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We investigate an infinitesimally thin cylindrical shell composed of counter-rotating dust particles. This
system was studied by Apostolatos and Thorne in terms of the C-energy for a bounded domain. In this
paper, we reanalyze this system by evaluating the C-energy on the future null infinity. We find that some
class of momentarily static and radiation-free initial data does not settle down into static equilibrium
configurations, and an otherwise infinite amount of the gravitational radiation is emitted to the future null
infinity. Our result implies the existence of an instability in this system. In the framework of the
Newtonian gravity, a cylindrical shell composed of counter-rotating dust particles can be in a steady
state with oscillation by the gravitational attraction and centrifugal repulsion, and hence a static state is not
necessarily realized as a final state. By contrast, in the framework of general relativity, the steady
oscillating state will be impossible since the gravitational radiation will carry the energy of the oscillation
to infinity. Thus, this instability has no counterpart in the Newtonian gravity.
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I. INTRODUCTION

In order to understand the relativistic gravitational phe-
nomena, the existence of isometries is often or usually
assumed, since the Einstein equations are a very compli-
cated system of quasilinear partial differential equations.
The simplest but useful assumption in relativistic astro-
physical situations is that of spherical symmetry. A short-
coming of this assumption is that there is no freedom of
gravitational radiation. It is hardly possible to extract any
effects of gravitational radiation within spherically sym-
metric systems. In contrast, although the cylindrical sym-
metry might rarely appear in relativistic astrophysical
situations, it has a degree of freedom of gravitational
radiation known as Einstein-Rosen gravitational waves
[1]. This system has been studied in connection with the
gravitational waves [2– 4].

The cylindrically symmetric system has been investi-
gated also in connection with the hoop conjecture which
states that black holes with horizons form when and only
when a mass M gets compacted into a region whose
circumference C in every direction is C & 4�M [5]. This
conjecture might come from the well-known difference
between the spherically symmetric and the cylindrically
symmetric systems; the spherical gravitational collapse
forms a horizon, whereas the cylindrical gravitational col-
lapse does not, if energy conditions on material fields are
satisfied [5,6]. If the hoop conjecture is correct, the follow-
ing statement also holds: if massM does not get compacted
in some direction, there is no horizon. This means that if
the spacetime singularity forms but its massM does not get

compacted in some direction, the spacetime singularity
will be naked. Thus this conjecture is deeply related also
to the cosmic censorship [7]. In order to confirm the hoop
conjecture, Shapiro and Teukolsky performed a numerical
simulation for the gravitational collapse of dust matter with
spindlelike distributions [8], which is a relativistic counter-
part of Lin-Mestel-Shu collapse [9]. Their result implies
that a spacetime singularity without a horizon forms from a
highly elongated distribution of matter. This is a strong
candidate for a counter-example of the cosmic censorship
conjecture,1 whereas based on the study about an infini-
tesimally thin cylindrical shell, Apostolatos and Thorne
argued that the effect of the rotation will halt the spindle
gravitational collapse [13]. Any complete answer for this
issue has not been given yet [14,15].

In this paper, we reanalyze the cylindrical shell model
originally studied by Apostolatos and Thorne. Our study is
based on the evaluation of the C-energy at the future null
infinity, whereas the argument by Apostolatos and Thorne
is on the C-energy for bounded domains. Because of the
difference between our study and theirs, the conclusions
are rather different from each other.

In this paper, we adopt the geometrized units c � 1 �
G, and our notation follows the textbook of Hawking and
Ellis [16].
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1Even though this example is really a counter-example of the
cosmic censorship, the appearance of naked singularity in the
framework of general relativity does not necessarily imply a
disaster in the real world. In a large curvature region, quantum
effects will be important and the divergences of physical quan-
tities will not be realized (see, for example, [10,11]). Thus we
should consider that the naked singularity formation in the
framework of general relativity implies the occurrence of ob-
servable quantum phenomena in strong gravity [12].
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II. CYLINDRICAL SHELL COMPOSED OF
COUNTER-ROTATING PARTICLES

A. Spacetime with whole cylinder symmetry

In this section, we review the infinitesimally thin cylin-
drical shell model studied by Apostolatos and Thorne [13].
Hereafter, we refer to this shell as the Apostolatos-Thorne
(AT)-shell. The AT-shell is composed of dust particles with
an identical rest mass and an absolute value of angular
momentum, and one half of those has a positive angular
momentum, whereas the other half has a negative one, such
that the net angular momentum is zero, and all the particles
remain to be on a cylindrical shell. In this case, the space-
time �M; g� has the whole cylinder symmetry or equiva-
lently has the metric tensor with the local form [17,18]

 g � e2���� ���dt� � dt� � dr� � dr�� � r2e�2 d’

� d’� e2 dz � dz; (1)

where ��,  , and r depend on t� and r�. The ranges of
coordinates are given by �1< t�, z <�1, 0 �
r� <�1, 0 � ’< 2�. The axis of rotational symmetry
is located at r� � 0. The coordinate basis @=@’ and @=@z
are the rotational and translational Killing vectors,
respectively.

If the stress-energy tensor, T, satisfies the condition

 � T
�
@
@t�

;
@
@t�

�
� T

�
@
@r�

;
@
@r�

�
� 0; (2)

then the Einstein equations impose the wave equation in
the 2-dimensional Minkowski spacetime on the radial co-
ordinate function as

 @2
t�r� @

2
r�r � 0: (3)

The solution of the above equation takes a form

 r � f�v�� � g�w��; (4)

where

 v� � t� � r�; w� � t� � r�; (5)

and f and g are arbitrary functions. Here we restrict
ourselves to the case that the r � 	const
 hypersurface is
timelike, i.e., the inequality �@t�r�2 < �@r�r�2 holds. Then
we adopt the metric variable, r, as a new radial coordinate,
and further adopt a function defined by

 t � f�v�� � g�w�� (6)

as the new time coordinate. The metric in this new coor-
dinate system can be expressed as
 

g � e2��� ���dt � dt� dr � dr� � r2e�2 d’ � d’

� e2 dz � dz; (7)

where

 � � �� � 1
2 ln	�@r�r�2 � �@t�r�2
 (8)

has been defined. Here only a pair of metric variables, �
and  , appears.

We assume that the AT-shell is put in the vacuum space-
time. Therefore, the metric takes the form of Eq. (7) in both
the inside and outside regions of the AT-shell. The Einstein
equations lead to the equations for � and  as

 @t� � 2r�@t �@r ; (9)

 @r� � r	�@t �
2 � �@r �

2
; (10)

 

�
@2
t � @

2
r �

1

r
@r

�
 � 0: (11)

We also assume that the space is not closed in r direction,
i.e.,

 re > 0 for r > 0: (12)

B. Description of the AT-shell

The trajectory of an AT-shell in the spacetime is a time-
like hypersurface, �AT. Though the spacetime is singular
on �AT, it can consistently be treated by Israel’s metric
junction method [19–21]. The AT-shell, �AT, divides the
spacetime into two regions. We refer to the inside region of
�AT as M� and the outside one as M�. Even if �AT is
singular, we can require that the metric tensor g and the
Killing vectors @=@’, @=@z are continuous at �AT. It can
be easily seen that the continuity of g�@=@’; @=@’� and
g�@=@z; @=@z� implies the continuity of the coordinate
function, r, and the metric variable,  , across �AT. By
contrast, the continuity of � across �AT is not guaranteed
and this means that the coordinate function, t, and accord-
ingly, the coordinate basis, @=@t, may not be continuous
across �AT. Then, the evolution of the cylindrical AT-shell
is characterized by its radial coordinate r � R���, where �
is the proper time naturally defined on the AT-shell. The
circumferential radius of the AT-shell is given by R��� �
e� s���R���, where  s��� is the value of  evaluated on the
AT-shell.

We introduce the proper reference frame of an observer
riding on the AT-shell as follows:

 E U � X�
@
@t�
� V

@
@r
� four velocity of the shell;

(13)

 E N � V
@
@t�
� X�

@
@r

� outward unit vector normal to the shell; (14)

 E ’ �
e s

r
@
@’

; (15)
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 E z � e� s
@
@z
; (16)

where

 V :�
dR
d�
; (17)

 X� :�
dt�
d�
�

���������������������������������
e�2���� s� � V2

p
: (18)

The subscripts � and � are used to denote quantities
evaluated on the outer and inner faces of the AT-shell,
respectively, if necessary.

As mentioned above, the AT-shell is made of counter-
rotating dust particles which move along timelike geo-
desics whose tangents are denoted by u. By virtue of the
rotational isometry generated by @=@’, the specific angu-
lar momentum (the angular momentum per unit rest mass)
of each particle is conserved. Therefore, the component of
u in the direction tangent to E’ is given by

 g �u;E’� � �
�
R
�: �u; (19)

where �> 0 is a positive constant corresponding to an
absolute value of the specific angular momentum. Since
the rest mass of each particle is a conserved quantity, the
shell’s rest mass per unit Killing length is also conserved,
which we denote by �. We assume that � is positive, i.e.,
� > 0 holds. Then the surface stress-energy tensor, S, of
the AT-shell is given by

 S � �
�
EU �EU �

u2

1� u2 E� �E�

�
; (20)

where we have defined

 � :�
�

��������������
1� u2
p

2�R
(21)

as the surface energy density of the AT-shell.
In accordance with Israel’s prescription, the Einstein

equations for the AT-shell reduce to

 K� �K� � 8�
�

S�
1

2
�TrS�h

�
; (22)

where K� and K� are the extrinsic curvatures of the AT-
shell relative to the external region M� and the internal
region M�, respectively. The above equation leads to the
junction conditions on the metric variables as

 E N � �EN � � �
2�

R
��������������
1� u2
p ; (23)

 X� � X� � �4�
��������������
1� u2

p
; (24)

and

 

dV
d�
� VEU s � R	�EU s�

2 � �EN ��
2
 �

X�EN �
1� u2

�
X��

R�1� u2�3=2
�
X�X�u2

R�1� u2�
; (25)

where
 

EUfs � X�
@fs

@t�
� V

@fs

@r
and

ENf� � V
@f�
@t�
� X�

@f�
@r

:

(26)

C. Momentarily static and radiation-free initial data

Here we consider the initial data with the momentarily
static and radiation-free (MSRF) conditions

 V � 0 and @t � 0 � @2
t  : (27)

By solving the Einstein Eqs. (9)–(11), the metric variables
in M� are given by

 � � �� � �
2 ln�r=R�; (28)

  �  i � � ln�r=R�; (29)

where ��,  i, and � are integration constants. In contrast,
the solutions in M� should satisfy the regularity condition
at the symmetry axis, r � 0, as

 �jr�0 � 0; @r jr�0 � 0: (30)

Since  should be continuous across the AT-shell, the
metric variables in M� are given by

 � � 0;  �  i: (31)

The junction conditions (23) and (24) give relationships
between the integration constants ��, �,  i and the quan-
tities characterizing the AT-shell as

 �� � � ln�1� 4�
��������������
1� u2

p
�; (32)

 � �
2�

�1� 4�
��������������
1� u2
p

�
��������������
1� u2
p ; (33)

where � :� �e� i is the rest mass per unit proper length.
Here note that in order that the space is not closed in the r
direction, �

��������������
1� u2
p

< 1=4 must be satisfied. This condi-
tion guarantees the positivity of �, i.e., � > 0.

As shown by Apostolatos and Thorne, Eq. (25) is re-
written in the form

 

dV
d�
� �positive quantity� � 	�eq ��
; (34)

where

 �eq�u� :�
u2

��������������
1� u2
p

�1� 2u2�2
: (35)
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The above equation shows that if the rest mass per proper
length � is greater than �eq, the MSRF AT-shell starts
contracting, whereas if � is smaller than �eq, it starts
expanding. The initial data of � � �eq corresponds to
the static configuration. We can easily see from Eq. (33)
that � � 2u2 in the static case.

III. C-ENERGY ARGUMENT FOR THE FINAL
CONFIGURATION

A. C-energy

The C-energy E has been proposed by Thorne as a
quasilocal energy which is the energy included within the
cylinder with finite radius and with unit Killing length [22].

 E :�
1

4

�
�� �

1

2
lnf�@r�r�

2 � �@t�r�
2g

�
: (36)

Because the external region of the AT-shell is vacuum
spacetime, the expression for the C-energy reduces to

 E :�
�
4
: (37)

As shown in the preceding section, the metric function, �,
diverges logarithmically in the limit of r! �1 for the
MSRF initial data. This means that E�t;�1� of MSRF
initial data is necessarily infinite and thus the value of the
‘‘total’’ energy per unit Killing length is meaningless.
Similar situations also appear in the Newtonian gravity;
the depth of gravitational potential produced by cylindri-
cally distributed matter is infinite. However, the temporal
variation of the total energy per unit Killing length is
meaningful and crucial for a later discussion.

The advanced and retarded time coordinates v and w,
defined by

 v � t� r; w � t� r; (38)

are convenient to express the C-energy carried by the
gravitational waves. We refer to the null hypersurface, v!
�1, at infinity as the future null infinity, I�. (For general
arguments on the future null infinity in the spacetime with a
space-translation Killing field, see Refs. [23,24].) Because
of the gravitational emissions, the C-energy will vary with
w on the null hypersurface, v � 	const
. The retarded time
function w plays a role of a time function on the null
hypersurface given by v � 	const
. From Eqs. (9) and
(10), the derivative of E with respect to w becomes

 @wE �
1

4
@w� � �

r
2
�@w �2 � 0: (39)

Taking the limit of v! �1, it can be seen that the C-
energy is a nonincreasing function on I� with respect tow,
which was shown by Stachel by the argument in terms of
the news function [3].

Here we study the time variation of the C-energy on I�,
which will be caused by the gravitational waves from the
AT-shell initially in the MSRF state. Let the MSRF initial

Cauchy surface be located at t � ti in terms of both the
external and internal time coordinates, and let us refer to
this Cauchy surface by �i. The initial radial coordinate of
the AT-shell, �AT \ �i, is denoted by R � Ri. Then the
causal future of the initial location of the AT-shell,
J���AT \ �i�, is given by the condition, v�  vi and
w�  wi, where vi and wi are given by

 vi :� ti � Ri; wi :� ti � Ri: (40)

The portion of the spacetime, D���i� � J
���AT \ �i�,

remains static, while the region J���AT \ �i� will be
dynamical due to the gravitational waves generated by
the motion of the AT-shell.

Let us describe the evolution of  on M� as

  �  i � � ln
r
Ri
� 	 : (41)

By virtue of the linearity of Eq. (11), 	 is subject to the
same equation as that for  as

 

�
@2
t � @

2
r �

1

r
@r

�
	 � 0: (42)

Because the region D���i� � J���AT \ �i� remains
static, the solution inM� of our interest takes the form [25]

 	 �
Z t�r

�1

p�
�����������������������������
�t� 
�2 � r2

p d


�
Z w

�1

p�
����������������������������������
�v� 
��w� 
�

p d
; (43)

where p�
� is a function which vanishes for 
 < wi and
will decay for 
! �1. The derivative of 	 with respect
to w is given by

 @w	 � lim
�!0

1

�

�Z w��

�1

p�
�������������������������������������������
�v� 
��w� �� 
�

p d


�
Z w

�1

p�
����������������������������������
�v� 
��w� 
�

p d

�

� lim
�!0

1

�

�Z w

�1

p�
� ��������������������������������������������
�v� 
� ���w� 
�

p d


�
Z w

�1

p�
����������������������������������
�v� 
��w� 
�

p d

�

�
Z w

�1

1�������������
w� 

p

d
d


�
p�
��������������
v� 

p

�
d
: (44)

Substituting the above results into Eq. (39), we have

 lim
v!�1

@wE � �
P2�w�

2
; (45)

where

 P�w� �
Z w

�1

1�������������
w� 

p

dp
d

�
�d
 (46)
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has been defined. Provided that P�w� is finite, the rate of
change in E is also finite on I�.

In order to define the quasilocal energy finite even in the
limit of r! 1 for the system with whole cylinder sym-
metry, Thorne introduced an alternative definition of the C-
energy as

 E�new� :� 1
8�1� e

�8E�: (47)

For the MSRF initial data, this new version of the C-energy
always becomes 1=8 in the limit of r! 1. For t > ti, � in
M� is written in the form

 � � �� � �2 ln
r
Ri
� 	�: (48)

From Eqs. (37) and (45), we find that 	� at I� is deter-
mined by

 lim
v!�1

@w	� � �2P2�w�; (49)

and therefore, we have

 lim
v!�1

	� � �2��w� wi�
Z w

wi

P2�
�d
; (50)

where ��x� is the Heaviside’s step function. From the
above results, it can be seen that 	� is finite. Therefore,
we have

 lim
v!�1

@wE�new� � lim
v!�1

�
2Ri

v� w

�
2�2

e�2����	��@wE � 0:

(51)

Thus, E�new� is constant on I� and this is useless for
discussing how much energy is released into the future
null infinity, I�. For this reason, we adopt the original
definition for the C-energy, E.

B. Final static configuration

The MSRF initial data with � � �i � �eq dynamically
evolves. At first glance, the system seems to settle down
into a static configuration with � � �eq by emitting or
absorbing the gravitational waves. Thus, at first, we assume
that the final configuration is static and consider the rela-
tion between MSRF initial data and the final configuration.

The C-energy of the initial configuration Ei and that of
the final configuration Ef are given by

 Ei �
1

4

�
� ln�1� 4�i

��������������
1� u2

i

q
� � �2

i ln
r
Ri

�
; (52)

 Ef �
1

4

�
� ln�1� 4�eq�uf�

��������������
1� u2

f

q
� � �2

f ln
r
Rf

�
: (53)

Here and hereafter, quantities with a subscript ‘‘i’’ denote
those of initial data, whereas those with subscript ‘‘f’’
denote those of the final configuration. Note that the C-
energy at w � wi is given by E � Ei. After the system

settles down in a static configuration, the C-energy in the
causal future of the static AT-shell is given by Eq. (53).
Thus the difference between the initial C-energy at w � wi

and the final one is estimated on I� as
 

�E � lim
v!�1

Z �1
wi

@E
@w

dw

� lim
r!�1

1

4

�
ln

1� 4�i

��������������
1� u2

i

q
1� 4�eq�uf�

��������������
1� u2

f

q
� ��2

f � �
2
i � lnr� �

2
f lnRf � �2

i lnRi

�
: (54)

We can see from the above equation that if �2
f is different

from �2
i , the energy difference �E is infinite. However, we

can see from Eqs. (48) and (50) that 	� is finite and thus the
coefficients, �, in the logarithmic term are unchanged by
the gravitational emissions, i.e., �i � �f � � hold (this
was pointed out by Marder [2]). This fact is very important.
On this ground, we can uniquely specify the static configu-
ration realized from given MSRF initial data.

By virtue of the freedom of the constant scaling, we can
assume that the initial value of  s, i.e.,  i, is zero, without
loss of generality. Then, the initial rest mass per unit proper
length �i equals �. The final static configuration is char-
acterized only by u � uf and  s �  f , noting that the
specific angular momentum � and the rest mass per unit
Killing length � are conserved quantities. Since the final
configuration is static,

 � � 2u2
f (55)

holds. Substituting this relation into Eq. (33), we obtain

 uf �

�����������������������������������������������������
�

�1� 4�
��������������
1� u2

i

q
�
��������������
1� u2

i

q
vuuut : (56)

The final values of R and  s are given by using uf in the
form,

 R f �
�
uf
; (57)

  f � ln
�

�eq�uf�
: (58)

Substituting Eq. (56) into the above equations, the final
values of Rf and  f can be evaluated as functions of ui.

Here we prove the following proposition.
Proposition 1 Consider the MSRF initial data of the AT-

shell composed of dust particles with nonzero specific
angular momenta, i.e., �> 0 holds. If gravitational emis-
sions from the AT-shell per unit Killing length are finite,
and if the initial circumferential radius Ri of the AT-shell
is greater than the critical value given by

NEW INSTABILITY IN RELATIVISTIC CYLINDRICALLY . . . PHYSICAL REVIEW D 77, 044021 (2008)

044021-5



 R c�ui;�; �� :�

�����������������������������������������������������������
�2

�
�1� 4�

��������������
1� u2

i

q
�
��������������
1� u2

i

qs
; (59)

where ui � �=Ri, i.e., Ri >Rc holds, then the AT-shell
does not settle down into a static configuration.

Proof: Suppose that the MNRS initial data of the AT-
shell with the circumferential radius R �Ri settles down
into a static configuration with the circumferential radius
Rf . Provided that the gravitational emissions from the AT-
shell are finite, Eqs. (56) and (57) imply that the final
circumferential radius Rf is equal to Rc. Since � remains
constant, the energy difference �E takes the form

 �E � 1
4�A� B�; (60)

where

 A � ln
1� 4�

��������������
1� u2

i

q
1� 4�eq�uf�

��������������
1� u2

f

q ; (61)

 B � �2u2
f ln

Rf

Ri
: (62)

Using Eqs. (56), we rewrite A in the form

 A � ln
�

1�
4u4

i �̂�1� �̂�

1� 4u2
i �1� u

2
i ��1� �̂�

�
; (63)

where �̂ :� �=�eq�ui�.
The condition that the space is not closed in r direction

leads to the following inequality:

 1� 4�
��������������
1� u2

i

q
> 0; (64)

which is equivalent to

 1� 4u2
i �1� u

2
i ��1� �̂�> 0: (65)

From Eq. (63) and the above inequality, A is positive if �̂ >
1 holds. This condition, �̂ > 1, is equivalent to the condi-
tion Rf <Ri, which immediately follows from the equa-
tion

 

R2
f

R2
i

�
u2

i

u2
f

� 1�
�1� 2u2

i �
2

�̂
�1� �̂�; (66)

where Eq. (56) has been used. Hence A is positive for
Rf <Ri.

Next, from the definition of R and Eq. (58), we have

 

Rf

Ri
�

�Rf

�eq�uf�Ri
� �̂

ui�eq�ui�

uf�eq�uf�
: (67)

From Eq. (66), we have

 �̂ �
4�1� u2

i � � 1=u2
i

4�1� u2
i � � 1=u2

f

: (68)

Substituting the above equation into Eq. (67), we have

 

Rf

Ri
�

4�1� u2
i � � 1=u2

i

4�1� u2
i � � 1=u2

f

�
�1� 2u2

f �
2

�1� 2u2
i �

2 �
u3

i

��������������
1� u2

i

q
u3

f

��������������
1� u2

f

q : (69)

It is easily seen from the above equation that Rf � Ri
holds, if uf � ui or equivalently Rf �Ri holds. The
partial derivative of Rf=Ri with respect to uf with ui fixed
becomes
 

@
@uf

�
Rf

Ri

�
��

4�1� u2
i �� 1=u2

i

	4�1�u2
i �� 1=u2

f 

2 �

1� 2u2
f

u6
f �1� u

2
f �

3=2

�
u3

i

��������������
1�u2

i

q
�1� 2u2

i �
2 	4�1� u

2
i �u

4
f � 4�2� 3u2

i �u
2
f � 1
:

(70)

Therefore, Rf=Ri is a decreasing function of uf for fixed ui,
in the domain, ui > 0. This implies that Rf <Ri holds, if
uf > ui or equivalently Rf <Ri holds. Hence B is posi-
tive, if Rf <Ri is satisfied.

Combining the above results, it is concluded that �E>
0 holds, i.e., the C-energy on I� increases, if Ri >Rf �
Rc holds. However this is impossible, since the C-energy
is a nonincreasing function on I�.

Finally, we prove the following proposition.
Proposition 2 There exists an MSRF initial data set of an

AT-shell composed of dust particles with nonzero specific
angular momenta, �> 0, which does not settle down into
the static configuration.

Proof: We shall show that the MSRF initial data with the
condition Ri >Rc exists. The condition Ri >Rc is
equivalent to

 

�

u2
i �1� 4�

��������������
1� u2

i

q
�
��������������
1� u2

i

q > 1: (71)

We rewrite the above inequality in the form

 F�u2
i �> 0; (72)

where

 F�x� � �2�2x� 1�4 � x2�1� x�: (73)

In order that the space is not closed in r direction, the
inequality

 u2
i <

1

16�2 � 1 (74)

must be satisfied. (In order that this condition is satisfied, �
must be smaller than 1=4.) Here we investigate whether

Eq. (72) is possible in the domain 0< ui <
�������������������������
1=16�2 � 1

p
.

It is easy to see

 lim
ui!0

F�u2
i � � �2 > 0: (75)

Since F�x� is continuous, the intersection between the
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domain 0< ui <
�������������������������
1=16�2 � 1

p
and the open neighbor-

hood of ui � 0 is not empty, in which the inequality (72)
is satisfied.

IV. SUMMARY AND DISCUSSION

Apostolatos and Thorne showed that the C-energy
within a bounded domain r < r0 of an MSRF configuration
is minimized by the equilibrium configuration with both �
and � fixed and further with  �r0� � 0. They also proved
that the C-energy within the domain r < r0 of a dynamical
configuration is always greater than that of an MSRF
configuration that has the same �, �, R, and  �r0� � 0,
but different V,  �r�, and @t �r�. By noticing that the
gravitational radiation carries the C-energy from a
bounded domain to outside of it, they inferred from the
above two facts that the energy of the oscillating AT-shell
is released by the gravitational emissions, and then the AT-
shell will settle down into a static equilibrium state. Their
speculation seems to be physically reasonable, but rigorous
proof has not been given there.

In this paper, by assuming that gravitational radiation
carries finite C-energy from the AT-shell to the future null
infinity, we have shown that the MSRF initial data of the
AT-shell does not necessarily settle down into the static
state. Our argument is based on the nonincreasing nature of
the C-energy on the future null infinity. If the initial cir-
cumferential radius of the AT-shell is greater than that of
the expected final static state, then the AT-shell cannot
settle down into the static state. By contrast, it is not
forbidden by this C-energy argument that the AT-shell
with an initial circumferential radius smaller than the ex-
pected final static value settles down to the equilibrium
configuration. We expect from this fact that the outward
motion of the AT-shell is caused by gravitational emis-
sions. If this expectation is real, the AT-shell with Ri >
Rc will go to infinity by the secular outward motion. Thus

the static equilibrium configuration of the AT-shell will be
unstable for the outward displacement. Since this secular
motion may be ascribed to gravitational radiation, there is
no Newtonian counterpart of this instability.

At first glance, this behavior of the AT-shell is somewhat
terrible, but it might not be so if we consider a cylinder of
infinitesimally thin shell composed of dust particles but
with finite length L which is initially much greater than its
circumferential radius R. The motion of this finite cylin-
drical thin shell will be well approximated by the AT-shell
model. Then, due to the instability mentioned above, R of
the central part of the cylinder might become larger and
larger, but finally its motion cannot be approximated by the
AT-shell when R becomes comparable to L. In other
words, the initial cylindrical shape might approach to the
spherical shape by the gravitational emission. If this ex-
pectation is real, our situation seems to be similar to the
well-known phenomenon that the initial eccentric orbit of a
compact star binary approaches to the circular orbit by the
gravitational emissions [26]. However, it has not been
rigorously shown that the above scenario is true. Rather,
at present, there remains a possibility that the AT-shell
collapses to form a naked singularity by this instability.
In order to see whether the scenario of outward secular
motion is true, we have got to investigate directly the
solution, but this is a future work.
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