

3
R5

0 �
10

9
�
2 � 6�R3

0

�
1

36
�7
4 � 60
2�R0 � . . .

�
: (4.4)

We turn to the evaluation of the one-loop effective
action. When the background function is given in the
form (1.4), based on dimensional considerations, we may
cast the renormalized action into the form (2.9), and so
simply compute ~��m=

����
B
p
�. Furthermore, since ~��m=

����
B
p
� is

a function just of m���
B
p , we may set B � 1 hereafter, and it

can be restored later.

A. Large mass and derivative expansions

In the large mass expansion as given by (2.11), the
modified effective action ~��m� can be approximated by

 

~��m�LM � ~��0�LM lnm� ~��2�LM

1

m2 �
~��4�LM

1

m4 �    ; (4.5)

where

 

~� �0�LM � �
1

12

Z 1
0
dr r3�8g�r�2 � 4rg�r�g0�r� � r2g0�r�2�;

(4.6)

TABLE I. Table of two parameters in (3.34) for the five differ-
ent values of � � 1, 2, 3, 4, 5.

� 1 2 3 4 5

A1 0.145 873 0.129 759 0.113 632 0.082 787 0.037 283
A2 0.499(17) 0.305(81) 0.291(68) 0.292(11) 0.295(03)

0 2 4 6 8 10 12
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1.0

1.5

2.0

0 1 2 3 4 5 6

0.5

1.0

1.5

2.0

FIG. 6 (color online). Plots of the function g�r� (in units of B)
for various values of R0 and �. In (a), plots are drawn for R0 �
1, 2, 3, 5, 10 with fixed � � 1. In (b), plots are drawn for � �
5; 2; 1; 1=2; 1=5 when R0 � 3.

DUNNE, HUR, LEE, AND MIN PHYSICAL REVIEW D 77, 045004 (2008)

045004-10



 

~��2�LM �
1

720

Z 1
0
dr�24r2g�r��15g0�r� � r�9g00�r� � rg�3��r��� � r3�221g0�r�2

� 9r2g00�r�2 � 2rg0�r��71g00�r� � 6rg�3��r���	; (4.7)

 

~��4�LM �
1

10 080

Z 1
0
dr��2688r3g�r�4 � 540g�r�g0�r� � 2688r4g�r�3g0�r� � 595rg0�r�2 � 1456r5g�r�2g0�r�2

� 392r6g�r�g0�r�3 � 49r7g0�r�4 � 540rg�r�g00�r� � 4480r2g0�r�g00�r� � 1837r3g00�r�2 � 1620r2g�r�g�3��r�

� 2356r3g0�r�g�3��r� � 830r4g00�r�g�3��r� � 37r5g�3��r�2 � 504r3g�r�g�4��r� � 380r4g0�r�g�4��r�

� 52r5g00�r�g�4��r� � 18r4�2g�r� � rg0�r��g�5��r�	: (4.8)

For g�r� given by the form (1.4) it is straightforward to
evaluate numerically the integrals in (4.6), (4.7), and (4.8).

There is another well-known approximation method—
the derivative expansion. The leading term in this expan-
sion is given in (2.14), where �iE1 and �iE2 are four
different eigenvalues of the matrix F � �F���, and in this
quasi-Abelian case, can be expressed in terms of the func-
tion g�r� as

 E1 � 2g�r�; E2 � 2g�r� � r
dg�r�
dr

: (4.9)

For the derivative expansion, one may thus insert the
results (4.9) into our formula (2.14) and evaluate numeri-
cally the r and s integrals. This is also straightforward.
These large mass and derivative expansion approximations
will be compared with the exact results below.

B. Numerically accurate calculation of the lower
angular momentum part

When the gauge vector fields have the form (1.2), the
partial waves are specified by the quantum numbers J �
�l; l3; t3; �l3�. The radial Hamiltonian becomes [2]

 H l;l3;t3 � �D
2
�l;l3;t3�

� �@2
�l� � 8g�r�l3t3 � r2g�r�2:

(4.10)

Note that this Hamiltonian does not change when we
simultaneously change the sign of t3 and l3. Using this
symmetry we can set t3 � 1=2 without loss of generality.
Then the first (lower angular momentum) part of the re-
normalized action can be written as

 �J<JL�A;m� � 2
XL
l�0

�2l� 1�

�
Xl
l3��l

ln
�
det�H l;l3;1=2 �m2�

det�H free
l �m2�

�
: (4.11)

As in the case of Sec. III the ratio of two determinants is
determined by the asymptotic value of the function

 S�l;l3��r� � ln
 l;l3�r�

 free
l �r�

(4.12)

which satisfies the following differential equation
 

d2S�l;l3�
dr2 �

�dS�l;l3�
dr

�
2
�

�
1

r
� 2m

I02l�1�mr�
I2l�1�mr�

�dS�l;l3�
dr

� U�l;l3��r�; (4.13)

with boundary conditions

 S�l;l3��0� � S0
�l;l3�
�0� � 0: (4.14)

The potential term U�l;l3��r� in (4.13) is given by

 U�l;l3��r� � 4l3g�r� � r2�g�r��2: (4.15)

This differential equation (4.13) can be solved numerically.
For the case with � � 1 and R0 � 3, we plot the solutions
of (4.13) with l3 � �4;�3;    ; 3; 4 when l � 4 in Fig. 7.
For a given l, after summing all the values with l3 �
�l;    ; l, we get the partial-wave contributions:

5 10 15 20

6

4

2

2

4

6

8

FIG. 7 (color online). Plot of solutions to (4.13) with l3 �
4; 3;    ;�3;�4 (from the top) when l � 4, � � 1, R0 � 3, and
m � 1. Note that the curves are essentially flat beyond r � R0.
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 P�l� �
Xl
l3��l

S�l;l3��1�: (4.16)

For large l we find P�l� behaving like 1
l .

C. WKB calculation of the higher angular momentum
part

To compute the renormalized effective action we must
identify the higher angular momentum part. The leading
contributions in the large angular momentum limit is writ-
ten in the form (3.28). We present some of them in explicit
forms:

 Q2�r� � �
8r3g2

3
��������������
~r2 � 4
p ; (4.17)

 Q1�r� � �
2r3�3~r2 � 8�

�~r2 � 4�3=2
g2; (4.18)

 Qlog�r� � �
r3

12
�8g2 � 4rgg0 � r2g02�; (4.19)

 

Q0�r� �
r3

90�~r2 � 4�7=2
�12r4�5~r4 � 28~r2 � 32�g4

� 30�9~r6 � 47~r4 � 40~r2 � 64�g2

� 20r�3~r6 � 32~r4 � 88~r2 � 32�gg0

� 5r2�~r2 � 4�2f�3~r2 � 8�g02 � 8gg00g	

�Qlog�r� ln
�

�r��������������
~r2 � 4
p

� 2

�
; (4.20)

 

Q�1�r� �
r3

4�~r2 � 4�9=2
�6r4~r4�~r2 � 4�g4 � �4~r8 � 7~r6

� 48~r4 � 1152~r2 � 1024�g2 � 16r�~r6 � 15~r4

� 52~r2 � 32�gg0 � 4r2�~r2 � 4�2f�~r2 � 2�g02

� ~r2gg00g	; (4.21)

with ~r � mr
L . Higher-order terms will be presented in [21].

D. Results for the total one-loop effective action

As in the non-Abelian case treated in Sec. III, the large L
divergence of the numerical results for the low partial-
wave contribution is canceled by the large L divergence
in (3.28), found analytically from radial WKB. The combi-
nation of these lower and higher angular momentum parts
is then L-independent in the large L limit, as we have seen
in the last section. In Fig. 8, we plot the effective action for
various values of the parameters m;R0 with fixed value of
� � 1.

In Fig. 9, we plot the effective action for various values
of the parametersm,�with fixed value of R0 � 0. Its large
mass expansion and its derivative expansion are drawn
together for comparison. Clearly, the derivative expansion
becomes more accurate when the parameter �, which
represents the derivative scale of the background function
g�r�, becomes smaller. Note that the result of the leading
derivative expansion with R0 � 0 becomes independent of
� when it is multiplied by �4. Further note that the
derivative expansion is generally much better than the large
mass expansion for smaller values of m. This is despite the
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FIG. 8. Plots of the effective action for different R0 values, i.e., R0 � 0 in (a), R0 � 3 in (b), R0 � 5 in (c), and R0 � 10 in (d),
assuming � � 1. The solid line in each figure denotes the result of the derivative expansion of the effective action while the dashed line
denotes the result based on the large mass expansion.

DUNNE, HUR, LEE, AND MIN PHYSICAL REVIEW D 77, 045004 (2008)

045004-12



fact that we have just used the very leading order of the
derivative expansion (2.14), in which we simply take the
Euler-Heisenberg constant field result, and then replaced
the constant fields by their inhomogeneous forms in the
effective Lagrangian. The superiority of the derivative
expansion is because the derivative expansion is in fact a
resummed version of the large mass expansion—the large
mass expansion is an expansion both in powers of the field
and in derivatives of the field, while the derivative expan-
sion is just an expansion in derivatives of the field, with all
terms in the large mass expansion not involving derivatives
having been resummed. This difference is clearly reflected
in the plots shown in Fig. 8.

V. CONCLUSIONS

To conclude, we have presented explicit computations of
the renormalized one-loop effective action for gauge field
backgrounds that possess a radial symmetry, such that the
associated spectral problem can be decomposed into partial
waves. We considered one class of non-Abelian back-
grounds, and another class of quasi-Abelian backgrounds,
each characterized by a radial profile function. The com-

putation has been performed using the partial-wave cutoff
method developed in [1,2], and we have further refined the
numerical efficiency and precision by including higher-
order terms in the analytic radial-WKB expression for
the large partial-wave contribution. The main conclusion
is that the method works very efficiently and simply. With
the incorporation of these higher-order analytic terms, the
numerical part of the computation is simplified because we
do not need to take such high partial waves in the numeri-
cal computations. The method is not much more compli-
cated to implement than the derivative expansion or the
large mass expansion, and is much more accurate, espe-
cially in probing the small mass region. So, we can now
reliably compute the renormalized determinant of any
fluctuation problem whenever there is a radial symmetry.
This method has now been tested successfully in gauge
theories [1,2] and in self-interacting scalar field theories
[23–26]. The physical renormalization conditions are quite
different in these various theories, but the WKB analysis
correctly encodes the renormalization physics in each case.
The method has also motivated a recent extension of the
Gel’fand-Yaglom theorem (for the determinant of ordinary
differential operators), to partial differential operators that
are radially separable [27].

An important generalization is to fermion fields. This
can be done by converting the fermion problem to second
order form, and then using the scalar method we have
described here. Aspects of this idea have been addressed
in various approximation schemes [28–31]; however, it
should be possible to develop a more direct and numeri-
cally exact fermionic approach, along the lines of the scalar
partial-wave cutoff method described here. Finally, while
the method is restricted to backgrounds for which the
fluctuation spectral problem is separable into partial waves,
this includes a relatively large class of physically interest-
ing cases, such as vortices, monopoles, and instantons.
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