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The 4-dimensional model with topological mass generation that has recently been presented by Dvali,
Jackiw, and Pi [G. Dvali, R. Jackiw, and S.-Y. Pi, Phys. Rev. Lett. 96, 081602 (2006)] is generalized to any
even number of dimensions. As in the 4-dimensional model, the 2n-dimensional model describes a mass-
generation phenomenon due to the presence of the chiral anomaly. In addition to this model, new
2n-dimensional models with topological mass generation are proposed, in which a Stückelberg-type mass
term plays a crucial role in the mass generation. The mass generation of a pseudoscalar field such as the �0

meson is discussed within this framework.
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I. INTRODUCTION

Recently, Dvali, Jackiw, and Pi have presented a novel 4-
dimensional model [1] consisting of well-known topologi-
cal entities: Chern-Pontryagin density P and Chern-
Simons current C�, P � @�C

�. This model can describe
the mass-generation phenomenon in a 4-dimensional non-
Abelian system without treating details of the underlying
dynamics. Dvali et al. found the model as a partial, 4-
dimensional generalization of the Schwinger model [2]
reformulated in terms of the topological entities in 2 di-
mensions. The reformulated Schwinger model and the 4-
dimensional model share the common mass-generation
mechanism described in topological terms. Noting this,
Dvali et al. stated that the present formulation offers a
unified topological description of the mass-generation phe-
nomena in seemingly unrelated systems.

In this paper, we first consider a straightforward
2n-dimensional generalization of the 4-dimensional model
and demonstrate that the topological mass generation
studied by Dvali et al. is present in any even number of
dimensions. There, as in the 4-dimensional model, it is
verified that the presence of the chiral anomaly is essential
for generating mass. Next, we propose a new
2n-dimensional model with topological mass generation,
in which a Stückelberg-type mass term gives rise to mass
generation in a gauge invariant manner. In addition, we
consider a hybrid of the 2n-dimensional models mentioned
above, in which a mass is caused by both the Stückelberg-
type mass term and the presence of the chiral anomaly. The
hybrid model is applied, after a few modifications, to the
mass generation of a pseudoscalar field such as the �0

meson.
In the process of deriving equations of motion in the

2n-dimensional models, it is necessary to know the varia-
tion of the Chern-Simons current in 2n dimensions. To find
this, we adopt an elegant method developed on �2n�
1�-dimensional space.

This paper is organized as follows. Section II introduces
the topological entities in 2n dimensions. Section III
presents a straightforward 2n-dimensional generalization
of the model found by Dvali et al. Section IV proposes new
2n-dimensional models with a Stückelberg-type mass
term. Section V contains a summary and discussion. The
Appendix is devoted to calculating the variation of the
Chern-Simons current in 2n dimensions.

II. TOPOLOGICAL ENTITIES

Let A be a (Hermitian) Yang-Mills connection on
2n-dimensional Minkowski space, M2n, with local coordi-
nates (x�). The connection A is assumed to take values in a
compact semisimple Lie algebra g, and hence A can be
expanded as A � gAa�Tadx

�. Here, g is a coupling con-
stant with mass dimension (2� n), fTag are Hermitian
basis of g satisfying the commutation relations �Ta; Tb� �
ifab

cTc and the normalization conditions Tr�TaTb� � �ab.
The curvature 2-form of A is given by

 F � dA� iA2 � 1
2gF

a
��Tadx

�dx�; (1)

with Fa�� � @�Aa� � @�Aa� � gfbc
aAb�Ac�. (Throughout

this paper, the symbol ^ of the wedge product is omitted.)
Consider the Chern-Pontryagin 2n-form

 

P2n � TrFn

�
1

2n
gnha1			anF

a1
�1�2 	 	 	F

an
�2n�1�2n


 dx�1dx�2 	 	 	 dx�2n�1dx�2n ; (2)

where ha1			an � Tr�Ta1
	 	 	Tan�. The Bianchi identity

dF � i�AF� FA� guarantees dP2n � 0. Then, in accor-
dance with Poincaré’s lemma, P2n is expressed at least
locally as

 P2n � dC2n�1; (3)

with the Chern-Simons (2n� 1)-form [3]
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 C2n�1�A;F� � n
Z 1

0
dtTr�AFn�1

t �; (4)

where Ft � tF� i�t2 � t�A2.
We now introduce the Hodge � operator defined by

 

��dx�1 	 	 	 dx�p� �
1

�2n� p�!
��1			�p

�p�1			�2n


 dx�p�1 	 	 	 dx�2n : (5)

The � operator transforms p-forms into their dual
(2n� p)-forms. For a p-form �p � �p!��1��1			�p




dx�1 	 	 	 dx�p on M2n, it is verified that

 � ��p � ��1�p�2n�p��1�p; (6)

 

�d � �p � ��1��p�1��2n�p��1@����1			�p�1


 dx�1 	 	 	 dx�p�1 : (7)

Using (5), the Hodge � operation of P2n is found to be

 P 2n � �P2n

�
1

2n
gnha1			an�

�1�2			�2n�1�2nFa1
�1�2 	 	 	F

an
�2n�1�2n :

(8)

The 0-form P 2n is referred to as the Chern-Pontryagin
density. Applying the � operator to (3) and using the
formulas (6) and (7), we have the dual form of (3):

 P 2n � @�C
�
2n; (9)

where the C�2n are the components of the 1-form C2n �
� � C2n�1. This 1-form, or simply C�2n, is referred to as the
Chern-Simons current. The P 2n and C�2n are topological
entities essential for constructing the 2n-dimensional mod-
els with topological mass generation.

III. MASS GENERATION DUE TO CHIRAL
ANOMALY

Now, we show that the mass-generation mechanism
studied in Ref. [1] works in any even number of dimen-
sions. The Lagrangian that we adopt, L2n, is a
2n-dimensional analogue of the Lagrangian for the 4-
dimensional model:

 L 2n �
1
2P

2
2n ��2�C�2n � @�p

����J 5
� � @

�q���: (10)

Here, p�� and q�� are antisymmetric tensor fields, J 5
� is

an axial vector current, and � is a constant with mass
dimension. (An overall dimensionful constant is omitted.)

Under the (infinitesimal) gauge transformation

 �!A
a
� � D�!

a; (11)

the Chern-Pontryagin density P 2n remains invariant, while
the Chern-Simons current C�2n transforms as

 �!C�2n � @�U
��
2n : (12)

Here, U��
2n is an antisymmetric tensor that is a polynomial

in �Aa�; Fa��;!a� and linear in !a. (For further details, see
the Appendix.) We impose the gauge transformation rule

 �!p�� �U��
2n (13)

on p�� so that the combination C�2n � @�p
�� can be gauge

invariant; thereby the gauge invariance of L2n can be
secured. In this sense, p�� plays the role of the
Stückelberg field. By contrast, q�� is assumed to be gauge
invariant, �!q�� � 0, by considering the gauge invariance
of J 5

�. As a result, L2n remains invariant under the gauge
transformation �!. The field p�� is necessary for the gauge
invariance of L2n, while q�� is necessary to avoid the
integrability condition @�J 5

� � @�J 5
�.

As can be seen in the Appendix, the variation of the
Chern-Simons current C�2n is given by [see (A23)]

 �C�2n �W ��
2n;a�A

a
� � @�V

��
2n ; (14)

where
 

W ��
2n;a �

n

2n�1 g
nha1			an�1a�

�1�2			�2n�3�2n�2��


 Fa1
�1�2 	 	 	F

an�1
�2n�3�2n�2 ; (15)

and V��
2n is an antisymmetric tensor that is a polynomial in

�Aa�; Fa��; �Aa�� and linear in �Aa�. Using (14), variation of
the action S2n �

R
L2ndx with respect to Aa� is readily

calculated, yielding the equation of motion
 

f�@�P 2n ��2�J 5
� � @

�q���gW
��
2n;a

��2@��J 5
� � @�q���

�V��
2n

�Aa�
� 0: (16)

Variation of S2n with respect to p�� and q�� yields the
equations

 @��J
5
� � @

�q��� � ��$ �� � 0; (17)

 @��C�2n � @�p
��� � ��$ �� � 0: (18)

By virtue of (17), the second line of (16) vanishes. Also, we
can strip away W ��

2n;a in (16) using the identity
W ��

2n;aF
a
�� � 2���P 2n. As a result, provided P 2n � 0,

(16) reduces to

 � @�P 2n ��2�J 5
� � @�q��� � 0: (19)

Taking the divergence of (19) and considering antisymme-
try of q��, we have

 @2P 2n ��2@�J 5
� � 0: (20)

Now, we expect that the axial vector current possesses
an anomalous divergence:

 @�J 5
� � �NP 2n; (21)
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where N is a dimensionless positive constant. Then, (20)
becomes

 @2P 2n � N�2P 2n � 0: (22)

This shows that the pseudoscalar P 2n has acquired the
mass

����
N
p

�. It should be stressed that the mass
����
N
p

� is
generated owing to the presence of the chiral anomaly. The
topological mass generation studied by Dvali et al. [1] is
thus valid in any even number of dimensions.

IV. OTHER MODELS

Until now, we have merely considered a 2n-dimensional
generalization of the 4-dimensional model given in
Ref. [1]. In this section, we propose new 2n-dimensional
models with topological mass generation.

A. A Stückelberg-type model

With the topological entities P 2n and C�2n and the anti-
symmetric tensor field p��, we first propose a model
governed by the Lagrangian

 

~L 2n �
1
2P

2
2n �

1
2m

2�C�2n � @�p
����C2n;� � @�p���; (23)

where m is a constant with mass dimension. Obviously,
~L2n is invariant under the gauge transformation �!.

Variation of the action ~S2n �
R ~L2ndx with respect to

Aa� gives, with the help of (14), the equation of motion
 

f�@�P 2n �m
2�C2n;� � @

�p���gW
��
2n;a

�m2@��C2n;� � @�p���
�V��

2n

�Aa�
� 0: (24)

Variation of ~S2n with respect to p�� yields the equation

 @��C2n;� � @
�p��� � ��$ �� � 0: (25)

By virtue of (25), the second line of (24) vanishes. Also, we
can strip away W ��

2n;a in (24) in the same manner as what
we used under (18). Consequently, provided P 2n � 0, (24)
reduces to

 � @�P 2n �m2�C2n;� � @�p��� � 0: (26)

Taking the divergence of (26), and noting (9) and antisym-
metry of p��, we have

 @2P 2n �m2P 2n � 0: (27)

This shows that the pseudoscalar P 2n has the mass m,
which is immediately caused by the second term on the
right-hand side of (23). Because this term provides a mass
in a gauge invariant manner, it can be called the
Stückelberg-type mass term of P 2n. Accordingly, we refer
to the present model as the Stückelberg-type model. The
mass-generation mechanism in this model is obviously
different from that in the model presented in Sec. III.

B. A hybrid model

Next, we propose a hybrid of the previous two models.
The Lagrangian that we adopt to define the hybrid is

 L̂ 2n �
1
2P

2
2n �

1
2m

2�C�2n � @�p
����C2n;� � @

�p���

��2�C�2n � @�p
����J 5

� � @
�q���: (28)

This certainly inherits characteristics of the Lagrangians
(10) and (23). Variation of the action Ŝ2n �

R
L̂2ndx with

respect to Aa� gives the equation of motion
 

f�@�P 2n�m
2�C2n;��@

�p�����2�J 5
��@

�q���gW
��
2n;a

�fm2@��C2n;��@�p�����2@��J 5
��@�q���g



�V��

2n

�Aa�
�0: (29)

Variation of Ŝ2n with respect to p�� and q�� yields the
equations
 

m2@��C2n;��@
�p�����2@��J

5
��@

�q������$���0;

(30)

 @��C�2n � @�p
��� � ��$ �� � 0: (31)

Combining (30) and (31) leads to (17). In the same proce-
dure as what was taken to derive (20) and (27) from (16)
and (24), respectively, we obtain, from (29) and (30),

 @2P 2n �m2P 2n ��2@�J 5
� � 0: (32)

When the chiral anomaly is presented, (21) holds and
(32) becomes

 @2P 2n � �m
2 � N�2�P 2n � 0: (33)

This demonstrates that the pseudoscalar P 2n has the mass
m̂ �

�����������������������
m2 � N�2
p

. Obviously, the mass m̂ is caused by
both the Stückelberg-type mass term and the presence of
the chiral anomaly. The hybrid model can be reduced to
either of the previous models depending on choices of the
mass parameters m and �.

V. SUMMARY AND DISCUSSION

The topological mass generation studied by Dvali et al.
is valid in any even number of dimensions with no essential
changes. That is, the 2n-dimensional Chern-Pontryagin
density P 2n acquires a mass owing to the presence of the
chiral anomaly. Here, just as in the 4-dimensional model,
the presence of the chiral anomaly is assumed without
specifying its dynamical origin. To bring the
2n-dimensional model close to a complete one, it will be
necessary to investigate the underlying dynamics that leads
to the mass generation due to the chiral anomaly.

By incorporating the Stückelberg-type mass term into
the Lagrangian (10), the 2n-dimensional model is extended
to the hybrid model governed by the Lagrangian (28). The
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hybrid model becomes the Stückelberg-type model in the
absence of the chiral anomaly. Now we concentrate our
discussion on the hybrid model, because it involves the
other two models. In the case n � 1, the hybrid model
reduces to the 2-dimensional massive Yang-Mills theory
with a vector current.

In the case n � 2, the Lagrangian (28) consists of higher
dimensional terms such as P 2

2n. For this reason, (28)
cannot be regarded as a fundamental Lagrangian; (28)
should be viewed as an effective Lagrangian that is derived
from a fundamental gauge theory. The hybrid model in the
case n � 2 will be applied to a phenomenological descrip-
tion of mass-generation phenomena expected in the fun-
damental theory. In this connection, now we propose an
application of the hybrid model to the mass generation of a
pseudoscalar field.

As in Ref. [1], we consider the axial vector current of the
form

 J 5
� �

����
N
p

��1@��0; (34)

where�0 is a pseudoscalar field. Adding an�0 kinetic term
to (28), and removing q�� and a total derivative, we have
the Lagrangian

 L̂ 0
2n �

1
2P

2
2n �

1
2m

2�C�2n � @�p
����C2n;� � @�p���

�
����
N
p

�P 2n�0 �
1
2@��0@

��0: (35)

This is gauge invariant and leads to the field equations

 � @�P 2n �m2�C2n;� � @�p��� �
����
N
p

�@��0 � 0;

(36)

 @2�0 �
����
N
p

�P 2n � 0; (37)

and (31). Because the divergence of (34) reproduces (21)
with the help of (37), the chiral anomaly is considered in
the Lagrangian (35). Taking the divergence of (36) and
using (9) and (37) yield (33). Hence, as before, P 2n ac-
quires the mass m̂. Using (37), (33) can be written in terms
of �0:

 �@2 � m̂2�@2�0 � 0: (38)

This equation implies that �0 possesses both the massless
and massive modes. Because the massive mode is recog-
nized to be physical, it follows that �0 can behave as a
pseudoscalar field with the mass m̂ [4]. In this way, a mass
of the field �0 is generated.

The Lagrangian (35) in 4 dimensions, L̂04, is very similar
to what Di Vecchia used for solving the U(1) problem in a
simple model [5]. The similarity can be seen by identifying
m̂ and m with the masses of the singlet and nonsinglet
pseudoscalar-mesons, respectively. (The �0 mass is eval-
uated by taking into account the mixing between the
singlet meson �0 and a nonsinglet meson.) A remarkable
difference between L̂04 and Di Vecchia’s Lagrangian, LD,

is that whereas LD contains the mass term M �

� 1
2m

2�2
0, L̂04 does not contain it. Instead of M, L̂04 con-

tains the Stückelberg-type mass term to provide the mass
m. Unlike M, the Stückelberg-type mass term does not
break the symmetry under a constant shift of �0. In spite of
such a difference, the hybrid model should have a close
connection with the effective Lagrangian approach to the
U(1) problem [5,6].
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APPENDIX: VARIATION OF THE CHERN-SIMONS
CURRENT

In this Appendix, we calculate the variation of the
Chern-Simons current C�2n. For this purpose, we adopt a
geometric method developed on the product space M2n 

R, a direct product of 2n-dimensional Minkowski space
M2n and 1-dimensional real space R. The exterior deriva-
tive in M2n 
 R takes the form

 d � d� �y �
@
@x�

dx� �
@
@y
dy; (A1)

where y denotes the coordinate of R. We now consider the
following Yang-Mills connection defined on M2n 
 R:

 A � A�	 � gAa�Tadx
� � g!aTady; (A2)

where A is a 1-form that, at y � 0, agrees with the con-
nection A that is already present in M2n. The components
�Aa�;!

a� of A are understood to be functions of �x�; y�.
The curvature 2-form ofA is defined in the manner same as
(1):

 F � dA� iA2 : (A3)

Substituting (A1) and (A2) into (A3) and noting the nilpo-
tency dydy � 0, we have

 F � F�
; (A4)

with 
 � �yA�D	. Here, D	 is the exterior covariant
derivative of 	: D	 � d	� i�A	�	A�. Obviously, 

can be expressed as 
 � g�a�Tadydx�, with �a� being
functions of �x�; y�. Now we write the definition of 
 as

 �yA � �D	�
: (A5)

This expression can be read as a transformation rule of A.
In fact, the right-hand side is understood as the sum of the
(infinitesimal) gauge transformation with a parameter 	
and the shift transformation with a parameter 
. For the
sake of convenience, we decompose (A5) into the sum of
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the two transformation rules:

 �	A � �D	; (A6)

 �
A � 
; (A7)

in such a way that �yA � �	A� �
A. Accordingly, the
exterior derivative d is expressed as

 d � d� �	 � �
: (A8)

The transformation rules (A6) and (A7) can be written in
terms of the component fields as

 �!Aa� � D�!a; (A9)

 ��A
a
� � �a�; (A10)

with D�!a � @�!a � gfbc
aA�b!c. Here, �! and �� are

defined by �	 � �!dy and �
 � ��dy, respectively.
Replacing �A;F� in formula (3) by �A;F�, we have an

analogue of (3) valid in M2n 
 R:

 TrFn � dC2n�1; (A11)

where C2n�1 � C2n�1�A;F�. The (2n� 1)-form C2n�1

can be expanded in powers of dy; by virtue of the nilpo-
tency dydy � 0, the expansion has only a finite number of
expansion terms:

 C 2n�1 � C2n�1�A�	;F�
�

� C2n�1�A;F� �U2n�1�A;F;	�

� V2n�1�A;F;
�: (A12)

Here, U2n�1 is first order in 	 and includes no 
, while
V2n�1 is first order in
 and includes no	. Concrete forms
for U2n�1 and V2n�1 can be found from (4) and (A12).
Applying d to (A12) gives
 

dC2n�1 � dC2n�1 � dU2n�1 � dV2n�1 � �	C2n�1

� �
C2n�1: (A13)

Also, the following expansion is valid with (A4):

 TrFn � TrFn � nTr�Fn�1
�: (A14)

Substituting (A13) and (A14) into (A11) and decomposing
the resultant with respect to 	 and 
, we have

 TrFn � dC2n�1; (A15)

 �	C2n�1 � �dU2n�1; (A16)

 �
C2n�1 � nTr�Fn�1
� � dV2n�1: (A17)

Equation (A15) is identical to (3), (A16) is the (infinitesi-
mal) gauge transformation of C2n�1, and (A17) is the shift
transformation of C2n�1. In this way, the transformation
rules of C2n�1 have together been derived.

We can write (A16) and (A17) as

 �!C2n�1 � dU2n�2; (A18)

 ��C2n�1 � nTr�Fn�1�� � dV2n�2; (A19)

with � � g�a�Tadx
�. Here, U2n�2 and V2n�2 are (2n� 2)-

forms defined by U2n�1 � U2n�2dy and V2n�1 �
V2n�2dy, respectively. We hereafter treat (A18) and
(A19) as transformation rules in M2n by setting y � 0.
Applying the � operator to (A18) and (A19) and using
the formulas (6) and (7) lead to the dual forms:

 �!C�2n � @�U
��
2n ; (A20)

 ��C
�
2n �W ��

2n;a�
a
� � @�V

��
2n ; (A21)

where
 

W ��
2n;a �

n

2n�1 g
nha1			an�1a�

�1�2			�2n�3�2n�2��


 Fa1
�1�2 	 	 	F

an�1
�2n�3�2n�2 ; (A22)

the U��
2n are the components of the 2-form U2n � � �

U2n�2, and the V��
2n are the components of the 2-form

V 2n � � � V2n�2. Obviously, U��
2n , V��

2n , and W ��
2n;a are

antisymmetric tensors.
Because �a� are arbitrary functions of x�, the shift trans-

formation (A10) can be identified with the variation of Aa�.
Replacing �a� by the variation �Aa�, we express (A21) in
the form of the variation of C�2n:

 �C�2n �W ��
2n;a�A

a
� � @�V

��
2n ; (A23)

where V��
2n here is linear in �Aa�. Thus, the variation of the

Chern-Simons current has been obtained using a geometric
method.
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