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The effects of noncommutativity and of the existence of a minimal length on the phase space of a
dilatonic cosmological model are investigated. The existence of a minimum length results in the
generalized uncertainty principle (GUP), which is a deformed Heisenberg algebra between the minisuper-
space variables and their momenta operators. I extend these deformed commutating relations to the
corresponding deformed Poisson algebra. For an exponential dilaton potential, the exact classical and
quantum solutions in the commutative and noncommutative cases, and some approximate analytical
solutions in the case of GUP, are presented and compared.
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I. INTRODUCTION

Since cosmology can test physics at energies that are
much higher than those which the experiments on Earth
can achieve, it seems natural that the effects of quantum
gravity could be observed in this context. Therefore, until a
completely satisfactory theory regarding cosmology can be
afforded by string theory, the study of the general proper-
ties of quantum gravity through cosmological systems such
as the Universe seems reasonably promising, and in recent
years many efforts have been made in cosmology from the
string theory point of view [1–4]. In the pre–big bang
scenario, based on the string effective action [5], the birth
of the Universe is described by a transition from the string
perturbative vacuum with weak coupling, low curvature
and cold state to the standard radiation dominated regime,
passing through a high curvature and strong coupling
phase. This transition is made by the kinetic energy term
of the dilaton, a scalar field with which the Einstein-Hilbert
action of general relativity is augmented; see [6] for a more
modern review of string dilaton cosmology. One of the
major features of the solutions of equations of motion in
string dilaton cosmology (see for example [7] for some
exact solutions in dilaton cosmology) is the duality, so that
if a�t�, the scale factor, solves the equations of motion,
1=a�t� is also a solution. This means that the whole
Universe behaves like a string, i.e. has a minimal size of
order of string scale and also a maximal size of order of the
inverse of string scale.

The existence of a minimal length is one of the most
important predictions of the theories which deal with
quantum gravity [8]. From the perturbative string theory
point of view, such a minimal length is due to the fact that
the strings cannot probe distances smaller than the string
size. One of the interesting features of the existence of a
minimal length described above is the modification it
makes to the standard commutation relation between po-
sition and momentum in usual quantum mechanics [9,10],
which is called the generalized uncertainty principle

(GUP). In one dimension the simplest form of such rela-
tions can be written as

 4 p4 x �
@

2
�1� ��4p�2 � ��; (1)

where� and � are positive and independent of4x and4p,
but may in general depend on the expectation values <x>
and <p> . The usual Heisenberg commutation relation
can be recovered in the limit � � � � 0. As is clear from
Eq. (1), this equation implies a minimum position uncer-
tainty of �4x�min � @

����
�
p

, and hence � must be related to
the Planck length. Now, it is possible to realize Eq. (1) from
the following commutation relation between position and
momentum operators:

 �x; p� � i@�1� �p2�; (2)

where I take � � �< p>2 . More general cases of such
commutation relations are studied in Ref. [11].

One of interesting features of GUP in more than one
dimension is that it implies naturally a noncommutative
geometric generalization of position space [9]. Non-
commutativity between space-time coordinates was first
introduced by Snyder [12], and in more recent times a great
deal of interest has been generated in this area of research
[13–15]. This interest has been gathering pace in recent
years because of strong motivations in the development of
string and M-theories, [16,17]. However, noncommutative
theories may also be justified in their own right because of
the interesting predictions they have made in particle phys-
ics, a few examples of which are the IR/UV mixing and
nonlocality [18], Lorentz violation [19], and new physics at
very short distance scales [19–21]. Noncommutative ver-
sions of ordinary quantum [22] and classical mechanics
[23,24] have also been studied and shown to be equivalent
to their commutative versions if an external magnetic field
is added to the Hamiltonian.

In cosmological systems, since the scale factors, matter
fields, and their conjugate momenta play the role of dy-
namical variables of the system, introduction of noncom-
mutativity by adopting the approach discussed above is*b-vakili@sbu.ac.ir
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particularly relevant. The resulting noncommutative clas-
sical and quantum cosmology of such models have been
studied in different works [25]. These and similar works
have opened a new window through which some of prob-
lems related to cosmology can be looked at and, hopefully,
resolved. For example, an investigation of the cosmologi-
cal constant problem can be found in [26]. In [27] the same
problem is carried over to the Kaluza-Klein cosmology.
The problem of compactification and stabilization of the
extra dimensions in multidimensional cosmology may also
be addressed using noncommutative ideas in [28].

In this paper I deal with noncommutativity and GUP in a
dilaton cosmological model with an exponential dilaton
potential, and to facilitate solutions for the case under
consideration, I choose a suitable metric. My approach to
GUP is through its introduction in phase space constructed
by minisuperspace fields and their conjugate momenta
[29]. In general GUP in its original form (see [9,10])
implies a noncommutative underlying geometry for
space-time. But formulation of gravity in a noncommuta-
tive space-time is highly nonlinear and setting up cosmo-
logical models is not an easy task. Here my aim is to study
some aspects regarding the application of the GUP frame-
work in quantum cosmology, i.e., in the context of a
minisuperspace reduction of the dynamics. As is well-
known in the minisuperspace approach of quantum cos-
mology, which is based on the canonical quantization
procedure, one first freezes a large number of degrees of
freedom by imposition of symmetries on the spatial part of
the metric and then quantizes the remaining ones.
Therefore, in the absence of a full theory of quantum
gravity, quantum cosmology is a quantum mechanical toy
model with finite degrees of freedom which is a simple
arena to test ideas and constructions which can be intro-
duced in quantum general relativity. In this respect, the
GUP approach to quantum cosmology appears to have
physical grounds. In fact, one notes that a deformation of
the canonical Heisenberg algebra immediately leads to a
generalized uncertainty principle. In other words, the GUP
scheme relies on a modification of the canonical quantiza-
tion prescriptions and, in this respect, it can be reliably
applied to any dynamical system (see [30] for a more clear
explanation on the GUP in the minisuperspace dynamics).
Since my model has 2 degrees of freedom, the scale factor
a and the dilaton �, with a change of variables, I have a set
of dynamical variables �x; y�, which are suitable candidates
for introducing noncommutativity and GUP in the phase
space of the problem at hand. I present exact solutions of
classical and quantum commutative and noncommutative
cosmology. Also in the case when the minisuperspace
variables obey the GUP commutating relations, I obtain
approximate analytical solutions for the corresponding
classical and quantum cosmology. Finally, I compare and
contrast these solutions at both classical and quantum
levels.

II. THE MODEL

In D � 4 dimensions the lowest order gravi-dilaton
effective action, in the string frame, can be written as [31]

 S � �
1

2�s

Z
d4x

�������
�g
p

e���R� @��@
��� V����;

(3)

where � is the dilaton field, �s is the fundamental string
length ls parameter, and V��� is the dilaton potential. In
the string frame the fundamental unit is the string length ls,
and thus the Planck mass, which is the effective coefficient
of the Ricci scalar R, varies with the dilaton. One can also
write the action in the Einstein frame, for which the
fundamental unit is the Planck length. Since the Planck
length is more appropriate for my purpose, I prefer to work
in the Einstein frame. In [4], it is shown in detail that the
action (3) in the Einstein frame takes the form

 S � �
M2

4

2

Z
d4x

�������
�g
p

�
R�

1

2
@��@��� V���

�
; (4)

where now all quantities in the action are in the Einstein
frame. I consider a spatially flat Friedmann-Robertson-
Walker (FRW) space-time which, following [32], is speci-
fied by the metric

 ds2 � �
N2�t�

a2�t�
dt2 � a2�t��ijdx

idxj: (5)

Here N�t� is the lapse function and a�t� represents the scale
factor of the Universe. The square of the scale factor
dividing the lapse function turns out to simplify the calcu-
lations and makes the Hamiltonian quadratic. Now, it is
easy to show that the effective Lagrangian of the model can
be written in the form

 L �
1

N

�
�

1

2
a2 _a2 �

1

2
a4 _�2

�
� Na2V���: (6)

To simplify the above Lagrangian, let me introduce a new
set of variables [33]

 x �
a2

2
cosh��; y �

a2

2
sinh��; (7)

where � is a positive constant. In terms of these new
variables the Lagrangian (6) takes the form

 L �
1

2N
� _y2 � _x2� � 2N�x� y�e��V���: (8)

From now on, I choose an exponential potential

 V��� �
V0

2
e���; (9)

which simplifies the last term in the Lagrangian (8) leading
to

 L �
1

2N
� _y2 � _x2� � NV0�x� y�; (10)
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with the corresponding Hamiltonian constraint written as

 H � �
1

2
p2
x �

1

2
p2
y � V0�x� y�: (11)

Note that the minisuperspace of the above model is a two-
dimensional manifold 0< a<1, �1<�<�1.
According to [34], its nonsingular boundary is the line a �
0 with j�j<�1, while at the singular boundary, at least
one of the two variables is infinite. In terms of the variables
x and y, introduced in (7), the minisuperspace is recovered
by x > 0, x > jyj, and the nonsingular boundary may be
represented by x � y � 0.

III. CLASSICAL COSMOLOGY

The classical and quantum solutions of the model de-
scribed by Hamiltonian (11) can be easily obtained. Since
my aim here is to compare the commutative solutions with
noncommutative and GUP solutions, in what follows I
consider commutative, noncommutative, and GUP classi-
cal cosmologies, and compare the results with each other.
In the next section I shall deal with the quantum cosmology
of the model.

A. Commutative case

The Poisson brackets for the classical phase-space var-
iables are

 fxi; xjg � fpi; pjg � 0; fxi; pjg � �ij; (12)

where xi�i � 1; 2� � x; y and pi�i � 1; 2� � px; py.
Therefore, the equation of motion becomes (in N � 1
gauge)

 

_x � fx;H g � �px; _px � fpx;H g � �V0; (13)

 _y � fy;H g � py; _py � fpy;H g � V0: (14)

Equations (13) and (14) can be immediately integrated to
yield

 x�t� �
1

2
V0t

2�p0xt� x0; px�t� ��V0t�p0x; (15)

 y�t� �
1

2
V0t

2 � p0yt� y0; py�t� � V0t� p0y: (16)

Now, these solutions must satisfy the zero energy condi-
tion, H � 0. Thus, substitution of Eqs. (15) and (16) into
(11) gives a relation between integration constants as

 p2
0y � p

2
0x � 2V0�y0 � x0�: (17)

Equations (15) and (16) are like the equation of motion for
a particle moving in a plane with its acceleration compo-
nents equal to V0, while �px�t� and py�t� play the role of
its velocity. Note that the condition x > 0 implies that
p2

0x � 2V0x0 < 0, thus, Eq. (17) results in p2
0y � 2V0y0 <

0, which means that y > 0. Therefore, in classical cosmol-

ogy only half of the minisuperspace x > y > 0 or �a >
0; � > 0� is recovered by the dynamical variables x�t� and
y�t�. Now, using relations (7) one can find the scale factor
and dilaton field as [to get a more simple form I take x0 �
y0 and p0x � p0y which of course satisfy the condition
(17)]

 a�t� � �8jp0xjV0t3 � 16x0jp0xjt�1=4; (18)

 ��t� �
1

2�
ln
�
V0t

2 � 2x0

2jp0xj

�
: (19)

The limiting behavior of a�t� and ��t� in the early and late
times is then as follows:

 a�t� 	 t1=4; ��t� 	 const:; t
 1; (20)

 a�t� 	 t3=4; ��t� 	 lnt; t� 1: (21)

A remark about the above analysis is that I use a non-
standard parametrization of the FRW metric; this is done in
order to simplify the calculations and have a manageable
Lagrangian for the noncommutative deformation. As is
well-known usually the introduction of the lapse function
gives a new parametrization of time, but if N�t� � 1 one
returns to the usual cosmic time where in my parametriza-
tion this is not the case. Therefore, let me translate these
results in terms of the cosmic time �. Using its relationship
with my time parameter t, that is

 d� �
1

a�t�
dt; (22)

I obtain

 �	 t3=4; t
 1; and �	 t1=4; t� 1: (23)

Therefore, the behavior of the scale factor and the dilatonic
field in the early and late (cosmic) times is as

 a��� 	 �1=3; ���� 	 const:; �
 1; (24)

 a��� 	 �3; ���� 	 ln�; �� 1: (25)

I see that in the usual commutative phase space of my
model the scale factor has a decelerated expansion in early
times while it undergoes an accelerated phase in its late
time evolution due to a constant and growing with time
dilatonic field, respectively. These results are comparable
with those that are presented in the last paper of [25] in
which the authors used the gauge d� � a3dt.

B. Noncommutative case

Let me now concentrate on the noncommutativity con-
cepts in classical cosmology. Noncommutativity in classi-
cal physics [23] is described by a deformed product, also
known as the Moyal product law between two arbitrary
functions of position and momentum as
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 �f �� g��x� � exp
�

1

2
�ab@�1�a @

�2�
b

�
f�x1�g�x2�jx1�x2�x;

(26)

such that

 �ab �
	ij �ij � 
ij

��ij � 
ij �ij

� �
; (27)

where the N  N matrices 	 and � are assumed to be
antisymmetric with 2N being the dimension of the classi-
cal phase space, represents the noncommutativity in coor-
dinates and momenta, respectively. With this product law,
the deformed Poisson brackets can be written as

 ff; gg� � f �� g� g �� f: (28)

A simple calculation shows that

 fxi; xjg� � 	ij; fxi; pjg� � �ij � 
ij;

fpi; pjg� � �ij:
(29)

Now, consider the following transformations on the clas-
sical phase space:

 x0i � xi �
1

2
	ijp

j; p0i � pi �
1

2
�ijx

j: (30)

It can easily be checked that if �xi; pj� obey the usual
Poisson algebra (12), then

 fx0i; x
0
jg � 	ij; fx0i; p

0
jg � �ij � 
ij;

fp0i; p
0
jg � �ij;

(31)

where 
ij � �
1
8 �	

k
i �kj � �

k
i 	kj�. These commutative re-

lations are the same as (29). Consequently, for introducing
noncommutativity, it is more convenient to work with
Poisson brackets (31) than �-star deformed Poisson brack-
ets (29). It is important to note that the relations repre-
sented by Eq. (29) are defined in the spirit of the Moyal
product given above. However, in the relations defined by
(31), the variables �xi; pj� obey the usual Poisson bracket
relations so that the two sets of deformed and ordinary
Poisson brackets represented by relations (29) and (31)
should be considered as distinct.

In this work I consider a noncommutative phase space in
which �ij � 0 and so that 
ij � 0, i.e. the Poisson brack-
ets of the phase-space variables are as follows:

 fxnc; yncg � 	; fxinc; pjncg � �ij;

fpinc; pjncg � 0:
(32)

With the noncommutative phase space defined above, I
consider the Hamiltonian of the noncommutative model
as having the same functional form as Eq. (11), but in
which the dynamical variables satisfy the above-deformed
Poisson brackets, that is

 H nc � �
1

2
p2
xnc �

1

2
p2
ync � V0�xnc � ync�: (33)

Therefore, the equations of motion read
 

_xnc � fxnc;H ncg � �pxnc � 	V0;

_pxnc � fpxnc;H ncg � �V0;
(34)

 

_ync � fync;H ncg � pync � 	V0;

_pync � fpync;H ncg � V0:
(35)

The above equations are similar to Eqs. (13) and (14) in the
commutative case. Their solutions are therefore as follows:
 

xnc �
1

2
V0t2 � �p0x � 	V0�t� x0;

pxnc � �V0t� p0x;
(36)

 

ync �
1

2
V0t2 � �p0y � 	V0�t� y0;

pync � V0t� p0y:
(37)

The requirement that these solutions must satisfy the non-
commutative Hamiltonian constraint H nc � 0, gives
again the relation (17) between integration constants. As
mentioned before, instead of dealing with the noncommu-
tative variables I can construct, with the help of trans-
formations (30), a set of commutative dynamical
variables x, y obeying the usual Poisson brackets (12)
which, for the problem at hand read
 

pxnc � px; pync � py;

xnc � x�
1

2
	py; ync � y�

1

2
	px:

(38)

In terms of these commutative variables the Hamiltonian
takes the form

 H � �
1

2
p2
x �

1

2
p2
y � V0�x� y� �

1

2
	V0�px � py�:

(39)

Therefore, I have the following equations of motion
 

_x � fx;H g � �px �
1

2
	V0;

_px � fpx;H g � �V0;
(40)

 _y � fy;H g � py �
1

2
	V0; _py � fpy;H g � V0:

(41)

The solutions of the above equations can be straightfor-
wardly obtained in the same manner as that of system (13)
and (14). It is easy to check that the action of transforma-
tions (38) on the solutions of system (40) and (41) is to
recover solutions (36) and (37). One sees that the effects of
the noncommutative parameter 	 appear only in the initial
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velocity of the evolution. This means that noncommuta-
tivity in phase space shows itself in the early epoch of the
cosmic evolution and when time grows the differences
between commutative solutions (15) and (16) and non-
commutative solutions (36) and (37) disappear. To make
this issue more clear, let me return to the variables a�t� and
��t� using the transformation (7). Choosing again x0 � y0

and p0x � p0y I obtain

 anc�t� � �8jp0xjV0t
3 � 16	jp0xjt

2 � 16x0jp0xjt�
1=4;

(42)

 �nc�t� �
1

2�
ln

��������V0t
2 � 2	V0t� 2x0

2p0x

��������: (43)

The late time (t� 1) behavior of anc�t� and �nc�t� is the
same as (21). On the other hand in the regime t
 1,
considering the 	-term in (42) and (43) I obtain

 anc�t� 	 	
1=4t1=2; �nc�t� 	 ln�	t�; t
 1: (44)

In this limit the cosmic time d� � 1
a dt takes the form

 �	 	�1=4t1=2; (45)

and then the early (cosmic) time behavior of the scale
factor and the dilatonic field is as follows:

 anc��� 	 	1=2�; �nc��� 	 ln�	3=2�2�; �
 1:

(46)

I see that noncommutativity causes a uniform expansion
(not decelerated expansion) in the early times of cosmic
evolution.

C. Classical cosmology with GUP

In more than one dimension a natural generalization of
Eq. (2) is defined by the following commutation relations
[9]:

 �xi; pj� � i��ij � ��ijp
2 � �0pipj�; (47)

where p2 �
P
pipi and �, �0 > 0 are considered as small

quantities of first order. Also, assuming that

 �pi; pj� � 0; (48)

the commutation relations for the coordinates are obtained
as

 �xi; xj� � i
�2�� �0� � �2�� �0��p2

1� �p2 �pixj � pjxi�:

(49)

As it is clear from the above expression, the coordinates do
not commute. This means that to construct the Hilbert
space representations, one cannot work in position space.
It is therefore more convenient to work in momentum
space. However, since in quantum cosmology the wave
function of the Universe in momentum space has no suit-

able interpretation, I restrict myself to the special case
�0 � 2�. As one can see immediately from Eq. (49), the
coordinates commute to first order in � and thus a coor-
dinate representation can be defined. Now, it is easy to
show that the following representation of the momentum
operator in position space satisfies relations (47) and (48)
(with �0 � 2�) to first order in �

 pi � �i
�

1�
�
3

@2

@x2
i

�
@
@xi

: (50)

A comment on the above issue is that applying the GUP to
a curved background such as a cosmological model needs
some modifications [35]. Here, since I apply the GUP to
the minisuperspace variables x, y which correspond to a
Minkowskian metric, I can safely use the above expres-
sions without any modifications. Now, it is possible to
realize Eqs. (47)–(50) from the following commutation
relations between position and momentum operators:
 

�x; px� � i�1� �p2 � 2�p2
x�;

�y; py� � i�1� �p2 � 2�p2
y�;

(51)

 �x; py� � �y; py� � 2i�pxpy; (52)

 �xi; xj� � �pi; pj� � 0; xi�i � 1; 2� � x; y;

pi�i � 1; 2� � px; py:
(53)

Now, before quantizing the model in the GUP framework
in the next section, I would like to investigate the effects of
the classical version of GUP, i.e., the classical version of
commutation relations (51)–(53) on the above cosmology.
As is well-known, in the classical limit the quantum me-
chanical commutators should be replaced by the classical
Poisson brackets as �P;Q� ! i@fP;Qg. Thus, the GUP in
classical phase space changes the Poisson algebra (12) into
their deformed forms as1

 fx; pxg � 1� �p2 � 2�p2
x;

fy; pyg � 1� �p2 � 2�p2
y;

(54)

 fx; pyg � fy; pxg � 2�pxpy; (55)

1Such deformed Poisson algebra is used in [36] to investigate
effects of the deformation on the classical orbits of particles in a
central force field and on the Kepler third law. Also, the stability
of planetary circular orbits in the framework of such deformed
Poisson brackets is considered in [37]. Note that here I deal with
modifications of a classical cosmology that become important
only at the Planck scale, where the classical description is no
longer appropriate and a quantum model is required. However,
before quantizing the model I shall provide a deformed classical
cosmology. In this classical description of the Universe in
transition from commutation relation (2) to its Poisson bracket
counterpart I keep the parameter � fixed as @! 0. In string
theory this means that the string momentum scale is fixed when
its length scale approaches the zero.
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 fxi; xjg � fpi; pjg � 0; xi�i � 1; 2� � x; y;

pi�i � 1; 2� � px; py:
(56)

Therefore, the equations of motion read
 

_x � fx;H g � �px�1� �p2�;

_px � fpx;H g � �V0�1� ��py � px�2�;
(57)

 

_y � fy;H g � py�1� 3�p2�;

_py � fpy;H g � V0�1� ��py � px��3py � px��:
(58)

I see that the deformed classical cosmology forms a system
of nonlinear coupled differential equations, which are not
easy to solve. Thus, to simplify it, I may make some
approximations. From Eqs. (57) and (58) I get

 _px � _py � 2�V0�p
2
y � p

2
x�; (59)

if in the first approximation I neglect the right-hand side of
the above equation, I obtain

 _px � _py � 0) px � py � p0 � Const: (60)

Substituting this result in Eqs. (57) and (58), I am led to the
following decoupled equations for px and py:

 _px � �V0�1� ��p0 � 2px�2�; (61)

 _py � V0�1� ��4p2
y � p2

0��; (62)

which are immediately integrable with the results

 px�t� �
1

2
p0 �

1

2
����
�
p tan2

����
�

p
V0�t� t0�; (63)

 py�t� �
1

2
p0 �

1

2
����
�
p tan2

����
�

p
V0�t� t0�: (64)

Substituting these results into the first equations of the
system (57) and (58), I can obtain x�t� and y�t� as

 x�t� �
p0

4
�p2

0�� 3�t�
p0

8V0

����
�
p tan2V0

����
�

p
�t� t0�

�

�
p2

0

8V0
�

3

8V0�

�
ln�cos2V0

����
�

p
�t� t0��

�
1

16�V0
tan22V0

����
�

p
�t� t0�; (65)

 y�t� �
p0

4
�3p2

0�� 1�t�
3p0

8V0

����
�
p tan2V0

����
�

p
�t� t0�

�

�
3p2

0

8V0
�

1

8V0�

�
ln�cos2V0

����
�

p
�t� t0��

�
3

16�V0
tan22V0

����
�

p
�t� t0�: (66)

It is easy to see that in the limit �! 0, with a suitable
choice of t0 in terms of p0x, p0y, and V0, one can recover

the ordinary classical cosmology (15) and (16). A com-
ment on the above solutions is that the effects of GUP are
important not only in the early but also at late times of the
cosmic evolution. In fact, these solutions show that in the
GUP framework the quantum gravitational effects may be
detected also in large scales.

IV. QUANTIZATION OF THE MODEL

Now, let me quantize the model described above. As in
the classical cosmology, here for comparison purposes
between ordinary commutative, noncommutative, and
GUP, I study the quantum cosmology of the model in these
frameworks separately and compare the results.

A. Commutative quantum cosmology

I first discuss the commutative quantum cosmology of
my model. For this purpose I quantize the dynamical
variables of the model with the use of a canonical quanti-
zation procedure that leads to the Wheeler-DeWitt (WD)
equation, H� � 0. Here, H is the operator form of the
Hamiltonian given by (11), and � is the wave function of
the Universe, a function of spatial geometry and matter
fields, if they exist. With replacement px ! �i@=@x and
similarly for py in (11), the WD equation reads

 

�
@2

@x2 �
@2

@y2 � 2V0�x� y�
�

��x; y� � 0: (67)

The solutions of the above differential equation are sepa-
rable and may be written in the form ��x; y� � X�x�Y�y�,
leading to

 

d2X

dx2
� �2V0x� ��X � 0;

d2Y

dy2 � �2V0y� ��Y � 0;

(68)

where � is a separation constant. Eqs. (68) have well-
known solutions in terms of Airy functions Ai�z� and
Bi�z�. The functions Bi�z� are usually omitted because of
their divergent behavior in the limit z! 1. Therefore, the
eigenfunctions of the WD equation can be written as

 ���x; y� � Ai
�
�� 2V0x

�2V0�
2=3

�
Ai
�
�� 2V0y

�2V0�
2=3

�
: (69)

Now, I impose the boundary condition on these solutions
such that at the nonsingular boundary (at a � 0 and j�j<
1) the wave function vanishes [34],

 ��a � 0; �� � 0) ��x � 0; y � 0� � 0; (70)

which yields

 Ai
�

�

�2V0�
2=3

�
� 0) �n � �2V0�

2=3�n; (71)

where �n is the nth zero of the Airy function Ai�z�. I may
now write the general solution of the WD equation as a
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superposition of its eigenfunctions

 ��x; y� �
X1
n�1

cnAi
�
�n � 2V0x

�2V0�
2=3

�
Ai
�
�n � 2V0y

�2V0�
2=3

�
: (72)

Figure 1 shows the square of the wave function of the
commutative quantum Universe. As is clear from this
figure the wave function peaks symmetrically around y �
0. The largest peaks correspond to some nonzero values x0

for x and �y0 for y. This means that there are different
possible states (corresponding to positive and negative
dilaton) from which our present Universe could have
evolved and tunneled in the past, from one state to another.

B. Noncommutative quantum cosmology

To study noncommutativity at the quantum level, I
follow the same procedure as before, namely, the canonical
transition from classical to quantum mechanics by replac-
ing the Poisson brackets with the corresponding Dirac
commutators f; g ! �i�; �. Thus, the commutation rela-
tions between my dynamical variables should be modified
as follows:

 �xnc; ync� � i	; �xnc; px� � �ync; py� � i: (73)

The corresponding WD equation can be obtained by modi-
fication of the operator product in (67) with the Moyal
deformed product [25]

 

�
�

1

2
p2
x �

1

2
p2
y � V0�x� y�

�
���x; y� � 0; (74)

Using the definition of the Moyal product (26), it may be
shown that

 f�x; y� ���x; y� � f�xnc; ync���x; y�; (75)

where the relations between the noncommutative variables
xnc, ync and commutative variables x, y are given by (38).
Therefore, the noncommutative version of the WD equa-

tion can be written as
 �
@2

@x2 �
@2

@y2 � i	V0

�
@
@x
�
@
@y

�
� 2V0�x� y�

�
��x; y� � 0:

(76)

I again separate the solutions into the form ��x; y� �
X�x�Y�y�, which leads to the following equations for the
functions X�x� and Y�y� with a separation constant �:
 

d2X

dx2 � i	V0
dX
dx
� �2V0x� ��X � 0;

d2Y

dy2 � i	V0
dY
dy
� �2V0y� ��Y � 0:

(77)

The solutions of Eq. (77) can be written in terms of Airy
functions as

 X�x� � e��i=2�V0	xAi
��� 1

4V
2
0	

2 � 2V0x

�2V0�
2=3

�
;

Y�y� � e�i=2�V0	yAi
��� 1

4V
2
0	

2 � 2V0y

�2V0�
2=3

�
;

(78)

where to recover the commutative solutions in the case of
	 � 0, I have omitted the functions Bi�z�. Thus the eigen-
functions of the noncommutative WD equation are as
follows:
 

���x; y� � e�i=2�V0	�y�x�Ai
��� 1

4V
2
0	

2 � 2V0x

�2V0�
2=3

�

 Ai
��� 1

4V
2
0	

2 � 2V0y

�2V0�
2=3

�
: (79)

Note that in the context of my noncommutative model
choosing the boundary condition (70) is not trivial and
instead I construct the general solution of the WD equation
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FIG. 1 (color online). The square of the wave function in the
commutative case. I take the numerical value V0 � 1.
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FIG. 2 (color online). The square of the wave function in the
noncommutative case. I take the numerical values V0 � 1 and
	 � 2.

DILATON COSMOLOGY, NONCOMMUTATIVITY, AND . . . PHYSICAL REVIEW D 77, 044023 (2008)

044023-7



as a superposition of eigenfunctions in the form

 ��x; y� �
Z �1
�1

C������x; y�d�; (80)

where C��� can be chosen as a shifted Gaussian weight
function e�a���b�

2
; see Ref. [25]. Figure 2 shows the square

of the wave function in the noncommutative case. I see that
in this case the peaks occur only for positive values of y (or
positive values of dilaton). Also, noncommutivity causes a
shift in the minimum of the values of x corresponding to
the spacial volume.

C. Quantum cosmology in GUP framework

In this subsection I focus attention on the study of the
quantum cosmology of my model based on the GUP
formalism reviewed in the previous section. The corre-
sponding commutation relations are given by (51)–(53).
As I have mentioned in the previous section, in the special
case when �0 � 2�, I have the following representations
for px and py in the x� y space which fulfill the commu-
tation relations (51)–(53):

 px � �i
�
1�

�
3

@2

@x2

�
@
@x
; py � �i

�
1�

�
3

@2

@y2

�
@
@y
:

(81)

Now, using these representations for the momenta in
Hamiltonian (11), the WD equation can be written, up to
the first order in � as
 �
�

2

3
�
@4

@x4�
@2

@x2�
2

3
�
@4

@y4�
@2

@y2�2V0�x�y�
�

��x;y��0:

(82)

I again separate the solutions into the form ��x; y� �
X�x�Y�y�, leading to

 �
2

3
�
d4Zi
dz4

i

�
d2Zi
dz2

i

� �2V0zi � ��Zi � 0;

Zi�i � 1; 2� � X; Y; zi�i � 1; 2� � x; y;

(83)

where � is the separation constant as before. I cannot solve
the above fourth order equations analytically, but I can
provide an approximation method which in its domain of
validity, I need to solve a second order differential equa-
tion. Taking � � 0 in Eq. (83) yields the ordinary WD
equation where the solutions are given by (69). In the case
when � � 0, note that the effects of � are important at the
Planck scales, i.e., in cosmology language in the very early
Universe, that is, when the scale factor is small, which in
my model means x, y	 0. Thus, if I use the solutions (69)
in the �-term of (83), I may obtain some approximate
analytical solutions in the region x, y! 0. To this end, I
write the limiting behavior of the solutions (69) in the
region x, y	 0 as

 Ai
�
�� 2V0z

�2V0�
2=3

�
! c0 � c1z� c2z2 � c3z3 � c4z4

�O�z5�: (84)

Therefore, I can replace the fourth derivative of X�x� and
Y�y� in Eq. (83) with a constant and thus are led to the
following equations:
 

d2Zi
dz2

i

� �2V0zi � ��Zi � �0; Zi�i � 1; 2� � X; Y;

zi�i � 1; 2� � x; y; (85)

in which �0 � 16c4�. The solutions of the above equation
can be written in terms of Airy functions and hypergeo-
metric functions pFq�fa1; . . . ; apg; fb1; . . . ; bqg; z� as

 Z�z� � Ai
�
�� 2V0z

�2V0�
2=3

�
�AV0��0Ai

�
�� 2V0z

�2V0�
2=3

�
1F2

�
1

3
;
2

3
;
4

3
;
��� 2V0z�

3

36V2
0

�
� . . . ; (86)

where A is

 A �
322=335=6�
36��2=3�

;

and . . . , denotes the terms that I have neglected in my approximation proposal. I have also removed the Airy functions
Bi�z� from the solutions to recover the solutions (69) in the limit �! 0. Thus, the eigenfunctions of WD equation (82)
read
 

���x; y� �
�

Ai
�
�� 2V0x

�2V0�
2=3

�
�AV0��0Ai

�
�� 2V0x

�2V0�
2=3

�
1F2

�
1

3
;
2

3
;
4

3
;
��� 2V0x�3

36V2
0

��



�
Ai
�
�� 2V0y

�2V0�
2=3

�
�AV0��0Ai

�
�� 2V0y

�2V0�
2=3

�
1F2

�
1

3
;
2

3
;
4

3
;
��� 2V0y�3

36V2
0

��
: (87)

Now, bearing in the mind that in my GUP framework, I have chosen the GUP parameters �0 � 2� such that the
coordinates commute, I can apply the boundary condition (70), also on the GUP wave function, which yields
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 Ai
�

�

�2V0�
2=3

�
�AV0��0Ai

�
�

�2V0�
2=3

�
1F2

�
1

3
;
2

3
;
4

3
;
�3

36V2
0

�
� 0: (88)

Therefore, the general solution of the WD equation can be written as
 

��x; y� �
X
n

cn

�
Ai
�
�n � 2V0x

�2V0�
2=3

�
�AV0�n�0Ai

�
�n � 2V0x

�2V0�
2=3

�
1F2

�
1

3
;
2

3
;
4

3
;
��n � 2V0x�

3

36V2
0

��



�
Ai
�
�n � 2V0y

�2V0�
2=3

�
�AV0�n�0Ai

�
�n � 2V0y

�2V0�
2=3

�
1F2

�
1

3
;
2

3
;
4

3
;
��n � 2V0y�3

36V2
0

��
; (89)

where �n are the zeros of Eq. (88). In Fig. 3 I have plotted
the square of wave function when the phase-space varia-
bles obey GUP relations, for small values of x and y. This
figure shows only a possible state in the early Universe
with a negative value for y and a nonzero positive value of
x. Thus, in the context of GUP quantum cosmology our
Universe emerges from a nonsingular state where the
dilaton field has a negative value.

V. CONCLUSIONS AND COMPARISON OF THE
RESULTS

In this paper I have studied the effects of noncommuta-
tivity and generalized uncertainty relations in phase space,
on classical and quantum cosmology of a dilaton model
with an exponential dilaton potential. In the case of com-
mutative phase space, the evolution of the classical
Universe is like the motion of a particle (Universe) moving
on a plane with a constant acceleration. I have shown that
in this case both dynamical variables x and y should be
positive which means that only half of the minisuperspace
is recovered through the evolution of the Universe. In the
case when quantum cosmology is considered in the com-
mutative phase space, I have seen that the wave function of
the Universe peaks symmetrically around y � 0, which

means that the present Universe could have evolved from
different states with the same values for x but different
symmetric values for y. In the case of noncommutative
classical cosmology, the solutions are like the commutative
case with a little difference, that is, the noncommutative
parameter shows its effect on the initial velocity of the
evolution. On the other hand noncommutative quantum
cosmology predicts the emergence of the Universe from
a positive value of y, that is, from a positive value of the
dilaton field. Finally, when the phase-space variables obey
the GUP relations, the classical cosmology is described by
Eqs. (65) and (66), which are more complicated than the
commutative case. Also, I have presented approximate
analytical solutions of quantum cosmology in the GUP
framework. These solutions show only one possible state
in the early Universe with a negative value for y and a
nonzero positive value of x. Thus, in the context of GUP
quantum cosmology the early Universe emerges from a
nonsingular state where the dilaton field has a negative
value.
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