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We consider a 3-brane embedded in a warped 5-dimensional background with a dilaton and a Kalb-
Ramond 2-form. We show that it is possible to find static solutions of the form of the charged dS/AdS-like
black hole with horizon which could have a negative mass parameter. The motion of the 3-brane in this
bulk generates an effective 4-dimensional bouncing cosmology induced by the negative dark radiation
term. This model avoids the instability that arises for the bouncing brane in a Reissner-Nordstrøm-AdS
bulk.
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I. INTRODUCTION

Braneworld models [1,2] have generated, during the past
decade, enormous attention, due to the dramatic change
they inspired in our understanding of extra dimensions.
According to this framework, our universe is a ‘‘brane’’
embedded in a higher-dimensional space, on which the
standard model fields are confined, while gravity is local-
ized near the brane by the warped geometry of the extra
dimension. It is possible to construct models in which the
brane evolution mimics a Friedmann-Robertson-Walker
(FRW) cosmology, with modifications at small scales due
to the gravitational effect of the bulk spacetime on the
brane [3–5]. In particular, provided the bulk is taken to
be a Reissner-Nordstrøm-AdS black hole, such modifica-
tions can lead to bouncing 4D cosmological models [6].
Unfortunately the brane, during its evolution in the bulk,
always crosses the Cauchy horizon of the AdS black hole,
which is unstable [7,8].

In this paper we present a different model, in which this
problem is avoided. We consider a brane embedded in a
supergravity background in which both the dilaton and the
Kalb-Ramond 2-form are turned on (but without a dilaton
potential). By dualizing the 2-form, we obtain Einstein-
Maxwell-like equations of motion, but with a different sign
for the kinetic term of the Maxwell-like field. The static
solution is therefore different, and the term that dominates
at high curvature is like ‘‘stiff matter’’ with positive energy
density. Even though this implies that the energy contribu-
tion at high curvatures is positive, so that it cannot drive a
bounce, this opens an interesting possibility of having
negative energy contributions at intermediate curvatures,
by letting the mass of the black hole be negative. The
parameter space allows this while avoiding a naked singu-
larity. In this case, we show that it is possible that the brane
bounces before crossing the black hole horizon, so that the
effective 4-dimensional cosmological evolution will not
suffer the instability of [8].

The paper is organized as follows: In Sec. II we derive
the bulk equations and present the static solution, which is
an asymptotically (A)dS black hole, charged under the

Kalb-Ramond field with the dilaton frozen at its vacuum
expectation value (VEV). Section III is devoted to the
study of the position of the horizons, and it is shown that
in a certain region of the parameter space (in particular for
a negative cosmological constant) there is no naked singu-
larity even if the mass parameter of the black hole is
negative. Then, in Sec. IV we embed the brane and allow
it to move, to mimic a cosmological evolution for a brane
observer [9]. The occurrence of the bounce and its position
is discussed here. Finally, in Sec. V we present our con-
clusions and discuss open problems.

II. THE 5D SOLUTION

Consider the low-energy string effective action:
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(with HABC � @�ABBC�), which describes a 3-brane em-
bedded in a 5-dimensional bulk with dilaton and Kalb-
Ramond 2-form [10]. We set the dilaton potential to zero
for simplicity, and allow the dilaton to be nonminimally
coupled with the cosmological constant, the antisymmetric
tensor, and the brane [11,12]. However, the brane is taken
to be neutral with respect to the antisymmetric field. The
presence of the brane action in (1) gives a singular part,
which we will take into account by the Israel junction
condition [9,13], so now we will consider only the bulk
part. The equations of motion are
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where H2 � HABCHABC.
The equation for the antisymmetric tensor (4) can be

solved by the ansatz1

 HCAB � �CABDErDAEe
��2�: (5)

Substituting this into Eq. (4) we get
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The last equality follows from the second Bianchi identity
R
�ABC�

D � 0. Now the equation for AM can be obtained by
the identity @�AHBCD� � 0, while we have to substitute the
expression we get for H in Eqs. (2) and (3) to get the
correct equations of motion. Observing that
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we get the following equations:
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which look like the equations of motion of an Einstein-
Maxwell model, but in this case the signs of the Maxwell
fields are reversed.

Now, following [9] we search for a static solution with a
maximally symmetric 3-space. The metric ansatz is

 ds2 � �f�R�dt2 � R2
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We also assume that the gauge field is purely electric, i.e.
AM � �A�R�; 0; 0�, and that the dilaton also depends only
on the radial coordinate, � � ��R�. Then the Einstein

equations read:
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(13)

It is easy to see that, summing up the first and second
equations, we get that the dilaton must be constant,
�0�R� � 0, so that we can reabsorb it into the definition
of the coupling constant. So, we are left with only the
vector field; the equations are
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As usual, by the conservation of the energy-momentum
tensor, only two of these equations are independent. A
solution of these equations can be cast in the form

 f�R� � �
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Q
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(15)

Notice that this solution is quite similar to the one that was
found in [6], but the term proportional to the charge is
opposite in sign. Because of this, it is possible to avoid a
naked singularity even if � is negative. In the next section
we will discuss the location of horizons for different values
of the physical constants.

III. HORIZONS IN THE KALB-RAMOND BLACK
HOLE

We can track the location of the horizons by finding the
zeros of the metric function f in (15). For simplicity we
will assume the spatial part of the metric to be flat, k � 0.
The zeroes of the function f can be found by solving the
equation:

 x3 � 6
�
�
x� 2

Q2

�
� 0; (16)

with x � R2 (so that we are interested only in positive
solutions). This equation is conveniently solved by use of
the Chebyshev radicals. We can identify three different
cases (let us stress that we will assume �< 0 from now
on):1See also [14], though our solutions differ from theirs.
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Case 1—When
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we have one real solution
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but this solution is always negative, so it is not acceptable.
Therefore in this part of the parameter space the back-
ground has a naked singularity.

Case 2—When
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we have three real solutions:
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of which the second one is negative, x2 < 0 thus unaccept-
able, and x1 > x3. In this case we have two horizons, just as
in the usual Reissner-Nordstrøm black hole. The horizons
can be written as
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Case 3—This case occurs when

 �< 0; (23)

and we have, again, one real solution, which can be written
as
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This solution is always positive, so that in this case we have
only one horizon, which can be written as
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where the Chebyshev polynomial C1=3 is intended to be

 C 1=3�t� �
�
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Since the bulk is asymptotically AdS, this is the most
interesting case. As we will see in the next section, it is
in this case that the cosmological evolution on the brane
undergoes a viable bounce.

IV. COSMOLOGICAL EVOLUTION OF THE
MOVING BRANE

In this section we embed a 3-brane in the bulk described
previously, by cutting out R> a, and imposing a Z2 sym-
metry at the edge. We then let the brane move through the
bulk, a � a�	�, where 	 is proper time on the brane. The
movement of the brane in the 5D bulk induces a cosmo-
logical evolution on the brane via the Israel junction con-
dition [9]. To see this, we need to calculate the extrinsic
curvature of the brane. The unit vectors tangent and normal
to the moving brane are
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so that the (spatial part of) the extrinsic curvature is
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1

2

���������������
f� _a2

p
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�ij; (28)

where ��� is the induced metric on the brane, which is
FRW with scale factor a, and the dot represents a derivative
with respect to proper time on the brane. The modified
Friedmann equations are obtained from the junction con-
ditions,
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where T�� is the brane energy-momentum tensor. For
T�� � ���� � ��� p�u�u� � p���, where � is the
brane tension, we find that

 H2 �
�

3M2
4

�
�4

3
�
k

a2 �

�
�

3M3

�
2
�
Q2

3a6
�
�

a4 ; (30)

where

 M4 �
2

3

�

M6
; �4 �

1

3

�2

M6
�

�

2
: (31)

Ifw � p=� is constant, then by energy conservation on the
brane, � � �0a�3�1�w�, and the effective Friedmann equa-
tion (30) can be expressed in terms of the sole a.

The effective Friedmann equation contains, apart from
the quadratic term in the brane energy density, a dark
radiation term proportional to � [3,4] and a term that
behaves like ‘‘stiff matter,’’ proportional to Q [6]. But, as
pointed out in the previous section, in our case this last
term, which dominates at high curvature, has a positive
contribution, hence it cannot drive a bounce in the cosmo-
logical evolution. Nevertheless, we can allow for a nega-
tive contribution from the dark radiation term, by letting �
be negative. There is always an ‘‘intermediate’’ curvature
regime in which the negative dark radiation dominates, so
that it can be responsible for a possible bounce. Notice that
the bounce would happen at a larger radial coordinate in
the bulk than in the case discussed in [6], so that the
instabilities which seem to rule out the bounce [8] could
be avoided. In order to discuss these issues, let us simplify
the setup by considering a pure tension, spatially flat brane.
The Friedmann equation reduces to
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3
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3a6
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Notice that, the 4D cosmological constant becomes domi-
nant at late time, so that, in order to have an asymptotically
de Sitter universe, it must be positive. This is always true in
the dS bulk, while in the AdS case the tension has to satisfy
the inequality
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A bounce occurs if the scale factor a�t� reaches a mini-
mum: _a � 0, �a > 0. The first condition can only be met
when �< 0. The behavior of H as a function of a is
depicted in Fig. 1 for different values of the parameter
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which corresponds to the ratio between the 4D de Sitter
curvature radius and the characteristic length of the Kalb-
Ramond black hole obtained by the charge to mass ratio.

There are two values of a for which H � 0, but, of
course, the only one compatible with a late time de Sitter
evolution is the one located at the largest value of a. As the
scale factor shrinks, the Hubble parameter follows the
negative branch of the plot backwards to zero, then it starts
to grow again, following the positive branch. Note that this
heuristic observation proves that the point at which the
Hubble parameter goes to zero (for the largest branch) is
actually a minimum of the scale factor.2 Quantitatively, the
zeroes of Eq. (32) can be obtained by solving the equation:

 x3 �
3�
�4

x�
Q2

�4
� 0: (35)

We require �4 > 0 to have a well-behaved late time evo-
lution and�< 0 for the bounce to occur. We find that there
are three real solutions to Eq. (35) when

 0<�4 <�
4�3

Q4 , RKR < ‘4: (36)

The solutions can again be expressed in terms of the

FIG. 1 (color online). The Hubble parameter H as a function
of the scale factor a. The three colors represent decreasing
values of RKR

‘4
: 15.81 (red, dotted line), 1.41 (blue, dashed line),

0.70 (black, solid line).

2Quite interestingly, the smallest branch that starts from a � 0
can mimic the evolution of a closed universe, in which the scale
factor reaches a maximum and then starts to decrease, even if the
space geometry of the brane is assumed to be flat. But we will
not discuss this issue any further.
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Chebyshev radicals given by Eq. (20) with � replaced by
2�4. The second solution is negative so it has to be
discarded. We are only interested in the larger of the two
solutions x1. So we conclude that a bounce can actually
occur at the scale factor
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Next we need to discuss the sign of the second derivative
of a, to prove that ab is actually a minimum as expected.
Taking the derivative of (32) we find:
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The sign of �a at the bounce can be deduced by studying the
function:
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where the second equality comes from using (35). Now,
observing that cos�. . .�> 1=2 and using inequality (36) we
get
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which proves that there is actually a bounce at a � ab.
The crucial requirement for a bounce to be acceptable is

that it occurs before the brane crosses the black hole
horizon. So we have to check that there exists a nonempty
region of the parameter space in which ab > R� or ab >
R0.

We discuss briefly the case in which the bulk black hole
has two horizons, i.e. case 2 of the previous section, so that
the physical parameters satisfy the inequality (19). As we
will see, this case has to be discarded. In fact, Fig. 2 (left)
shows a plot of ab as a function of the brane tension �, and
the position of the two horizonsR� andR�. We see that the
position of the bounce is always inside the external hori-
zon, and coincides with it for the tensionless brane.
Analytically, it is easy to see that ab is a decreasing
function of �, and, since �4 ! �=2 as �! 0, we readily
get ab ! R� in the tensionless limit. So, this case is
expected to have an instability similar to the one discussed
in [8] (even though in that case the brane actually bounces
after crossing both horizons).

Next, we discuss the most interesting case of a negative
bulk cosmological constant and a single horizon, case 3 of
the previous section. Figure 2 (right) shows ab���, and the
corresponding value of R0. In contrast to what happens
with two horizons, there is a region, when the brane tension
is close to the critical value expressed in Eq. (33), in which
the bounce radius is greater than the horizon position, so
that the entire evolution of the brane lies in the physically

FIG. 2 (color online). Plot of ab as a function of the tension � for different values of RKR‘5
: 0.5 (black, darker line), 0.02 (red, lighter

line). Dashed curves of the same color represent the position of the horizons for the same value of RKR‘5
. The case with 2 horizons is on

the left, the case with one horizon is on the right.
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viable region outside the horizon. This feature is quite
general, and the reason is easy to understand, since we
can see from (37) that ab ! 1 as �4 ! 0. Analytically,
we have to solve the inequality ab > R0. After some alge-
bra, we find that �4 has to satisfy the following inequal-
ities:
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where the Chebyshev polynomials have been defined in
(26). So there is always an allowed value of the brane
tension for which the brane evolution lies entirely outside
the horizon.

Finally, to get the full dynamical evolution from a 4D
perspective, we need to solve the effective Raychaudhuri
equation (38). It cannot be solved analytically, but the
numerical solution confirms that the scale factor undergoes
a bounce from a contracting phase to an expanding one, as
illustrated in Fig. 3.

V. CONCLUSIONS AND OUTLOOK

In this paper we presented a braneworld model in which
the cosmological evolution of the brane is nonsingular, and
the brane universe bounces smoothly from a phase of
contraction to a subsequent expanding phase. The cosmo-
logical evolution on the brane is induced by its movement
through a static bulk AdS black hole supported by a non-
trivial Kalb-Ramond antisymmetric 2-form. The solution
is similar to the Reissner-Nordstrøm-AdS solution pre-
sented previously in the literature [6], but in our model
the bounce is induced by a negative dark radiation term
sourced by the black hole mass term. In order for this to be
possible, the integration constant � which appears in the
metric solution (15), and which is proportional to the mass
of the black hole, must be negative. Black holes with
negative mass have been considered in the literature [15].
This does not lead to a naked singularity, as we have shown
in Sec. III. But it may create some difficulties related with
the overall stability of the solution (and possibly to its
physical interpretation). Stability analysis of charged black
holes in 5 dimensions has proven to be a very difficult task,
and there appears to be no definitive answer for the stan-
dard Reissner-Nordstrøm-(A)dS black hole [16]. More
recently, it has been proved [17] that a class of topological
black holes with negative mass is stable in every dimen-
sion, which can be regarded as hint of the good behavior of
5-dimensonal negative mass black holes against perturba-
tions. The thermodynamical interpretation of the black
hole solution requires the temperature of the black hole
to be positive. The temperature can be related to the value
of the derivative of f at the horizon, so the latter must be
positive in order to have an acceptable thermodynamical
behavior. In our solution this is always the case, whatever
the value of �. Stability and thermodynamics of the bulk
solution presented in this paper are worth further inves-
tigation, which we plan to do in a forthcoming paper.

Future investigation also should extend the study to
more general settings. For example, we have only consid-
ered the case of a spatially flat, pure tension brane. While
the curvature term is not expected to change dramatically
the picture, it is possible that the presence of matter could
spoil the bouncing behavior. In fact, the bounce is driven
by the negative dark radiation term, so a sufficiently large
amount of positive ‘‘ordinary’’ radiation could possibly
compensate for the negative energy term, thus making
the singularity appear again. The study of the case of a
nonempty brane is also important to test the model against
the observational constraints on the early universe evolu-
tion, such as nucleosynthesis. In practice, it is a nice feature
that the bounce occurs at a large scale, but it should not be
‘‘too large,’’ so that the universe would have enough time to
undergo its standard evolution.

Another interesting development would be to consider a
charged brane. The string theory embedding of the brane-
world scenario would require the interpretation of the

50

100

a

–4 –2 2 4

t

FIG. 3 (color online). Plot of the numerical solution of a�t�.
The initial conditions used for the numerical integration are
a�t � �5� � 125, _a�t � �5� � �125.
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brane as a D-brane on which the open strings, which
represent gauge particles, are confined. Of course, a full
string theory derivation of braneworld models is still lack-
ing. Nevertheless, a D-brane is naturally coupled to the
Kalb-Ramond 2-form via, for example, a Dirac-Born-
Infeld action, which can be implemented also in the present
model. But in this case the ansatz (5) is not expected to
hold, so the calculation becomes much more complicated.

Bouncing cosmologies have been proposed in various
contexts [18–31] as an alternative to inflation. They have
of course the remarkable feature of avoiding the initial
singularity, but also provide for an alternative, but still
perfectly acceptable, solution of the kinematic problems
of the standard cosmological model, without invoking an
unknown inflaton. Nevertheless, scalar fluctuations ob-

served by the WMAP and SDSS [32] experiments seem
to favor a nearly scale-invariant spectrum, which is in
agreement with the prediction from chaotic inflation, but
very difficult to obtain in a bouncing model. So, as a
second step, it would be essential to study the behavior
of the scalar (and tensor) perturbations.
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