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In the framework of designing laboratory tests of relativistic gravity, we investigate the gravitational
field produced by the magnetic field of a solenoid. Observing this field might provide a means of testing
whether stresses gravitate as predicted by Einstein’s theory. A previous study of this problem by
Braginsky, Caves, and Thorne predicted that the contribution to the gravitational field resulting from
the stresses of the magnetic field and of the solenoid walls would cancel the gravitational field produced
by the mass-energy of the magnetic field, resulting in a null magnetically generated gravitational force
outside the solenoid. They claim that this null result, once proved experimentally, would demonstrate the
stress contribution to gravity. We show that this result is incorrect, as it arises from an incomplete analysis
of the stresses, which neglects the axial stresses in the walls. Once the stresses are properly evaluated, we
find that the gravitational field outside a long solenoid is in fact independent of Maxwell and material
stresses, and it coincides with the Newtonian field produced by the linear mass distribution equivalent to
the density of magnetic energy stored in a unit length of the solenoid. We argue that the gravity of
Maxwell stress can be directly measured in the vacuum region inside the solenoid, where the Newtonian
noise is absent in principle, and the gravity generated by Maxwell stresses is not screened by the negative
gravity of magnetic-induced stresses in the solenoid walls.
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I. INTRODUCTION

According to general relativity, material and field
stresses are sources of gravity because the active gravita-
tional mass density, in the relativistic analogue of Poisson’s
equation, is proportional to �� T, where � is the density
of energy and T is the trace of the stresses [1]. Stress-
generated gravity is very important in a number of prob-
lems. For example, in astrophysics it affects the maximum
mass of neutron stars, but if one intends it, in a broad sense,
as the gravity produced by the spatial components of the
momentum-energy tensor, it displays its full power in
cosmology, where it may well be responsible for the re-
cently discovered accelerated expansion of the Universe
[2].

As of today, there exists no direct experimental proof
that stresses indeed gravitate, and it is clearly of great
interest to investigate the possibility of a laboratory ex-
periment to test this prediction of general relativity.
Unfortunately, this is very difficult because in ordinary
material bodies, of a size that can be handled in a labora-
tory, the trace of stresses is many orders of magnitude
smaller than the energy density associated with the mass
density of the body, and therefore its effects are negligible.
However, it was realized 30 years ago [3] that a possible
way to circumvent this difficulty is by observing the grav-
ity of magnetic fields, which one expects to exist because
in general relativity all forms of energy (and stresses) are
sources of gravity. Magnetic fields are interesting in this
respect because, according to Maxwell theory, the energy
density of a magnetic field has the same magnitude as the
trace of the Maxwell stress tensor and therefore this type of
experiment may provide an excellent tool to probe the

gravity of stresses. With this purpose, the authors of
Ref. [3] considered a simple setup, in which the gravity
produced by the magnetic field of a long solenoid would be
measured by means of a torsion balance, having one of its
test masses near the solenoid. Of course, the difficulty of
the experiment is due to the fact that magnetically gener-
ated gravity is very weak, for experimentally attainable
magnetic fields. To get an estimate of the required mag-
netic fields and balance sensitivity, one may temporarily
neglect all stresses and assume, on the basis of the equiva-
lence between mass and energy, that the magnetically
generated gravitational field near a long solenoid is the
same as that of a cylindrical road, with a linear mass
density equal to the magnetic energy (divided by the square
of the speed of light c) stored in a unit length of the
solenoid. Even for very strong magnetic fields, the effect
is very small, if one considers that the mass density equiva-
lent to the energy density of a magnetic field of 105 G is as
small as 4:4� 10�13 g cm�3. However, it was argued in
[3] that the demands of the experiment could have soon
been met, imagining realistic improvements of the tech-
nology available in the seventies, in cryogenic low-noise
torque balances and superconducting solenoids.

When considering the effect of stresses, one notices that
two types of stresses may contribute to the gravitational
field of the solenoid: Maxwell stresses of the magnetic field
and material stresses that build up in the walls of the
solenoid in response to the applied magnetic field. In Ref
[3] it was correctly stated that the walls of the solenoid can
be considered to be in instantaneous mechanical equilib-
rium, because in the considered setup the modulation
frequency of the magnetic field is extremely low (around
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10�3 Hz, which represents the typical resonance frequency
of a torque balance). The conclusion drawn in [3] was that
the inclusion of stresses would lead to a null magnetically
generated gravitational force (apart from the Newtonian
noise caused by the stress-induced modulation of the mass
density of the solenoid walls), because of a purported
cancellation occurring between the gravity of stresses
and the gravity of magnetic energy.

This result appears suspicious, from the point of view of
a well-known paradox, that was pointed out long ago by
Tolman [4] in his investigations on the role of stresses as
source of gravity. Tolman found the paradox while consid-
ering the gravitational field of a static spherical imperme-
able box filled with a fluid, which undergoes a spherically
symmetric transformation that conserves the total energy,
but causes a change of pressure, like matter and antimatter
annihilating into radiation. One may think that, since the
total energy of the system is preserved, the change in
pressure determines a change in the active gravitational
mass of the box, and a consequent change in the gravita-
tional field outside the box. However, this inference is in
contradiction with Birkhoff’s theorem, which states that
the external gravitational field of a spherically symmetric
body is static and therefore it is insensitive to whatever
spherically symmetric transformations may occur inside
the box. The Tolman paradox was investigated in [5],
where the crucial role of the walls that keep the fluid
confined was realized. It was shown there that the stresses
that build up in the walls in response to the transformation
give a negative contribution to the active gravitational mass
of the system that just compensates the pressure contribu-
tion from the fluid inside, resulting in an overall unchanged
total gravitational mass across the transformation, as ex-
pected from Birkhoff’s theorem. The same problem has
been investigated again in a recent paper [6], leading to
analogous conclusions. (The key role of the stresses in the
walls bounding a relativistic gravitating systems has been
discussed by us very recently, in connection with the
problem of determining the weight of a Casimir apparatus
in a weak gravitational field [7].) The general lesson that
one learns from these studies is that the gravitational field
outside a spherical body is independent of the stresses in its
interior, and it is determined solely by the mass-energy
content of the body. Since there is no reason to imagine that
this is true only for the spherical case, one is led to suspect
that the results of [3] may not be correct. This motivated us
to reconsider in detail the analysis of [3], and we present
here our findings. We realized that the null result found in
[3] was determined by a mistaken evaluation of the stresses
that build up inside the solenoid walls when the magnetic
field is present. In particular, the authors overlooked the
axial stresses that arise in response to the axial electro-
dynamic compression of the solenoid. Besides leading to
an incorrect result for the magnetically generated gravita-
tional field outside the solenoid, this error led the authors to

overlook the large Newtonian noise originating from
magnetic-induced changes in the length of the solenoid.

After stresses are properly accounted for, our analysis
shows, in a general way, that the total magnetically gen-
erated gravitational mass, measured far from the solenoid,
is independent of the stresses and is just equal to the total
magnetic energy (divided by the square of the speed of
light c2), in accordance with one’s intuition and in agree-
ment with earlier studies on the Tolman paradox. We then
consider the field near a long solenoid, and we show that
the magnetically generated gravitational field is different
from zero, and as expected it is equivalent to the
Newtonian field generated by a linear mass density that
is equal to the instantaneous magnetic energy per unit
length (divided by c2) stored in the solenoid. Since the
near field outside the solenoid, like the far field, is inde-
pendent of the stresses, we conclude that observation of the
external field cannot be used to test the gravity of stresses.
Moreover, measuring this magnetically generated field will
be very hard, because we estimate that magnetic-induced
changes in the length of the solenoid produce a Newtonian
noise that is many order of magnitudes larger than the
magnetically generated gravity. This by no means implies,
however, that the gravity of stresses is not observable in
this setup, because in the vacuum region inside the sole-
noid the gravity produced by Maxwell stresses is not
screened by the negative gravity of the material stresses
in the walls, and therefore it contributes to the field as much
as the density of magnetic energy. Moreover, it is expected
that the Newtonian noise will be much less of a problem,
because in the ideal case of a infinitely long and perfectly
axially symmetric solenoid, Newtonian noise inside the
solenoid is strictly zero.

The paper is organized as follows: in Sec. II we derive,
within linearized theory for general relativity, the magneti-
cally generated gravitational pull exerted on a test particle
by a solenoid carrying a quasistatic magnetic field. In
Sec. III we analyze in detail the contributions from
Maxwell and material stresses and we prove that outside
the solenoid they cancel each other. Section IV deals with
the problem of Newtonian noise, while Sec. V contains a
discussion of the results and our conclusions. Finally, in the
Appendix we provide explicit formulas for the material
stresses that build up within the walls of an idealized
solenoid.

II. GRAVITY OF A QUASISTATIC MAGNETIC
FIELD

In this section we estimate the pull Fi exerted on a test
particle at rest, by the magnetically generated gravitational
field of a solenoid S, producing a quasistatic magnetic field
B. Since the gravitational fields involved are extremely
small, nonlinear effects are negligible and we can safely
study the problem using the simple linearized theory for
Einstein’s general relativity [1]. In this approximation, the
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gravitational field g�� is written as [8]

 g�� � ��� � h��; (2.1)

where ��� � diagf�c2; 1; 1; 1g is the flat Minkowski met-
ric, and h�� represents a weak gravitational field. We
further split h�� as

 h�� � h��jB�0 � ���; (2.2)

where h��jB�0 is the field that exists when the solenoid is
turned off, while ��� is the magnetically generated field
that is present when the magnetic field B is turned on. The
field h��jB�0 includes the background gravitational exist-
ing in the laboratory, together with the small field gener-
ated by the walls of the solenoid when no currents flow in
it.

To linear order, the pull Fi on a test particle of mass m
arising from the magnetically-generated gravitational field
is

 Fi � �m��i00 � �i00jB�0� �
1
2m@i�00; (2.3)

where �i00 are Christoffel symbols. For a quasistatic mag-
netic field, linearized theory gives the following equations
for ���:

 4 ���� � �
16�G

c4 T��: (2.4)

In these equations, 4 denotes the flat space-time
Laplacian, and ���� is the field

 ���� � ��� �
1
2����; (2.5)

where � � ������. The above equations have to be sup-
plemented by the Lorenz gauge conditions, which for a
static field imply

 @i ��i� � 0: (2.6)

It is important to bear in mind that, according to the
definition of ���, the energy-momentum tensor T�� ap-
pearing on the right-hand side (r.h.s.) of Eq. (2.4) repre-
sents the sole contribution to the total energy-momentum
tensor that arises when the magnetic field is turned on. The
solenoid being at rest, and the magnetic field being quasi-
static, the nonvanishing components of T�� read

 T00 � ��walls � Emag=c
2; (2.7)

 Tij � Tijwalls � T
ij
mag: (2.8)

In the above equations, ��walls represents the change in the
(classical) mass density of the solenoid walls resulting
from possible deformations of the solenoid determined
by the magnetic field [9], while Tijwalls denotes the extra
mechanical stresses that build up within the solenoid walls
when the field is turned on. Note that Tijwalls does not include
the mechanical stresses resulting from the weight of the

solenoid and from the external forces exerted on the sole-
noid walls by the mounts that hold it. Finally, Emag �

B2=�8�� denotes the density of magnetic energy, while
Tijmag is the Maxwell tensor:

 Tijmag �
1

4�

�
1

2
B2�ij � BiBj

�
: (2.9)

Upon solving Eq. (2.4) it is easy to obtain for the pull Fi the
following expression:

 Fi � �m@i���walls �  �; (2.10)

where

 ��walls � �G
Z
d3y

��walls

jx� yj
; (2.11)

and

  � �G
Z d3y
jx� yj

�
Emag � T

ii
walls � T

ii
mag

c2

�
: (2.12)

Of the two terms appearing on the r.h.s. of Eq. (2.10), that
involving ��walls just represents a purely classical
‘‘Newtonian noise,’’ and we postpone to Sec. V a discus-
sion of its consequences. The interesting term for us is the
contribution proportional to  , that represents the magneti-
cally generated gravitational field. We see that  coincides
with the classical gravitational field generated by and
effective mass distribution �eff equal to

 �eff �
1

c2 �Emag � Tiiwalls � T
ii
mag�: (2.13)

This is a rather complicated formula, for it involves the
trace of the stresses Tijwalls in the solenoid walls. It is
convenient to define the total ‘‘effective gravitational
mass’’ Meff as the integral over all space of �eff :

 Meff �
Z

all space
d3x�eff : (2.14)

We split Meff as

 Meff � Mmag en �Mstr; (2.15)

where Mmag en is the mass associated with the total mag-
netic energy Emag

 Mmag en �
1

c2

Z
all space

d3xEmag �
Emag

c2 ; (2.16)

while Mstr is associated with Maxwell and material
stresses:

 Mstr �
1

c2

Z
all space

d3x�Tiiwalls � T
ii
mag�: (2.17)

Note that both the integrals for Mmag en and Mstr exist,
because at large distances R from the solenoid, the mag-
netic field falls off like R�3 and then Emag and Tijmag both
decay as R�6. The existence of a contribution to Meff , such
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asMmag en, arising from the magnetic energy is not surpris-
ing in view of the equivalence between energy and mass,
established in the theory of special relativity. On the con-
trary, the contribution Mstr from the stresses represents a
true general relativistic effect. In the next section it will be
proven that Mstr is always zero, at mechanical equilibrium.

III. CONTRIBUTION FROM STRESSES

To be definite, we imagine that the solenoid S is hanging
by a suitable set of threads, and that apart from the sus-
pension points its surface is free. Now, upon taking the
spatial divergence of both sides of Eq. (2.4), and then using
the gauge condition Eq. (2.6), we obtain

 @i�T
ij
walls � T

ij
mag� � 0: (3.1)

Outside the solenoid walls, where Tijwalls � 0, the above
equations are satisfied as a consequence of the static
Maxwell equations in vacuum:

 r � B � 0; r� B � 0: (3.2)

Inside the solenoid walls, instead, Eq. (3.1) expresses the
local balance between electrodynamic forces and material
stresses, at mechanical equilibrium. At points on the
boundary @S of the solenoid walls, Eq. (3.1) must be
supplemented by the following boundary condition

 ni�T
ij
walls � T

ij
mag�jin � niT

ij
magjout; (3.3)

where ni is the normal to the surface of the solenoid walls,
oriented outwards the solenoid, and the suffixes in (out)
denote the values of the fields immediately inside (outside)
the solenoid walls. Equation (3.3) expresses the fact that
the total electrodynamic self-force on the solenoid is zero,
and therefore the threads that support it do not apply any
extra force when the magnetic field is turned on. Using
Eq. (3.1) and the boundary condition Eq. (3.3), we can now
show thatMstr is always zero. For this purpose, we note that
at all points not lying on the boundary @S of S, Eq. (3.1)
implies the identity

 �Tiiwalls � T
ii
mag� � @j	�T

ij
walls � T

ij
mag�xi
: (3.4)

Upon substituting this expression for Tiiwalls � T
ii
mag into the

r.h.s. of Eq. (2.17), and then performing the integral of the
total divergence by Gauss theorem, we obtain for Mstr the
expression

 Mstr �
Z
@S
d2�xjni	�Tijwalls � T

ij
mag�jin � T

ij
magjout


� lim
R!1

Z
SR
d2�Tijmagxjni; (3.5)

where SR denotes a two-sphere of radius R centered at any
point inside the solenoid. Now, the first integral on the r.h.s.
is zero because of the boundary condition Eq. (3.3), and the
second vanishes because Tijmagnixj falls off as R�5.

Therefore, as promised, we obtain

 Mstr � 0: (3.6)

The conclusion is that, independently of the shape of the
solenoid and of the detailed distribution of the stresses
inside its walls, the general conditions of mechanical equi-
librium as encoded in Eqs. (3.1) and (3.3) imply that the
combined contribution of Maxwell and material stresses to
the total gravitational mass of the solenoid vanishes.
Therefore, the total effective gravitational mass associated
with the magnetic field is equal to Mmag en:

 Meff � Mmag en: (3.7)

The gravitational field that is observed far from the sole-
noid when the magnetic field is turned on is then equal to
that of a point charge with mass Mmag en, placed at the
position of the solenoid.

Obviously, Eq. (3.6) does not imply that the magneti-
cally generated stresses produce no gravity at all, because
it only states that Maxwell and material stresses cancel
each other on average, namely, after integrating over all
space. While this is sufficient to conclude that stresses do
not contribute to the far field, it still remains a possibility
that stresses produce significant gravitational effects in the
vicinity of the solenoid, because the near field depends on
the detailed spatial distribution of the stresses. The study of
the near field is clearly much more complicated in general,
because it requires a detailed determination of the me-
chanical stresses inside the walls of the solenoid. The study
of the stresses that arises in a solenoid generating a strong
magnetic field has received much attention in the literature
over the years, in view of its great practical importance
(see, for example, Ref. [10] and references therein), and in
general it is a difficult problem that involves making a
definite model for the constitutive equations characterizing
the material, and it usually requires numerical tools. We
shall not discuss this difficult problem here, and we are
content with a few simple considerations that can be drawn
on the basis of general mechanical equations, without any
consideration of specific constitutive equations. To sim-
plify the problem, we consider below a very long cylindri-
cal solenoid and we discuss separately the gravitational
field outside and inside the solenoid.

A. External near field

We consider, as in Ref. [3], a very long cylindrical
solenoid, constituted by a (nonmagnetic) pipe with inner
and outer radii R1 andR2, respectively, and length L� R2.
We suppose for simplicity that the electric current produc-
ing the magnetic field flows along the inner surface of the
pipe, in the positive azimuthal direction, and that it has a
uniform surface density j. We let fx; y; zg represent a
Cartesian coordinate system whose z axis coincides with
the solenoid axis, and whose origin lies at the center of the
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solenoid, and we let r �
����������������
x2 � y2

p
be the distance from the

solenoid axis.
Axial symmetry obviously implies that the effective

mass density �eff in Eq. (2.13) is a function only of r and
z. As a first step, we show that �eff is significantly different
from zero only inside the solenoid, i.e., for r � R2 and
jzj � L=2. This is obvious for the contribution to �eff

arising from the material stresses, because Tijwalls vanish
outside the solenoid walls. Then, upon noting that

 Tiimag � Emag; (3.8)

as can be seen by taking the trace of the Maxwell stresses
in Eq. (2.9), we see that the contribution to �eff arising from
the magnetic field is equal to twice Emag=c

2. We can
estimate the integral of Emag outside the solenoid as fol-
lows: the external magnetic field coincides with the field of
a cylindrical magnet having length L and radius R1, carry-
ing a uniform magnetization m � j=c along the positive z
direction. The field of such a magnet coincides with the
sum of the fields B1 and B2 produced by the opposite
surface distributions of magnetic charges on the opposite
caps of the magnet (at z � 
L=2), with uniform surface
densities �m � 
j=c. The total energy Eext

mag of the exter-
nal field can then be estimated to be

 Eext
mag �

1

8�

Z
out
d3x�B2

1 � B
2
2� �

1

4�

Z
out
d3xB1 �B2:

(3.9)

The first integral on the r.h.s. of the above equation repre-
sents the sum of the magnetic energies of two isolated pole
distributions at z � 
L=2. Therefore, it is independent of
the solenoid length L, and on dimensional grounds one
expects it to be of the form

 

1

8�

Z
out
d3x�B2

1 � B
2
2� �

B2
in

8�
2AR3

1; (3.10)

where Bin � 4�j=c is the magnetic field inside the sole-
noid and A is some dimensionless numerical constant. As
for the second integral on the r.h.s of Eq. (3.9), it represents
the interaction energy among the two poles of the magnet,
and it can be approximated as the interaction energy of two
opposite pointlike magnetic charges of magnitude qm �
�R2

1j=c at distance L:

 

1

4�

Z
out
d3xB1 � B2 ’ �

q2
m

L
� �

2�2j2R4
1

c2L
� �

B2
inR

4
1

8L
:

(3.11)

Adding up Eqs. (3.10) and (3.11), we obtain for Eext
mag the

expression

 Eext
mag ’

�
2A�

�R1

L

�
B2

in

8�
R3

1: (3.12)

On the other hand, the internal magnetic energy Eint
mag can

be estimated to be

 Eint
mag �

B2
in

8�
� �R2

1L; (3.13)

and therefore we obtain for the ratio of Eext
mag=Eint

mag the
estimate

 

Eext
mag

Eint
mag
�

2A
�
R1

L
�

�
R1

L

�
2
; (3.14)

which shows that Eext
mag becomes negligible with respect to

Eint
mag for R1=L� 1.
Consider now a point P in the vicinity of the solenoid,

but far from its ends. The above estimation of the external
magnetic stresses and energy shows that the magnetically
generated gravitational field at P is determined by the
stresses and the magnetic energy that are present inside
the solenoid and within its material walls. Since far from
the solenoid’s ends the magnetic field and the material
stresses are approximately independent of the z coordinate,
we see from Eq. (2.12) that the field  at P coincides with
the classical field of an infinite cylindrical rod, with a
uniform linear mass density �eff equal to

 �eff �
1

c2

Z R2

0
dr2�r�Emag � T

ii
walls � T

ii
mag�: (3.15)

Now, we can split �eff analogously to what we did with
Meff in Eq. (2.15):

 �eff � �mag en � �str; (3.16)

where

 �mag en �
1

c2

Z R2

0
dr2�rEmag �

~Emag

c2 ; (3.17)

with ~Emag the magnetic energy per unit length of the
solenoid, and

 �str �
1

c2

Z R2

0
dr2�r�Tiiwalls � T

ii
mag�: (3.18)

We can easily see that �str vanishes. Indeed, neglecting the
contributions to Mstr from the external magnetic field,
which we have seen to be small, as well as the contribution
from the small region near the solenoid’s ends, we can then
express Mstr as

 Mstr � L�str: (3.19)

Since according to Eq. (3.6) Mstr is zero, it follows at once

 �str � 0: (3.20)

We conclude that also near the solenoid the magnetically
generated gravitational field  is independent of the
stresses, and it simply coincides with the field generated
by a cylindrical distribution of mass, having a linear den-
sity that is equal to the instantaneous magnetic energy
stored in the solenoid (divided by c2) per unit length:
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 �eff �
~Emag

c2 : (3.21)

These results are in sharp contrast with the findings of
Ref. [3], where it was concluded that the contribution from
Maxwell and material stresses is different from zero, and of
such a magnitude as to cancel the gravitational field pro-
duced by the mass energy of the magnetic field, resulting in
a null magnetically generated gravitational field  outside
the solenoid. A detailed analysis of the sketchy computa-
tions in [3] shows that this incorrect conclusion arose from
an incomplete evaluation of the material stresses that build
up inside the solenoid walls, as the authors only considered
the effect of the radial electrodynamic forces pushing to
increase the radius of the solenoid, but they overlooked the
existence of an axial force tending to compress the sole-
noid [11]. When the contribution from the axial stresses is
accounted for, our result Eq. (3.21) is recovered. As a
further check of the fundamental Eq. (3.20), in the
Appendix we provide the explicit formulas for the material
stresses that build up within the walls of an idealized
solenoid.

B. Internal field

We consider now the gravitational field in the vacuum
region in the interior of the solenoid, i.e., for r < R1. Since
Tijwalls is zero for r < R1, the field  coincides with the
classical potential generated by a linear mass density
�int

eff�r�:

 �int
eff�r� �

1

c2

Z r

0
dr02�r0�Emag � Tiimag�: (3.22)

Differently from the external region, in the interior of the
solenoid Maxwell stresses are not screened by material
stresses, and therefore they do contribute to the internal
gravitational field. Upon recalling that Tiimag � Emag, see
Eq. (3.8), we see that Maxwell stresses contribute to the
internal field as much as magnetic energy, and then we can
rewrite Eq. (3.22) as

 �int
eff�r� �

1

c2

Z r

0
dr02�r02Emag �

2~Eint
mag�r�

c2 : (3.23)

It is interesting to consider a solenoid with thin walls. Since
in such a case the magnetic energy contained in the region
of space occupied by the solenoid walls is negligible, we
have

 

~E int
mag�R1� ’ ~Emag; (3.24)

and therefore Eq. (3.23) implies that a test mass placed
immediately inside the solenoid would feel an oscillating
pull towards the solenoid’s axis that is twice as strong as
the pull observed just outside the solenoid:

 F�R1� � 2F�R2�: (3.25)

This result arises because, for r < R1, the gravity originat-
ing from Maxwell stresses [the second term inside the
brackets in Eq. (3.22)] is not screened by the negative
gravity of the magnetic-induced stresses in the walls of
the solenoid.

IV. NEWTONIAN NOISE

Producing strong magnetic fields and designing sensi-
tive torque balances may not be enough to ensure that one
would be able to actually observe the magnetically gen-
erated gravitational field  . For that to be possible, one has
to make sure that the Newtonian noise ��walls is not
exceedingly large compared to  . The order-of-magnitude
estimate presented below shows that there is little prospect
of measuring  outside the solenoid, for we estimate that
outside the solenoid ��walls is about 9 orders of magnitude
larger that  . At the end, we shall briefly comment on the
chances of measuring  inside the solenoid, where the
Newtonian noise is expected to be much smaller.

As we pointed out in the previous sections, ��walls

comes about because electrodynamic forces deform the
solenoid walls, resulting in a change of shape and density
of the walls. An accurate determination of ��walls requires
a detailed model for the solenoid, and is beyond the scope
of this paper. We shall be content with simple considera-
tions based on order-of-magnitude estimates.

We consider separately radial electrodynamic forces,
which tend to increase the radius of the solenoid, and axial
electrodynamic forces, which tend to make the solenoid
shorter. Radial forces were the only source of Newtonian
noise that was considered in [3] because, as observed ear-
lier, the authors did not take account of the axial compres-
sion of the solenoid. In principle, radial deformations are
innocuous because, for a perfectly cylindrical solenoid, a
symmetric radial deformation does not alter the axial mass
density of the solenoid, and therefore it produces no
Newtonian noise. Real solenoids of course are not per-
fectly symmetrical, and therefore one expects that slightly
asymmetrical radial deformations will actually produce
some noise. A possible remedy for this problem was
pointed out in Ref. [3], and consists in averaging over
azimuthal inhomogeneities in the radial deformation, by
setting the solenoid in rotation around its axis, with an
angular frequency much larger than the modulation fre-
quency of the magnetic field.

As we shall now see, the real trouble comes from the
axial compression of the solenoid. To estimate the
Newtonian noise introduced by this compression, we con-
sider a cylindrical long solenoid of length L, whose walls
have a cross sectional area Awalls. We assume for simplicity
that the axial compression Tzzwalls is uniform throughout the
section of the walls, and that it does not exceed the elastic
limit of the material. If we let Fax the total axial compres-
sion
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 Fax �
Z R2

R1

dr2�rTzzwalls; (4.1)

from Hook’s law we estimate that the length of solenoid
will suffer a fractional change of magnitude:

 

�L
L
� �

1

E
�

Fax

Awalls
; (4.2)

where E is the Young modulus for the material of walls. In
the Appendix we show that, sufficiently far from the end
points, the axial compression Fax has magnitude

 Fax � ~Emag: (4.3)

Using this formula in the r.h.s. of Eq. (4.2), we obtain an
estimate of the relative change in the solenoid length:

 

�L
L
� �

1

E
�

~Emag

Awalls
: (4.4)

Consider now the total mass �walls per unit length of the
solenoid. Obviously, under a change �L in the solenoid
length, �walls changes by the amount

 ��walls � �
�L
L
�walls: (4.5)

Then, from Eq. (4.4) we obtain

 ��walls �
~Emag

E
�
�walls

Awalls
�

~Emag

E
�walls; (4.6)

where �walls � �walls=Awalls is the mass density of the
material for the walls. Having estimated the change
��walls in the linear mass density of the solenoid, we can
easily obtain an estimate for the ratio  =��walls among the
magnetically generated field  and the Newtonian noise.
Since the former is proportional to �eff and the latter to
��walls, we find

 

 
��walls

�
�eff

��walls
�

~Emag

c2 �
E

~Emag�walls

�
E

c2�walls

;

(4.7)

where in the second passage we used Eq. (3.21). It should
be noted that the result is independent of the strength of the
magnetic field. In the case of stainless steel, which has E �
2� 1011 N=m2 and � � 8 g=cm3, we obtain

 

 
��walls

� 2:8� 10�10; (4.8)

and we see that the Newtonian noise is over 9 orders of
magnitude larger than the magnetically generated field.

This elementary analysis shows that it will be extremely
difficult to observe the oscillating field  outside the
solenoid. However, the Newtonian noise should be much

less of a problem inside the solenoid, which we showed to
be the interesting region for the purpose of testing the
gravity of stresses. This is because, in the ideal case of
an infinitely long and perfectly axially symmetric solenoid,
the Newtonian noise inside the solenoid is strictly zero.

V. CONCLUSIONS

According to general relativity, stresses act as a source
of gravity on the same footing as energy. While stress-
generated gravity is normally negligible, it is thought to
play an important role in astrophysics, where it contributes
to determining the maximum mass of neutron stars, and it
is perhaps determinant in cosmology, where ‘‘negative’’
pressure-generated gravity may be the cause of the recently
discovered accelerated expansion of the Universe. The
importance of these problems makes it highly desirable
to design a laboratory test, still lacking as we write, to
verify if stresses actually gravitate as predicted by general
relativity or not. A test of this sort was proposed long ago in
[3], and it involved measuring the gravitational pull on a
test mass placed outside a long solenoid, carrying a slowly
alternating current. The conclusion was that in general
relativity the oscillating magnetic field inside the solenoid
produces a null gravitational force on the test mass, be-
cause the attractive gravity generated by the energy and
stresses of the magnetic field was found to cancel against
the negative gravity generated by the material stresses that
build up inside the solenoid walls. In this paper we dem-
onstrated that this result is incorrect, as it hinges on a
mistaken analysis of the material stresses, in which the
electrodynamic axial compression of the solenoid was
overlooked. After amending this mistake, we found that
the contribution to the external gravitational field from
Maxwell stresses and material stresses within the walls
cancel each other, and therefore the resulting gravitational
field is determined solely by the linear density of magnetic
energy stored inside the solenoid. Thus observation of the
external field cannot be used to test the gravity of stresses.
Moreover, observing this field is extremely unlikely be-
cause of the enormous Newtonian noise that results from
small changes in the length of the solenoid caused by the
axial electrodynamic compression.

The interesting region for testing the gravity of stresses
is the one inside the solenoid, because there the gravity of
Maxwell stresses is not screened by the gravity of material
stresses existing in the solenoid walls, and therefore they
contribute as much as the magnetic energy in generating
gravity. In the internal region the Newtonian noise should
also be much less of a problem, because in the ideal case of
a long solenoid, with perfect axial symmetry, Newtonian
noise is zero. The major experimental difficulty that we
foresee, apart from control of the residual noise resulting
from asymmetries of the solenoid, is to find means of
accurately measuring the gravitational field in the presence
of strong magnetic fields.
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APPENDIX

In this appendix we provide the explicit formulas for the
stresses that build up within the walls of the idealized
solenoid considered in Sec. III A, consisting of a cylindri-
cal pipe carrying a uniform azimuthal current concentrated
on its inner face. The expressions presented below provide
an explicit verification of the important formulas,
Eqs. (3.20) and (4.3).

We consider first the effect of the radial magnetic pres-
sure P on the inner face of the pipe. Far from the solenoid’s
ends, P is uniform and its magnitude is equal to the radial
component of the Maxwell stress tensor Trrmag inside the
solenoid:

 P �
B2

in

8�
: (A1)

This radial pressure determines transverse stresses Trrwalls�r�
and T		walls�r� in the pipe’s walls, whose expressions are well
known [12] and read

 Trrwalls � P
R2

1

R2
2 � R

2
1

�
R2

2

r2 � 1
�
;

T		walls � �P
R2

1

R2
2 � R

2
1

�
R2

2

r2 � 1
�
:

(A2)

Besides these transverse stresses, the magnetic field deter-
mines also axial stresses Tzzwalls�r� inside the walls. We
derive below the average value Fax of Tzzwalls, as given in
Eq. (4.3). In view of the key role played by the axial
compression Fax, and in order to explain its physical origin,
we provide two different derivations of Eq. (4.3). The first
derivation is based on the general equilibrium conditions
Eq. (3.1). Indeed, using Eq. (3.1), one can prove the follow-
ing identity holding far from the solenoid’s ends:

 

Z R2

0
dr2�r

X
j�x;y

�Tjjwalls � T
jj
mag� � 0: (A3)

To obtain it, we observe that far from the end points,
stresses are independent of z, and therefore Eq. (3.1) re-
duces to

 

X
k�x;y

@k�T
jk
walls � T

jk
mag� � 0: (A4)

Therefore, we have the identity

 

X
j�x;y

�Tjjsol � T
jj
mag� �

X
j;k�x;y

@k	�T
jk
sol � T

jk
mag�xj
: (A5)

Upon integrating both sides of the above equation on a
cross section � of the solenoid, we obtain

 

Z R2

0
dr2�r

X
j�x;y

�Tjjwalls � T
jj
mag�

� R2

Z 2�

0
d


X
j;k�x;y

�Tjkwalls � T
jk
mag�xjnkjr�R2

: (A6)

The integral on the r.h.s. vanishes, because Tjkwallsn
kjr�R2

is

zero in view of Eq. (3.3), while Tjkmagnkjr�R2
vanishes

because the magnetic field is negligible outside a long
solenoid [see the discussion of the external field following
Eq. (3.7)]. Therefore, the left-hand side of Eq. (A6) is zero
and this proves Eq. (A3). Indeed, it is easy to verify that
Eq. (A3) is satisfied by the explicit expressions for the
transverse material stresses given in Eqs. (A2), together
with the Maxwell stresses Eq. (2.9).

By using Eq. (A3), we can now easily obtain Fax. To do
this, we recall the identity

 

Z R2

0
dr2�r�Tiiwalls � T

ii
mag� � 0; (A7)

which is a direct consequence of Eq. (3.20). Upon subtract-
ing Eq. (A3) from Eq. (A7), we then obtain

 

Z R2

0
dr2�r�Tzzwalls � T

zz
mag� � 0:

It follows from the above equation that

 Fax �
Z R2

R1

dr2�rTzzwalls � �
Z R2

0
dr2�rTzzmag: (A8)

After substituting into the r.h.s. of the above formula the
following expression of Tzzmag inside the solenoid,

 Tzzmag � �
B2

in

8�
� �Emag; (A9)

we immediately obtain Eq. (4.3).
In order to clarify the physical origin of the axial force

Fax, it is useful to provide a more direct derivation of
Eq. (4.3). For this purpose, we consider the cylindrical
sheet � of radius R1 and height L that contains all the
current flowing in the solenoid, and we imagine splitting it
in two parts �1 and �2 consisting, respectively, of the
points of � that lie above and below a plane of equation
z � �z. If we imagine �1 and �2 as consisting of a large
number of closed circular current loops, it is clear by
Ampere’s law that an attractive axial force F�Amp���z� arises
between �1 and �2, and we show below that for �z far from
the end points F�Amp���z� has a constant magnitude equal to
~Emag.

Indeed, axial symmetry implies that F�Amp�� �z� is along
the z axis, and we let F�el�

z ��z� its z component. Now,
Ampere’s law gives the following expression for the ele-
mentary force dF�Amp�

z �z1; z2� between two infinitesimal
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circular current loops within �1 and �2:

 dF�Amp�
z �z1; z2� � �

dj1dj2

c2

I I
� ~dl1 � ~dl2�

~x1 � ~x2

j ~x1 � ~x2j
3 ;

(A10)

where dji � jdzi, and ~dli are line elements tangential to
the surface elements, and parallel to the surface current
density ~j. Using cylindrical coordinates, the above integral
can be rewritten as

 dF�Amp�
z � �

2�j2R2
1

c2 dz1dz2

Z 2�

0
d


z cos
�����������������������������������������
z2 � 2R2

1�1� cos
�
q ;

(A11)

with z � z1 � z2. Since the integrand is positive, we see
that the two rings attract each other, as expected. Upon
integrating over z1 and z2 we then obtain for F�Amp�

z ��z� the
expression

 F�Amp�
z ��z� � �

2�2R2
1j

2

c2 I� �z�; (A12)

where I��z� is the integral
 

I� �z� �
1

�

Z L=2

�z
dz1

Z �z

�L=2
dz2

Z 2�

0
d


�
z cos
�����������������������������������������

z2 � 2R2
1�1� cos
�

q : (A13)

The integrals over z1 and z2 in I��z� can be done by the
change of variables �z1; z2� ! �w; z�, where w �
�z1 � z2�=2. The result is
 

I� �z� �
1

�

Z 2�

0
d


8<:log

241�
2�z
L

�

������������������������������������������������������������
1�

2�z
L

�
2
� 8

R2
1

L2 �1� cos
�

s 35

� log

241�
2�z
L
�

������������������������������������������������������������
1�

2�z
L

�
2
� 8

R2
1

L2 �1� cos
�

s 35

� log

241�

�����������������������������������������
1� 2

R2
1

L2 �1� cos
�

s 35

�
1

2
log�1� cos
�

9=; cos
; (A14)

where we omitted a few terms that are zero upon integrat-

ing over 
. The positive quantity I��z� reaches its maximum
value at the center of solenoid (for �z � 0), and monotoni-
cally decreases towards zero when �z approaches the end
points at 
L=2. For a long solenoid, R1=L� 1, and far
from the end points, �L=2� jzj�=R1 � 1, I��z� becomes
independent of �z and its limiting value for an infinitely long
solenoid can be obtained by observing that for R1=L! 0
the first three terms between the curly brackets of the above
integral become independent of 
 and therefore, after
multiplication by cos
, they integrate to zero, leaving us
with

 lim
R1=L!0

I� �z� � �
Z 2�

0

d

2�

cos
 log�1� cos
� � 1:

(A15)

Upon inserting this value into Eq. (A12), we see, as ex-
pected, that in the limit of a long solenoid, and for �z far
from the end points, the current sheets �1 and �2 attract
each other with a force of magnitude

 lim
R1=L!0

F�Amp���z� �
2�2R2

1j
2

c2 : (A16)

This formula can be conveniently expressed in terms of the
magnetic energy density by noticing that inside a long
solenoid the strength of the magnetic field Bin is related
to the surface current density as

 Bin �
4�j
c
: (A17)

Using this formula, we can rewrite Eq. (A16) as

 lim
R1=L!0

F�Amp�� �z� � �R2
1 �

B2
in

8�
� ~Emag: (A18)

Obviously, since the current sheet � is anchored to the
inner face of the solenoid, the electrodynamic force
F�Amp�
z ��z� compresses the pipe and, at mechanical equilib-

rium, it is balanced by the axial stresses Tzzwalls inside the
pipe walls:

 Fax��z� � F�Amp���z�: (A19)

It should be noted that according to this formula the
compression Fax��z� vanishes at the ends of the pipe, and
it increases as one moves towards the middle of the pipe.
For a very long pipe, Eq. (A18) implies that far from the
ends Fax approaches the constant value

 Fax � ~Emag; (A20)

which reproduces again Eq. (4.3).
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