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While the outcome of gravitational collapse in classical general relativity is unquestionably a black
hole, up to now no full and complete semiclassical description of black hole formation has been
thoroughly investigated. Here we revisit the standard scenario for this process. By analyzing how
semiclassical collapse proceeds we show that the very formation of a trapping horizon can be seriously
questioned for a large set of, possibly realistic, scenarios. We emphasize that in principle the theoretical
framework of semiclassical gravity certainly allows the formation of trapping horizons. What we are
questioning here is the more subtle point of whether or not the standard black hole picture is appropriate
for describing the end point of realistic collapse. Indeed if semiclassical physics were in some cases to
prevent formation of the trapping horizon, then this suggests the possibility of new collapsed objects
which can be much less problematic, making it unnecessary to confront the information paradox or the
runaway end point problem.
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I. INTRODUCTION

Although the existence of astrophysical black holes is
now commonly accepted, we still lack a detailed under-
standing of several aspects of these objects. In particular,
when dealing with quantum field theory in a spacetime
where a classical event horizon forms, one encounters
significant conceptual problems, such as the information-
loss paradox linked to black hole thermal evaporation [1–
4].

The growing evidence that black hole evaporation may
be compatible with unitary evolution in string-inspired
scenarios (see, e.g., Ref. [5])1 has in recent years led to a
revival of interest in, and extensive modification of, early
[7] alternative semiclassical scenarios for the late stages of
gravitational collapse [8,9]. (See also [10].) Indeed, while
it is by now certain that the outcome of a realistic classical
collapse is necessarily a standard black hole delimited by
an event horizon (that is, a region B of the total spacetime
M which does not overlap with the causal past of future
null infinity: B �M� J��I�� � ;), it has recently
been suggested that only apparent or trapping horizons
might actually be allowed in nature, and that somehow
semiclassical or quantum gravitational [9,11,12] effects
could prevent the formation of a (strict, absolute) event
horizon,2 and hence possibly evade the necessity of a
singular structure in their interior.

Note that Hawking radiation would still be present, even
in the absence of an event horizon [13]. Moreover, the

present authors have noticed that, kinematically, a collaps-
ing body could still emit a Hawking-like Planckian flux
even if no horizon (of any kind) is ever formed at any finite
time [14]3; all that is needed being an exponential approach
to apparent/trapping horizon formation in infinite time.
Since in this case the evaporation would occur in a space-
time where information by construction cannot be lost or
trapped, there would be no obstruction in principle to its
recovery by suitable measurements of quantum correla-
tions. (The evaporation would be characterized by a
Planckian spectrum and not by a truly thermal one.)

Inspired by these investigations we wish here to revisit
the basic ideas that led in the past to the standard scenario
for semiclassical black hole formation and evaporation. We
shall see that, while the formation of the trapping horizon
(or indeed most types of horizon) is definitely permitted in
semiclassical gravity, nonetheless the actual occurrence or
nonoccurrence of a horizon will depend delicately on the
specific dynamical features of the collapse.

Indeed, we shall argue that in realistic situations one
may have alternative end points of semiclassical collapse
which are quite different from black holes, and intrinsically
semiclassical in nature. Hence, it may well be that the
compact objects that astrophysicists currently identify as
black holes correspond to a rather different physics. We
shall here suggest such an alternative description by pro-
posing a new class of compact objects (that might be called
‘‘black stars’’) in which no horizons (or ergoregions) are
present.4 The absence of these features would make such

1See, however, a recent article by D. Amati [6] for an alter-
native point of view on the significance of these results.

2‘‘The way the information gets out seems to be that a true
event horizon never forms, just an apparent horizon.’’ (Stephen
Hawking in the abstract to his GR17 talk [11].)

3Recently, it was brought to our attention that this possibility
was also pointed out in a paper by P. Grove [15].

4These ‘‘black stars’’ are nevertheless distinct from the re-
cently introduced ‘‘gravastars’’ [16].
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objects free from some of the daunting problems that
plague black hole physics.

II. SEMICLASSICAL COLLAPSE: THE STANDARD
SCENARIO

Let us begin by revisiting the standard semiclassical
scenario for black hole formation. For simplicity, in this
paper we shall consider only nonrotating, neutral,
Schwarzschild black holes; however, all the discussion
can be readily generalized to other black hole solutions.

Consider a star of mass M in hydrostatic equilibrium in
empty space. For such a configuration the appropriate
quantum state is well known to be the Boulware vacuum
state j0Bi [17], which is defined unambiguously as the state
with zero particle content for static observers, and is regu-
lar everywhere both inside and outside the star (this state is
also known as the static, or Schwarzschild, vacuum [18]).
If the star is sufficiently dilute (so that the radius is very
large compared to 2M), then the spacetime is nearly
Minkowskian and such a state will be virtually indistin-
guishable from the Minkowski vacuum. Hence, the expec-
tation value of the renormalized stress-energy-momentum
tensor (RSET) will be negligible throughout the entire
spacetime. This is the reason why, when calculating the
spacetime geometry associated with a dilute star, one only
needs to care about the classical contribution to the stress-
energy-momentum tensor (SET).

Imagine now that, at some moment, the star begins to
collapse. The evolution proceeds as in classical general
relativity, but with some extra contributions as spacetime
dynamics will also affect the behavior of any quantum
fields that are present, giving place to both particle pro-
duction and additional vacuum polarization effects.
Contingent upon the standard scenario being correct, if
we work in the Heisenberg picture there is a single globally
defined regular quantum state jCi � jcollapsei that de-
scribes these phenomena.

For simplicity, consider a massless quantum scalar field
and restrict the analysis to spherically symmetric solutions.
Every mode of the field can (neglecting backscattering) be
described as a wave coming in from I� (i.e., from r!
�1, t! �1), going inwards through the star till bounc-
ing at its center (r � 0), and then moving outwards to
finally reach I�. As in this paper we are going to work
in 1� 1 dimensions (i.e., we shall ignore any angular
dependence), for later notational convenience instead of
considering wave reflections at r � 0 we will take two
mirror-symmetric copies of the spacetime of the collapsing
star glued together at r � 0 (see Fig. 1). In one copy r will
run from�1 to 0, and in the other from 0 to�1. Then one
can concentrate on how the modes change on their way
from I�

left (i.e., r! �1, t! �1) to I�
right (i.e., r!

�1, t! �1). Hereafter, we will always implicitly as-
sume this construction and will not explicitly specify
‘‘left’’ and ‘‘right’’ except where it might cause confusion.

Now, one can always write the field operator as

 �̂�t; r� �
Z

d��â�’��t; r� � â
y
�’

�
��t; r�� ; (1)

where ’� are the modes that near I� behave asymptoti-
cally as5

 ’��r; t� 	
1

�2��3=2�2��1=2jrj
e�i�U; (2)

with U � t� r and �> 0. One can then identify the state
jCi as the one that is annihilated by the destruction opera-
tors associated with these modes: â�jCi � 0. (One could
also expand �̂ using a wave packet basis [2], which is a
better choice if one wants to deal with behavior localized in
space and time.) Since the spacetime outside the star is
isometric with a corresponding portion of Kruskal space-

FIG. 1. Standard conformal diagram for a collapsing star, and its mirror-symmetric version.

5We work in natural units.
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time, and is static in the far past, the modes ’� have the
same asymptotic expression as the Boulware modes [17]
near I� (i.e., for t! �1). Hence jCi, the quantum state
corresponding to the physical collapse, is (near I�) indis-
tinguishable from the Boulware vacuum j0Bi. (But this will
of course no longer be true as one moves significantly away
from I�.)

Now, the semiclassical collapse problem consists of
studying the evolution of the geometry as determined by
the semiclassical Einstein equations

 G�� � 8��Tc�� � hCjT̂��jCi�; (3)

where Tc�� is the classical part of the SET. Significant
deviations from the classical collapse scenario can appear
only if the RSET in Eq. (3) becomes comparable with the
classical SET. In this analysis there are (at least) two
important results from the extant literature that have to
be taken into account:

(i) If a quantum state is such that the singularity struc-
ture of the two-point function is initially of the
Hadamard form, then Cauchy evolution will pre-
serve this feature [19], at least up to the edge of the
spacetime (which might be, for instance, a Cauchy
horizon [20]). The state jCi certainly satisfies this
Hadamard condition at early times [21], hence it
must satisfy it also in the future, even if a trapping/
event horizon forms. (A trapping/event horizon is not
a Cauchy horizon, and is not an obstruction to main-
taining the Hadamard condition.) As a consequence
of this fact the RSET cannot become singular any-
where on the collapse geometry, independently of
whether or not a trapping/event horizon is formed.6

(ii) For specific semiclassical models of the collapsing
star it has been numerically demonstrated (modulo
several important technical caveats) that the value of
the RSET remains negligibly small throughout the
entire collapse process, including the moment of
horizon formation [22].7 Subsequently, in this sce-
nario quantum effects manifest themselves via the
slow evaporation of the black hole.

Thus in this standard scenario nothing prevents the for-
mation of trapped regions (or trapped/apparent/event hori-
zons). Given that quantum-induced violations of the
energy conditions [24,25] are taken to be small enough at
this stage of the collapse, one can still use Penrose’s
singularity theorem to argue that a singularity will then
tend to form. Assuming that quantum gravity effects will

not conspire to avoid this conclusion, then, in conformity
with all extant calculations and the cosmic censorship
conjecture, a spacelike singularity and a true event horizon
will form. The collapsed star settles down in a quasistatic
black hole and then ultimately evaporates.

This last feature can be easily derived by considering an
expansion of the field in a basis which contains modes that
near I� (i.e., for r! �1, t! �1), behave asymptoti-
cally as

  !�r; t� 	
1

�2��3=2�2!�1=2r
e�i!u; (4)

with u � t� r and !> 0, so defining creation and anni-
hilation operators that differ from those associated with the
modes ’� of Eq. (2). In a static configuration a (spherical)
wave coming from I� is blue-shifted on its way towards
the center of the star, and is then equally red-shifted on its
way out to I�, arriving there undistorted. However, in a
dynamically collapsing configuration the red-shift exceeds
the blue-shift, so that an initial wave at I� is distorted
once it reaches I�. In this sense the dynamical spacetime
acts as a ‘‘processing machine’’ for the normal modes of
the field. Expanding the distorted wave in terms of the
undistorted basis at I� tells us the amount of particle
creation due to the dynamics. In particular one can take a
wave packet centered on frequency � on I� and ask what
its typical frequency, say!, will be when it arrives on I�.
The Bogoliubov coefficients that allow us to express the
annihilation operators related to the modes (4) in terms of
the creation operators pertaining to the modes (2) are
related to the number of particles seen by asymptotic
observers on I�, which is nothing else than the thermal
flux of Hawking radiation [1,2,18].

This can be rephrased saying that the physical state jCi
corresponding to the collapse behaves like the Unruh
vacuum j0Ui [26] of Kruskal spacetime near the event
horizon, H�, and near I� (i.e., for t! �1). Indeed,
in the Kruskal spacetime the Unruh state j0Ui is a zero-
particle state for a freely falling observer crossing the
horizon, and corresponds to a thermal flux of particles at
the Hawking temperature for a static observer at infinity
[18,27]. Given that at late times classical black holes
generated via classical gravitational collapse are virtually
indistinguishable from eternal black holes (see, for in-
stance, the classical theorem in [28]), the Unruh vacuum
is the only quantum state on Kruskal spacetime which
appropriately (near I� and H�) simulates the physical
vacuum in a spacetime with an event horizon formed via
gravitational collapse.

However as previously mentioned, this standard sce-
nario leads to several well-known problems (or at the
very least, disquieting features):

(i) Modes corresponding to quanta detected at I� have
an arbitrarily high frequency on I� (this is the so-
called trans-Planckian problem [26]).

6It is important to understand exactly what this theorem does
and does not say: If we work in a well-behaved coordinate
system (where the matrix of metric coefficients is nonsingular
and has finite components), then the coordinate components of
the RSET are likewise finite. But note that finite does not
necessarily imply small.

7Similar results were, after some discussion, found in �1�
1�-dimensional models based on dilaton gravity [23].

FATE OF GRAVITATIONAL COLLAPSE IN . . . PHYSICAL REVIEW D 77, 044032 (2008)

044032-3



(ii) The runaway end point of the evaporation process
(the Hawking temperature is inversely proportional
to the black hole mass) prevents any well-defined
semiclassical answer regarding the ultimate fate of a
black hole [1].

(iii) If eventually the black hole completely evaporates,
leaving just thermal radiation in flat spacetime, then
it would seem that nothing would prevent a unitarity-
violating evolution of pure states into mixed states,
contradicting a basic tenet of (usual) quantum theory
(this is one aspect of the so-called information-loss
paradox [3,4]). Such a difficulty for reconciliating
quantum mechanics with general relativity seems to
persist even when imagining many alternative sce-
narios for the end point of the evaporation, so that
one can still continue to talk about an information-
loss problem [3,4].

All in all, it is clear that this semiclassical collapse scenario
is evidently plagued by significant difficulties and obscur-
ities that still need to be understood. For this reason we
think it is worthwhile to step back to a clean slate, and to
revisit the above story uncovering all the hidden
assumptions.

III. SEMICLASSICAL COLLAPSE: A CRITIQUE

It is easy to argue that one cannot trust a semiclassical
gravity analysis once a collapsing configuration has en-
tered into a high-curvature (Planck-scale) regime; this is
expected in the immediate neighborhood of the region in
which the classical equations predict the appearance of a
curvature singularity. Once the formation of a trapped
region is assumed, any solution of the problems mentioned
above seems (naively) to demand an analysis in a full-
fledged theory of quantum gravity. Here, however, we are
questioning the very formation of a trapped region in
astrophysical collapse. In analyzing this question we will
see that semiclassical gravity provides a useful and sen-
sible starting point. Moreover, we will also show that it
provides some indications as to how the standard scenario
might be modified.

A. The trans-Planckian problem

One potential problem with the semiclassical gravity
framework, when used to analyze the onset of horizon
formation, is the trans-Planckian problem. While this prob-
lem is usually formulated in static spacetimes, for our
purposes we wish to look back to its origin in a collapse
scenario.

We can, as usual, encode the dynamics of the geometry
in the relation U � p�u� between the affine null coordi-
nates U and u, regular on I� and I�, respectively.
Neglecting backscattering, a mode of the form (2) near
I� takes, near I�, the form

 ’��r; t� 	
1

�2��3=2�2��1=2r
e�i�p�u�: (5)

This can be regarded, approximately, as a mode of the type
presented in Eq. (4), but now with u-dependent frequency
!�u;�� � _p�u��, where a dot denotes differentiation
with respect to u. (Of course, this formula just expresses
the red-shift undergone by a signal in travelling from I�

to I�.)
In general we can expect a mode to be excited if the

standard adiabatic condition

 j _!�u;��j=!2 
 1 (6)

does not hold. It is not difficult to see that this happens for
frequencies smaller than

 �0�u� � j �p�u�j= _p�u�2: (7)

One can then think of �0�u� as a frequency marking, at
each instant of retarded time u, the separation between the
modes that have been excited (�
 �0) and those that are
still unexcited (�� �0).

Moreover, Planck-scale modes (as defined on I�) are
excited in a finite amount of time, even before the actual
formation of any trapped region. Indeed, they start to be
excited when the surface of the star is above the classical
location of the horizon by a proper distance D of about one
Planck length, as measured by Schwarzschild static ob-
servers. We can see this by observing that the red-shift
factor satisfies

 �1� 2M=r�1=2 �!=� � _p�u� � �=�0 ; (8)

where � � �4M��1 is the surface gravity. This then implies
�r� 2M� � �=�2

0, where we have used �M� 1. Hence

 D� �r� 2M��1� 2M=r��1=2 � 1=�0 : (9)

Hence, the trans-Planckian problem has its roots at the very
onset of the formation of the trapping horizon.
Furthermore, any complete description of the semiclassical
collapse cannot be achieved without at least some assump-
tions about trans-Planckian physics.

Of course, one can simply assume that there is a natural
Planck-scale frequency cutoff for effective field theory in
curved spacetimes. Although one cannot completely ex-
clude this possibility, we find that this way of avoiding the
trans-Planckian problem is perhaps worse than the problem
itself, as it would automatically also imply a shutdown of
the Hawking flux in a finite (very small) amount of time.
This would eliminate the thermodynamical behavior of
black holes, thus undermining the current explanation for
the striking similarity between the laws of black hole
mechanics and those of thermodynamics—that they are,
in fact, just the same laws [29].

Moreover, such a ‘‘hard cutoff’’ obviously corresponds
to a breakdown of Lorentz invariance at the Planck scale. If
one is ready to accept such a departure from standard
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physics, then it seems more plausible (less objectionable?)
to conjecture a milder breaking of Lorentz invariance in the
form of a modified dispersion relation, a possibility ex-
plored in several works on the trans-Planckian problem
[30]. While it is seemingly well understood that the
Hawking radiation would survive in this case [31], it is
however less clear what effect such modified dispersion
relations might have on the possibility of forming a (pre-
sumably frequency-dependent) trapping horizon, and in-
deed, on the very definition of such a concept [32].

In what follows we shall adopt a conservative approach
and stick, as is usually done, to the standard framework of
quantum field theory in curved spacetime, assuming its
validity up to arbitrarily high frequencies. Even in the
presence of Lorentz violating effects, this would remain
a valid framework if, for example, the scale at which
Lorentz violations might appear was much higher than
the Planck scale [33].

B. Vacuum polarization

The other difficulties of the standard scenario previously
listed have been linked by different authors to the presence
of horizons and of trapping regions in general. As we have
previously discussed, several departures from semiclassi-
cal gravity have often been called for in order to solve these
problems. However, the specific question we now want to
raise here is rather different: Is the scenario just described
guaranteed to be the one actually realized in semiclassical
gravity? Or is it possible that semiclassical gravity allows
for alternative end points of gravitational collapse, in
which these problems are not present? In order to answer
these questions we look for possible semiclassical effects
which could modify the collapse before the very formation
of a trapped region.

In any calculation of semiclassical collapse the choice of
the properties of the matter involved (which will be en-
coded in the characteristics of the classical SET) is, ob-
viously, of crucial importance. Normally the initial
conditions at early times are chosen so that one has a static
star with any quantum field in their ‘‘natural’’ vacuum
state. As we have discussed, this will be virtually indistin-
guishable from the Boulware vacuum state. In this initial
configuration we are sure that the RSET is practically zero
throughout spacetime, at least before the collapse is ini-
tiated. We now want to inquire into the possibility that such
a RSET becomes non-negligible during the collapse.

In the standard semiclassical scenario, it is crucial that
the initial Boulware-like structure of the field modes at I�

is somehow ‘‘excited’’ by the collapse and converted into
an Unruh-like structure at both H� and I�—this is
necessary for compatibility with the presence of a trapping
horizon. In fact, if this excitation and conversion were not
to be sufficiently effective so as to get rid of Boulware-like
modes in the proximity of the would-be horizon, then a
potential obstruction to the very formation of the horizon

may arise. We know in fact that in static geometries there is
an intrinsic incompatibility between the Boulware vacuum
and the existence of a trapping horizon, as the RSET near
the horizon (in a simplified calculation in 1� 1 dimen-
sions) is found to be [34]

 h0BjT̂�̂ �̂�r�j0Biren / �
1

M2

1

1� 2M=r
1 0
0 1

� �
; (10)

where we work in an orthonormal basis. A similar result
remains valid in the more complicated �3�
1�-dimensional case [27]. The important point is that the
denominator vanishes at the horizon. Hence the RSET
acquires a divergent (and energy condition violating [24])
contribution, which is of course present even if the com-
ponents of the RSET are evaluated in a freely falling basis
[27]. (To see that something intrinsic is going on at the
horizon it is sufficient to calculate the scalar invariant
T��T

�� � T�̂ �̂T
�̂ �̂, and to note that this scalar diverges

at the horizon.) Note that there is no need for large space-
time curvature in order to obtain such a potentially diver-
gent contribution, as this potential divergence is due only
to the manner in which the field behavior in the asymptotic
region correlates with that in the vicinity of the horizon.

Of course the above result applies to a static spacetime,
while we are interested in investigating an intrinsically
dynamical scenario, which we moreover know, due to the
Fulling-Sweeny-Wald theorem [19], should act in such a
way as to avoid the above divergence. We are hence
interested in seeing the precise way in which this happens,
and in exploring whether it might leave a route to possibly
obtaining large, albeit finite, contributions to the RSET at
the onset of horizon formation.

IV. THE RSET

In calculating the RSET in a dynamical collapse several
choices must be made. The major assumption is that we
shall for the time being restrict attention to 1� 1 dimen-
sions, since then there is a realistic hope of carrying out a
complete analytic calculation. Physically, this is not as bad
a truncation as it at first seems, since we can always view it
as an s-wave approximation to full �3� 1�-dimensional
problem, with at most a few actors of r�2 being inserted at
strategic places. (For instance, this analytic approximation
underlies the subsequent numerical calculation of
Parentani and Piran [22].) A second significant choice we
will make is to specifically work in a regular coordinate
system, in particular, in Painlevé-Gullstrand coordinates
[35,36]. In regular coordinate systems (where the matrix of
metric coefficients is both finite and nonsingular), the
values of the stress-energy-momentum components are
direct and useful diagnostics of the ‘‘size’’ of the stress-
energy-momentum tensor.
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A. Preliminaries

With reference to the diamond-shaped conformal dia-
gram of Fig. 1, we shall start by considering a set of affine
coordinates U and W, defined on I�left and I�right, respec-
tively. These coordinates are globally defined over the
spacetime and the metric can be written as

 g � �C�U;W�dUdW: (11)

Given that we shall be concerned with events which lie
outside of the collapsing star on the right-hand side of our
diagram, we can also choose a second double-null coor-
dinate patch �u;W�, where u is taken to be affine on I�

right,
in terms of which the metric is

 g � � �C�u;W�dudW: (12)

Of course,

 C�U;W� � �C�u;W�= _p�u�; (13)

where U � p�u� describes the coordinate transformation.
Then

 @U � _p�1@u : (14)

Furthermore, as long as we are outside the collapsing star it
is safe to assume that a Birkhoff-like result holds, and take
�C�u;W� as being that of a static spacetime.

Now for any massless quantum field, the RSET (corre-
sponding to a quantum state that is initially Boulware) has
components [18,34]

 TUU / C1=2@2
UC
�1=2; (15)

 TWW / C
1=2@2

WC
�1=2; (16)

 TUW / R: (17)

The coefficients arising here are not particularly important,
and will in any case depend on the specific type of quantum
field under consideration.

The components TWW and TUW will necessarily be well
behaved throughout the region of interest; in particular,
they are the same as in a static spacetime and are known to
be regular. On the contrary TUU shows a more complex
structure due to the nontrivial relation between U and u. A
brief computation yields

 C1=2@2
UC
�1=2 �

1

_p2 �
�C1=2@2

u
�C�1=2 � _p1=2@2

u _p�1=2� : (18)

The key point here is that we have two terms, one
( �C1=2@2

u
�C�1=2) arising purely from the static spacetime

outside the collapsing star, and the other ( _p1=2@2
u _p�1=2)

arising purely from the dynamics of the collapse. If, and
only if, the horizon is assumed to form at finite time will
the leading contributions of these two terms cancel against
each other—this is the standard scenario.

Indeed the first term is exactly what one would compute
from using standard Boulware vacuum for a static star. As
the surface of the star recedes, more and more of the static
spacetime is ‘‘uncovered,’’ and one begins to see regions of
the spacetime where the Boulware contribution to the
RSET is more and more negative, in fact diverging as the
surface of the star crosses the horizon.

B. Regular coordinates

To probe the details of the collapse, it is useful to
introduce yet a third coordinate chart—a Painlevé-
Gullstrand coordinate chart �x; t� in terms of which the
metric is [14,35,36]

 g � �c2�x; t�dt2 � �dx� v�x; t�dt�2: (19)

This coordinate chart is particularly useful because it is
regular at the horizon, so that the finiteness of the stress-
energy-momentum components in this chart has a direct
physical meaning in terms of regularity of the stress-en-
ergy-momentum tensor.8 By setting the spacetime interval
to zero, it is easy to see that the null rays are given by

 d x � �c� v�dt: (20)

Although inside the collapsing star the metric can de-
pend on x and t in a complicated way, the geometry outside
the surface of the star is taken to be static, so the functions
c and v do not depend on t. Under these conditions we can
integrate along the history of an outgoing ray from an event
�t; x� just outside the collapsing star to another event
�tf; xf� at asymptotic future infinity I�

right:

 tf � t �
Z xf

x

dx0

c�x0� � v�x0�
: (21)

Assuming asymptotic flatness, c��1� � 1 and v��1� �
0, we find for the u null coordinate in the ‘‘out’’ region,

 u :� lim
tf!�1

�tf � xf� � t�
Z x dx0

c�x0� � v�x0�
: (22)

Hence, denoting partial derivatives by subscripts:

 Ux � _p�u�ux � �
_p�u�

c�x� � v�x�
; (23)

 Ut � _p�u�ut � _p�u�: (24)

In contrast, along an incoming ray leaving asymptotic past
infinity I�right at an event �ti; xi� and remaining outside the
star,

8These coordinates are also useful as they allow to straight-
forwardly apply our calculations to acoustic analogue space-
times (provided one is in a regime in which one could neglect the
existence of modified dispersion relations) [14,36].
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 t� ti � �
Z x

xi

dx0

c�x0� � v�x0�
; (25)

so we have, for the W null coordinate:

 W :� lim
ti!�1

�ti � xi� � t�
Z x dx0

c�x0� � v�x0�
: (26)

Hence

 Wx �
1

c�x� � v�x�
; Wt � 1: (27)

In addition, by substituting and comparing coefficients
of the line element, it is easy to see that the �U;W� and
�x; t� coordinates are related by

 Ut � ��c� v�Ux ; (28)

 Wt � �c� v�Wx ; (29)

and

 C�x; t� � �
1

UxWx
: (30)

Therefore the components of the RSET can be calcu-
lated in any of the equivalent forms:
 

Ttt � U2
t TUU � 2UtWtTUW �W

2
t TWW (31)

 

� �c� v�2U2
xTUU � 2�c2 � v2�UxWxTUW

� �c� v�2W2
xTWW (32)

 � _p2TUU � 2 _pTUW � TWW ; (33)

 Ttx � UtUxTUU � �UtWx �UxWt�TUW �WtWxTWW
(34)

 � ��c� v�U2
xTUU � 2vUxWxTUW � �c� v�W

2
xTWW

(35)

 � �
_p2

c� v
TUU �

2 _pv

c2 � v2 TUW �
1

c� v
TWW ; (36)

 Txx � U2
xTUU � 2UxWxTUW �W2

xTWW (37)

 �
_p2

�c� v�2
TUU � 2

_p

c2 � v2 TUW �
1

�c� v�2
TWW:

(38)

Some of these formulae are more useful for calculating the
static Boulware contribution, others are more useful for
calculating the dynamical contribution. Since c� v! 0
at a horizon, while c� v! 2c is regular, this is enough to
guarantee that the Ttt and Ttx components of the RSET are
always better behaved (less divergent) than the Txx com-

ponent. Note that no divergence can arise from the terms
proportional to TWW .

Equations (22) and (26) also allow us to express the
derivative with respect to u in terms of those with respect to
the regular coordinates x and t:

 @u �
c� v

2c
@t �

c2 � v2

2c
@x : (39)

C. Calculation assuming normal horizon formation

Hereafter, we shall for simplicity restrict our attention to
the case c�x� � 1. Placing the horizon at x � 0 for conve-
nience, we can write the asymptotic expansion

 v�x� � �1� �x� �2x
2 � � � � ; (40)

where � can be identified with the surface gravity [14,36].
Consider first the static Boulware term in Eq. (18). We

have (placing the horizon at x � 0 for convenience)

 

�C � �
_p

UxWx
� �

1

uxWx
� 1� v�x�2 	 2�x: (41)

The relevant derivative in @u is then that with respect to x,
and we can write

 

�C 1=2@2
u

�C�1=2 	 �2�x�1=2�x@x��x@x�2�x��1=2� � �2=4:

(42)

In fact, keeping the subleading terms one finds

 

�C 1=2@2
u

�C�1=2 �
�2

4
�O�x2�: (43)

By Eqs. (36) and (38), it is clear that because of the
constant term �2=4, the components Ttx and Txx of the
RSET contain contributions that diverge as x�1 and x�2,
respectively, as x! 0. (The subleading terms lead to finite
contributions of order O�x� and O�1�, respectively.)

In counterpoint, assuming horizon formation, let us now
calculate the dynamical contribution to the RSET
( _p1=2@2

u _p�1=2). It is well known that any configuration
that produces a horizon at a finite time tH leads to an
asymptotic (large u) form

 p�u� 	 UH � A1e��u; (44)

where UH and A1 are suitable constants. Taking into ac-
count the asymptotic expression (40) for v�x� near x � 0, it
is very easy to see that the potential divergence at the
horizon due to the static term is exactly cancelled by the
dynamical term. In this way we have recovered the stan-
dard result that the RSET at the horizon of a collapsing star
is regular.

However, the previous relation is an asymptotic one, and
for what we are most interested in (the value of the RSET
close to horizon formation) it is important to take into
account extra terms that will be subdominant at late times.
Indeed, we can describe the location of the surface of a
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collapsing star that crosses the horizon at time tH by

 x � r�t� � 2M � ��t� � ���t� tH� � � � � ; (45)

where the expansion makes sense for small values of jt�
tHj, and � represents the velocity with which the surface
crosses the gravitational radius. Let t0 be the time at which
a right-moving light ray corresponding to null coordinates
u and U crosses the surface of the star. Then on the one
hand

 tf � t0 �
Z xf

��t0�

dx0

1� v�x0�
; (46)

which for t0 	 tH (implying r�t0� 	 2M) can be approxi-
mated by

 u 	 �t0 � tH� �
1

�
ln����t0 � tH�� � C1; (47)

so that

 t0 � tH 	 C2
e��u

�
� � � � (48)

On the other hand, since U�t0� is simply some regular
function, we have

 U�t0� � UH �U0H�t0 � tH� �
U00H
2
�t0 � tH�2 � � � � (49)

Inserting (48) into (49) we obtain an asymptotic expansion

 p�u��UH�A1e��u�
A2

2
e�2�u�

A3

3!
e�3�u���� (50)

which it is useful to write as
 p�u� � UH � F�e��u�; (51)

where F is a regular function such that F�0� � 0. Then
 

_p1=2@2
u _p�1=2 � �

1

2

p:::

_p
�

3

4

�
�p
_p

�
2

�
�2

4
�

�
�

1

2

F000

F0
�

3

4

�
F00

F0

�
2
�
�2e�2�u

�
�2

4
�

�
�

1

2

A3

A1
�

3

4

�
A2

A1

�
2
�
�2e�2�u

�O�e�3�u�: (52)

The point is that this has a universal contribution coming
from the surface gravity, plus messy subdominant terms
that depend on the details of the collapse. It is important to
note, however, that the corresponding additional contribu-
tions to the RSET are finite, in contrast to the one associ-
ated with the first term. Indeed, for small values of x,

 u 	 t�
1

�
lnx� const; (53)

so

 e��u / xe��t; (54)

and so the second term in the right-hand side of Eq. (52) is
O�x2�, and by Eq. (38) gives an O�1� contribution to Txx
that does not depend on x, but depends on time as e�2�t. In
addition, from a comparison of Eqs. (48)–(50) we see that

 

A2

A1
/

1

�
;

A3

A1
/

1

�2 ; (55)

so the leading subdominant term in the RSET is inversely
proportional to the square of the speed with which the
surface of the star crosses its gravitational radius. In par-
ticular, at horizon crossing, that is at t � tH, the value of
the RSET can be as large as one wants provided one makes
� very small. This would correspond to a very slow col-
lapse in the proximity of the trapping horizon formation.
Thus, there is a concrete possibility that (energy condition
violating) quantum contributions to the stress-energy-
momentum tensor could lead to significant deviations
from classical collapse when a trapping horizon is just
about to form.

D. Calculation assuming asymptotic horizon formation

Another interesting case one may want to consider is one
in which the horizon is never formed at finite time, but just
approached asymptotically as time runs to infinity. In
particular, in Ref. [14] it was shown that collapses charac-
terized by an exponential approach to the horizon,

 r�t� � 2M� Be��Dt; (56)

lead to a function p�u� of the form

 p�u� � UH � A1e��effu; (57)

where �eff is half the harmonic mean between � and the
rapidity of the exponential approach �D,

 �eff �
��D

�� �D
; (58)

so that one always has �eff < �. In this case, the calculation
of the dynamical part of the RSET leads to exactly the
same result as that when using expression (44), modulo the
substitution of � by �eff . However, the nondynamical part
of the RSET remains unchanged. This implies that now, at
leading order

 RSET �x	 0� 	
1

�2x2 ��
2
eff��

2� ��
��2�D���

��D���2x2 ; (59)

which obviously diverges in the limit x! 0.9

We stress that this result does not contradict the Fulling-
Sweeny-Wald theorem [19], as the calculation applies only
outside the surface of the star (i.e., for x � ��t�), and so the
divergence appears only at the boundary of spacetime.
Nevertheless, particularizing to x � ��t�, this again indi-
cates that there is a concrete possibility that energy condi-
tion violating quantum contributions to the stress-energy-
momentum tensor could lead to significant deviations from

9Like the divergence encountered in Eq. (10), this one is also
physical and is not due to a large curvature. This, together with
the nature of the collapse, hints that the origin of such a
divergence can be traced back to the asymptotic recovery of
Boulware vacuum.
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classical collapse when a trapping horizon is on the verge
of being formed.

E. Physical insight

The key bits of physical insight we have garnered from
this calculation are:

(i) In the standard collapse scenario the regularity of the
RSET at horizon formation is due to a subtle can-
cellation between the dynamical and the static
contributions.

(ii) Contributions that can be neglected at late times can
indeed be very large at the onset of horizon forma-
tion. The actual value of these contributions depends
on the rapidity with which the configuration ap-
proaches its trapping horizon.

(iii) Once the horizon forms, the above contributions will
be exponentially damped with time. However, the
analysis of the configuration that approaches horizon
formation asymptotically tells us that, while horizon
formation is delayed, there are contributions that will
keep growing with time.

Hence apparently the RSET can acquire large (and
energy condition violating [24]) contributions when a col-
lapsing object approaches its Schwarzschild radius, de-
pending on the details of the dynamics. The final lesson
to draw from this part of our investigation is that not all the
classical matter configurations compatible with the forma-
tion of a trapping horizon in classical general relativity
necessarily lead to the same final state when semiclassical
effects are taken into account. In particular, for classical
collapses that exhibit a slow approach to horizon forma-
tion, our calculation indicates that there will be a large
(albeit always finite in compliance with [19]) contribution
from the RSET, a contribution which can potentially lead
the semiclassical collapse to classically unforeseeable end
points. For these reasons we wish next to further explore
the alternative situation in which the horizon is only
formed asymptotically.

V. A QUASI-BLACK HOLE SCENARIO

The history of the confrontation between general rela-
tivity and quantum physics has already shown several
times that the quantum mechanical effects in matter can
prevent the formation of black holes in situations in which
classically such formation would seem unavoidable.
Without quantum mechanics, objects such as white dwarfs
and neutrons stars would have never been predicted in the
first place. Similarly, in this paper we have seen that if for
any reason the collapse of the matter forces it into some
(metastable) state in which horizon formation is ap-
proached sufficiently slowly, then large quantum vacuum
effects could prevent the very formation of a trapping
horizon. The resulting object could then be considered
the most compact and quantum mechanical kind of star.

These objects, which we shall tentatively call ‘‘black
stars,’’10 would be supported by a form of quantum pres-
sure of universal nature, being characterized only by their
closeness to the formation of a trapping horizon.

Lacking an understanding of the physics of matter at
densities well beyond that characterizing neutron stars,11

we cannot reliably assert anything about the stability of
black stars. However, the first motivation for our investi-
gation was to see whether semiclassical physics can allow
for compact objects closely mimicking black hole features,
including Hawking radiation, without incurring in the same
problems plaguing the standard scenario. In this sense,
static configurations do not seem viable candidates as the
absence of a trapping horizon together with the staticity
prevents any possibility of emission of a Hawking flux.12

On the other side, evolving configurations that continue to
asymptotically approach their would-be horizon13 would
produce quantum radiation at late times.

Such a scenario could be realized in nature provided that
the following two conditions are satisfied: (i) That matter
physics at high densities acts in such a way as to slow down
the collapse, allowing for the piling up of a sizeable RSET;
(ii) That the resulting energy-violating RSET, instead of
completely stopping the collapse, leads to an asymptotic
approach to horizon formation. In this case one would
obtain an evolving configuration where every layer of the
collapsing star lies very close to where the classical hori-
zon of the matter inside it would be located, continually
and asymptotically approaching it. We can call this object a
‘‘quasi-black hole.’’

In order to know exactly how the star asymptotically
approaches the horizon in this scenario, one should solve
Einstein’s semiclassical field equations with backreac-
tion—obviously a very difficult task. Without the result
of such an explicit calculation, it is nevertheless reasonable
to conjecture that the approach can either follow a power
law, or be exponential with a time scale 1=�D, say. The
case of a power law seems, however, uninteresting for our
purposes, because it would not lead to a Planckian emis-
sion [14]. On the contrary, an exponential approach is
associated with the emission of radiation at a modified

10Newtonian versions of ‘‘black stars,’’ more often called ‘‘dark
stars,’’ have a very long history in astrophysics, dating back to
Michell [37] and Laplace [38]. For recent commentary on the
historical connections between Michell, Cavendish, and Laplace,
see [39].

11We have here in mind the realistic collapse of stellar-size
objects, rather than gedanken experiments involving the collapse
of galaxy-size configurations [40].

12It is perhaps worthwhile to stress here that such static black
stars do not belong to the class of objects known in the literature
as gravastars (at least not without the addition of considerable
extra assumptions), given that the former are compact agglom-
erates of matter while the latter have a de Sitter-like interior [16].

13This approach could be completely monotonic or have oscil-
lating components. These oscillations can also produce burst of
radiation at the Hawking temperature [41].
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temperature T � �2�=�� 2�=�D�
�1 [14]. At least for

astrophysical black holes, it is also reasonable to think
that �D � � at the beginning of the evaporation process,
so that T 	 �=2�, indistinguishable from the standard
Hawking temperature. During evaporation � increases so,
in the long run, T is determined by �D and tends to zero.
Hence we could in principle have a ‘‘graceful exit’’ from
the evaporation process; that is, one could avoid the stan-
dard runaway end point. Meanwhile, the evaporation could
be visualized as a continuous chasing between the surface
of the star and its (receding) Schwarzschild radius.

Indeed, possibilities for such a never-ending collapse
were already envisaged in 1976, soon after the discovery
of Hawking radiation [42,43] and have been recently pro-
posed again [44] (although via different backreaction
mechanisms). It is important, however, to understand that
in the quasi-black hole scenario we discuss here the
Hawking flux only affects late-time evolution, and is not
the agent that prevents horizon formation in the first place.
The initial slow down of the collapse is in this case due to
matter-related high energy physics. This provides the time
necessary for the vacuum polarization to grow and finally
modify the evolution of the collapse toward an asymptotic
regime.

Of course, the state at T � 0 is reached only after a very
long time (for typical estimates of the evaporation time
scale, see Ref. [18]), so according to this scenario a col-
lapsing star forms an object that, for a long period, is
indistinguishable from a standard black hole, further justi-
fying our nomenclature of ‘‘quasi-black hole.’’ This object
would still evaporate with a Planckian spectrum [14], but
(since there is no event horizon) it would not be truly
‘‘thermal’’ (the quantum state is indeed a squeezed state
[45]), hence there would be no information-loss problem.
The partners of the particles emitted towards infinity, in-
stead of being accumulated inside the trapping horizon as
in the standard scenario, would now simply be emitted with
a (significant) temporal delay. The radiation received at
one instant of time would be correlated with that arriving
some time later, so all the information would be recovered
in the resulting radiation.

How does backreaction work in this scenario? During
the late-time asymptotic collapse, two processes unfold at
the same time: (1) the energy associated with vacuum
polarization becomes more and more negative; (2) radiation
is emitted towards infinity. During a time interval �u as
measured on I�, an arrival of energy �Erad > 0 is re-
corded by observers at infinity. Correspondingly, vacuum
polarization leads to an extra energy �Evac < 0 (due to the
fact that the star becomes more compact), so the Bondi
mass of the object decreases by an amount j�Evacj. By
energy conservation, one expects that �Evac � ��Erad, so
the emission of radiation is balanced by the increase of
vacuum polarization nearby the central object. This bal-
ance makes the Bondi mass of the object decrease as if it

were taken away by radiation, eventually reducing to zero
as T ! 0. Note that the expression (10) for the RSET can
be rewritten in such a way as to exhibit the fact that vacuum
polarization corresponds to the absence of black-body
radiation at the temperature T � �8�M��1 [27].
Although this does not constitute a proof, it is a strong
plausibility argument in favor of the energy balance be-
tween radiation and vacuum polarization. Also, it strongly
suggests that the asymptotic approach to the would-be
horizon must be of the exponential type, rather than a
power law. Indeed, since a power law would not lead to a
Planckian emission, it would be hard to reconcile it with
the result presented in Ref. [27].

Thus, provided that trapping horizons do not form, we
have described a plausible scenario for the progressive
collapse and evaporation of quasi-black holes. However,
the end point of this process seems to still share a problem
with the standard scenario: The apparent accumulation of
baryon number within the collapsing object [42]. The least
massive baryon one can find is the proton. Baryon number
is conserved in all experiments realized up to now, and, in
particular, the proton has been found to be stable (never-
theless, grand unification theories predict it should even-
tually disintegrate into leptons). In the standard paradigm
for the evaporation of a black hole, the trapping horizon
and its surroundings is an empty region of spacetime.
Therefore, there is only one physical quantity characteriz-
ing the quantum emission: The value of its Hawking tem-
perature. For a standard evaporating black hole to be able
to nucleate a proton-antiproton pair, it seems necessary that
it reaches a temperature larger than �1013 K, or equiva-
lently, a tiny mass of less than �1038mp, where mp is the
mass of one proton. However, for example, a black hole
having initially one solar-mass would contain a baryon
number of around �1057. During the evaporation it would
conserve this baryon number till it reaches a Bondi mass of
�1038mp. But then, even emitting all its remaining energy
in the form of baryons (with emission in the form of
protons being the most efficient way of removing baryon
number), it would end up either: (1) leaving an almost
massless relic having a baryon number of�1057 � 1038 �
1057 (a rather peculiar state); or (2) completely evaporating
producing an enormous violation of baryon-number
conservation.

The quasi-black hole scenario, however, adds one extra
ingredient to the previous discussion: The would-be hori-
zon and its surroundings is now not an empty region of
spacetime. In the vicinity of the would-be horizon there is
always matter progressively being compressed. This fact
could significantly affect the way the quasi-black hole
radiates its energy. For example, an upper bound for the
average density of a solar-mass quasi-black hole is given
by that of the corresponding black hole �1=M2 �
1019 kg=m3 (a few times bigger than that of a typical
neutron star). At these densities and higher, it is quite
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plausible that new particle physics effects could come into
play and deplete the baryon number much more efficiently
than the evaporation process.14

Up to this point we have only considered spherically
symmetric configurations. However, current observations
tell us that most of the observed black hole candidates have
a high rate of rotation, sometimes very close to extremality
[46]. Hence, for a quasi-black hole scenario to be a feasible
description of these objects, it would be necessary to
generalize our proposal to rotating configurations. Given
the complexity of the vacuum structure around rotating
black holes [47] it is very difficult to have a precise
proposal in this sense. However, we know that any rotating
object possessing an ergoregion but not a horizon would be
highly unstable [48]. Hence we expect that any viable
model of a rotating quasi-black hole should be character-
ized by a matter distribution extending up to the outer
boundary of the ergoregion.

The fact that most of the progenitors of the observed
black hole candidates are characterized by supercritical
rotations (J >M2, where J is the angular momentum of
the progenitor) is often used as evidence of the validity of
the cosmic censorship conjecture. It is interesting to note
that if such conjecture holds for standard general relativity
it would also be effective in preventing supercritical quasi-
black holes. In order to understand this point it is enough to
realize that a generalization of the calculation of this article
to more general metrics allowing for extremality (e.g.,
Reissner-Nordström, Kerr, . . .) would still imply a pileup
of the RSET in proximity of the ‘‘would-be horizon’’ if and
only if such a horizon can form in the first place. That is, a
large quantum-induced RSET can arise only if the collaps-
ing object has already shed the extra charges (e.g., electric
charge or angular momentum) so as to be subcritical in
proximity of the horizon crossing. So supercritical con-
figurations are likely to be unaffected by the vacuum
polarization and behave as in classical general relativity.
On the contrary subcritical configurations will develop (or
not develop) trapping horizons according to the details of
the dynamics.

VI. CONCLUSIONS

Quantum physics imposed upon the description of the
collapse of astrophysical objects in situations that would
classically lead to black hole formation could unexpectedly
lead to observable effects at early times, when the trapping
horizon is about to form. In particular we have shown
that before forming a trapping horizon, trans-Planckian
modes are excited. Hence, whether the trapping horizon
forms or not depends critically on assumptions concerning

the net effect of any trans-Planckian physics that might be
at work.

Assuming that quantum field theory holds unmodified
up to arbitrarily high energy (as is commonly done in most
of the extant literature) we have shown that there can be
large deviations from classical collapse scenarios, if the
latter do allow in the first place a piling up of vacuum
energy. Most of the classical collapse scenarios so far
considered do not allow for such a piling up, due to their
intrinsic rapidity. In this sense the prediction of horizon
formation in many of these models [22,49] seems com-
pletely correct.

We have argued however, that alternative classical col-
lapse scenarios in which horizon formation is approached
in a slow manner are not only foreseeable, but possibly
natural in more realistic situations. If this is indeed the case
one then would have to add a new class of compact,
horizonless, objects (possibly the most compact objects
apart from black holes themselves) to the astrophysical
bestiary: the black stars.

In the final part of this work we have then considered a
particular subclass of these objects, the quasi-black holes,
which could closely mimic all the most relevant features of
black hole physics, while avoiding at the same time most of
its intrinsic problems (such as singularities, the informa-
tion paradox, and the question of the end point of Hawking
evaporation).

FIG. 2. Conformal diagram of the spacetime for a quasi-black
hole. The solid line represents the surface of the collapsing
object; the dotted line is at r � 2M�t�, where M�t� is the
instantaneous mass of the object as measured from I�; dashed
lines correspond to (Schwarzschild) t � const hypersurfaces.
The period of evaporation appears short because of a distortion
induced by the representation, but actually corresponds to a very
long lapse of time, as one can see from the fact that the lines at
t � const crowd around it. This diagram is compatible with
current astrophysical observations of gravitationally active col-
lapse products.

14Of course, for very massive quasi-black holes such effects
will be negligible for a very long time, but will eventually
become important as the Bondi mass is decreased by the com-
bined effect of Hawking radiation and vacuum polarization.
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Summarizing, the quasi-black hole scenario for collapse
and evaporation is the following one (see Fig. 2): As a star
of massM implodes we conjecture that its matter will try to
adjust in new, possibly unstable, configurations so to reach
a new equilibrium against gravity. If there is ever a signifi-
cant slowing down of the collapse, for any reason what-
soever, then this allows the vacuum polarization to
progressively grow, and further slow down the approach
to trapping horizon formation. Provided such an approach
is asymptotic with an exponential law controlled by a time
scale 1=�D, then the quantum radiation produced during
this process is still Planckian, with a temperature T �
�2�=�� 2�=�D�

�1, where � is inversely proportional to
the total Bondi mass M� Evac of the star [14]. For a long
time, jEvacj 
 M and �
 �D, so T 	 �=2� and (from
the point of view of an external observer) the object is
essentially indistinguishable from a standard evaporating
black hole. The emission of radiation is accompanied by an
increase in vacuum polarization, that progressively dimin-
ishes the Bondi mass of the star, so the would-be horizon
shrinks and is never crossed by the matter configuration.
When the Bondi mass has become sufficiently small, 1=�
is negligible and the temperature is approximately equal to
�D=2�. This quantity is also decreasing, because back-
reaction is in fact slowing down collapse, so the tempera-
ture, after reaching a maximum value, decreases and
approaches zero.

We do not yet have a definitive proposal as to the end
point of the evaporation process. This could only be
achieved by understanding the physics of baryon nuclea-

tion in the presence of high-density states of matter. The
end state of the evaporation could correspond to a zero-
temperature relic15 with vanishing Bondi mass (hence
would at large distances be gravitationally inert), with an
inner structure formed by a core with mass �M and a
nonvanishing baryon number, immersed into a cloud of
polarized vacuum with negative energy Evac ��M.
Alternatively, it might correspond to plain vacuum.
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