Spherically symmetric self-dual Yang-Mills instantons on curved backgrounds in all even dimensions

Eugen Radu, ${ }^{1}$ D. H. Tchrakian, ${ }^{1,2}$ and Yisong Yang ${ }^{3,4}$
${ }^{1}$ School of Theoretical Physics-DIAS, 10 Burlington Road, Dublin 4, Ireland
${ }^{2}$ Department of Mathematical Physics, National University of Ireland, Maynooth, Ireland
${ }^{3}$ Department of Mathematics, Polytechnic University, Brooklyn, New York 11201, USA
${ }^{4}$ Chern Institute of Mathematics, Nankai University, Tianjin 300071, People's Republic of China

(Received 28 September 2007; published 12 February 2008)

Abstract

We present several different classes of self-dual Yang-Mills instantons in all even d-dimensional backgrounds with Euclidean signature. In $d=4 p+2$ the only solutions we found are on constant curvature dS (de Sitter) and AdS (anti-de Sitter) backgrounds and are evaluated in closed form. In $d=4 p$ an interesting class of instantons are given on black hole backgrounds. One class of solutions are (Euclidean) time-independent and spherically symmetric in $d-1$ dimensions, and the other class are spherically symmetric in all d dimensions. Some of the solutions in the former class are evaluated numerically, all the rest being given in closed form. Analytic proofs of existence covering all numerically evaluated solutions are given. All instantons studied have finite action and vanishing energy momentum tensor and do not disturb the geometry.

DOI: 10.1103/PhysRevD.77.044017
PACS numbers: 04.50. -h

I. INTRODUCTION

The study of self-dual solutions of Yang-Mills (YM) theory on curved backgrounds has proven to be a fruitful field of research in physics and mathematics.

While most recent work on gravitating YM theory has been carried out in Lorentzian signature spacetimes, the earliest work on the subject, carried out by Charap and Duff [1], and, by Chakrabarti and collaborators [2], was in four-dimensional $(d=4)$ spacetimes of Euclidean signature. This was quite natural, as a sequel to the study of gravitational instantons [3]. In both [1,2], the YM connection A_{μ} is identified with the (gravitational) spinconnection $\omega_{\mu}^{m n}$ as

$$
\begin{equation*}
A_{\mu}=-\frac{1}{2} \omega_{\mu}^{m n} \Sigma_{m n}^{(\pm)} \Rightarrow F_{\mu \nu}=-\frac{1}{2} R_{\mu \nu}^{m n} \Sigma_{m n}^{(\pm)}, \tag{1.1}
\end{equation*}
$$

$F_{\mu \nu}$ and $R_{\mu \nu}^{m n}$ being the YM and the Riemann curvatures, respectively, and $\Sigma_{m n}^{(\pm)}$one or other of the chiral representations of the algebra of $S O(4)$, i.e. left or right $S U(2)$. In both cases [1,2], the instantons are self-dual in the YM curvature and are evaluated in closed form. Self-duality of the YM curvature results in the vanishing of the stress tensor as a function of the non-Abelian matter fields, so that the latter has no backreaction on gravity, i.e. these instantons are essentially given on a fixed curved background.

What is special about the $d=4$ Charap-Duff (CD) instanton in [1] is that the Riemann curvature is also double-self-dual, which fixes the form of the metric background (e.g. the Euclideanized Schwarzschild background for the solution in [1]). However, we argue in this work that instanton configurations with rather similar properties exist for any spherically symmetric metric satisfying a suitable set of boundary conditions (this includes e.g. the Reissner-

Nordstöm background). While a closed form solution is found only for a Schwarzschild metric, we present existence proofs for the solutions we found numerically in the Reissner-Nordtröm case. In the present work, we will refer to this type of instantons (and its generalizations) as solutions of type I.

Further to these (Euclidean time) static instantons [1,2], a new type of $d=4$ static YM instanton on a curved background was recently discovered in [4] to which we shall refer as type II instantons. These are basically deformed Prasad-Sommerfield [5] (PS) monopoles. Like the type I instantons, the solutions in [4] are also self-dual, but differ in an essential way from type I instantons in that they satisfy different boundary conditions and have a different action for the same background. As conjectured in [4], the type II instantons exist for an arbitrary nonextremal $S O$ (3) spherically symmetric background, the PS solution being recovered in the $R^{3} \times S^{1}$ flat space limit. The actions of both types I and II instantons saturate the bound of the usual second Chern-Pontryagin (CP) charge. They are both given on fixed Euclideanized black hole backgrounds.

The larger part of this paper is concerned with the generalization of the $d=4$ solutions of both types I and II to arbitrary even dimensions. ${ }^{1}$ These instantons are static and spherically symmetric in $d-1$ dimensions and have a vanishing stress tensor. We argue that the form of the metric backgrounds are not crucial for the existence of these solutions, as long as the metric functions satisfy a rather weak set of conditions. Here we will consider mainly Schwarzschild-like backgrounds with and without a cos-

[^0]mological constant, and with a $U(1)$ field, presenting also an existence proof for a more general case.

In addition to these static solutions, we also study YM instantons which are spherically symmetric in the full d-dimensional Euclidean spacetime. These are deformations of the BPST instanton [6], and are likewise self-dual, and hence are also solutions on a fixed curved background. In the case of AdS_{4} background ${ }^{2}$ this was given recently by Maldacena and Maoz [9]. ${ }^{3}$ The deformed BPST instantons on AdS_{4} and dS_{4} are generalized to AdS_{d} and dS_{d} for all even d, the new solutions ${ }^{4}$ in $d=4 p$ being deformations of the BPST hierarchy [15].

In general, gravitating YM instantons in higher dimensions are of physical relevance in the study of field theories arising from superstring theory $[16,17]$. In particular, a special aspect of self-dual instantons is that they can be employed in supersymmetric gravity theories, for example, in the analysis of branes in $4 p+1$ dimensions generalizing that of 5-branes proposed in Ref. [18] (see also Gibbons et. al. [19]). More recently, six-dimensional instantons were employed by Kihara and Nitta [20] for Cremmer-Scherck compactification over S^{6}, which can also be generalized to all even dimensions.

Instantons of non-Abelian field systems in dimensions higher than 4 can be constructed for the hierarchy [21] of Yang-Mills models in all even dimensions,

$$
\begin{equation*}
\mathcal{L}_{\mathrm{YM}}^{(P)}=\sum_{p=1}^{P} \frac{\tau_{p}^{2}}{2(2 p)!} \operatorname{Tr} F(2 p)^{2} \tag{1.2}
\end{equation*}
$$

in which the $2 p$-form $F(2 p)$ is the p-fold antisymmetrized product $F(2 p)=F \wedge F \wedge \ldots \wedge F$ of the YM curvature 2 form F, and we choose the YM connections to take their values in the chiral representations $S O_{ \pm}(d)$ of $S O(d)$. Here the maximum value of P in the superposition (1.2) is simply $P_{\text {max }} \leq \frac{1}{2} d$. Such instantons are not necessarily self-dual. In particular, when all but the $p=\frac{1}{4} d$ term in (1.2) is retained, one finds a hierarchy of BPST instantons [15] as well as the Witten type solutions [22-24] in $d=$ $4 p$ dimensions, which satisfy the corresponding selfduality equation

$$
\begin{equation*}
F(2 p)= \pm^{\star} F(2 p) \tag{1.3}
\end{equation*}
$$

[^1]${ }^{\star} F(2 p)$ being the Hodge dual of $F(2 p)$, including the appropriate factor of $e=\sqrt{\operatorname{det} g}$.

The self-duality Eq. (1.3) features higher orders of the YM 2-form curvature. If one restricts to the usual $(p=1)$ YM model in higher dimensions, the action will be infinite. There are several other self-duality equations defined on higher even dimensions in the literature, which are linear in the YM curvature. But for none of these does the (usual) YM action saturate a topological lower bound, resulting in infinitely large action. Such self-duality equations are irrelevant for our purposes here. Also, the solution to the $p=2$ member of (1.3) results in infinite action if it is not recognized [25] that the Lagrangian is the $p=2$ member of the YM hierarchy in (1.2), and not the usual $p=1$ member. It can be noted that there is a another hierarchy of, nonlinear in the YM curvature, self-duality equations [26] defined in all even dimensions. In $4 p$ dimensions, this hierarchy coincides with the (1.3) of [15], saturating the action of the $p=\frac{1}{4} d$ in (1.2). In $4 p+2$ dimensions, however, the Lagrangians of [26-28], whose field equations these nonlinear self-duality equations [26] solve, come in odd powers of the YM curvature and hence their actions are not bounded from below. We therefore restrict our attention to the hierarchy (1.2) henceforth, both in $4 p$ and $4 p+2$ dimensions.

In fact, since we are in effect concerned only with selfdual solutions, we will only ever consider two special cases of the YM hierarchy (1.2). In $d=4 p$ this is the system consisting of a single term with $p=\frac{1}{4} d$ saturated by (1.3). In $d=2(p+q)$, with $q \neq p$, there are two terms in (1.2) labeled by p and q. The system in this case is saturated by the self-duality equations

$$
\begin{equation*}
\tau_{p} F(2 p)= \pm \tau_{q}\left({ }^{\star} F(2 q)\right)(2 p) \tag{1.4}
\end{equation*}
$$

where the Hodge dual of the $2 q$ form on the right-hand side of (1.4) is a $2 p$ form, with an obvious relation between the dimensions of the constants τ_{p} and τ_{q}.

The choice of the hierarchy (1.2) consisting of higher order terms in the YM curvature can be justified in the light of the presence of such terms in the low energy string theory (see e.g. [29-31]) Lagrangian.

The imposition of spherical symmetry in $d-1$ spacelike dimensions for (Euclidean) time static fields is presented in Sec. II, while the more compact task of imposing spherical symmetry in all d Euclidean dimensions is deferred to Sec. V. The static solutions which are spherically symmetric in the d-1-dimensional subspace are presented in Sec. III, while those in Sec. V are spherically symmetric in all d dimensions. All instantons presented in Sec. V are given in closed form. Section III is divided into two parts. In the first subsection, Sec. III A, type I self-dual instantons (generalizing the $d=4 \mathrm{CD}$ instanton [1]) are evaluated in closed form for double-self-dual gravitational backgrounds. Also in Sec. III A, solutions satisfying type I boundary conditions, but not on double-self-dual gravita-
tional backgrounds, are constructed numerically. In Sec. III B type II solutions, which satisfy boundary conditions that differ from those of type I solutions, are presented. These are evaluated exclusively numerically. To underpin the numerically constructed solutions, analytic proofs for their existence are given in Sec. IV. All the solutions presented are self-dual satisfying the hierarchy of self-duality Eqs. (1.3) and (1.4), respectively. In the case of types I and II instantons the second order equations were integrated numerically in search of radial excitations, and none were found. A summary and discussion of our results is given in Sec. VI. Finally, an analysis of double-self-dual spaces is given in the appendix, since these play an important role in the construction of the Charap-Duff hierarchy.

II. SYMMETRY IMPOSITION: SPHERICAL SYMMETRY IN \boldsymbol{d} - 1 DIMENSIONS

In this section, we impose spherical symmetry in $d-$ 1-dimensional subspace on the (Euclidean time) static gravitational and gauge fields.

A. General results

We consider a metric Ansatz with spherical symmetry in d - 1-dimensional subspace,

$$
\begin{equation*}
d s^{2}=N(r) \sigma^{2}(r) d \tau^{2}+N(r)^{-1} d r^{2}+r^{2} d \Omega_{(d-2)}^{2} \tag{2.1}
\end{equation*}
$$

Here $d \Omega_{(d-2)}^{2}$ is the metric on a $(d-2)$-dimensional sphere, τ corresponds to the Euclidean time, while r is the radial coordinate. We shall be mainly interested in asymptotically flat background metrics whose fixed point set of the Euclidean time symmetry is of $d-2$ dimensions (a "bolt") and the range of the radial coordinate is restricted to $r_{h} \leq r<\infty$, while

$$
\begin{align*}
& N(r)=N_{1}\left(r-r_{h}\right)+N_{2}\left(r-r_{h}\right)^{2}+O\left(r-r_{h}\right)^{3} \tag{2.2}\\
& \sigma(r)=\sigma_{h}+\sigma_{1}\left(r-r_{h}\right)+O\left(r-r_{h}\right)^{2}
\end{align*}
$$

where $N_{1}, N_{2} \sigma_{h}, \sigma_{2}$ are constants determined by the equations of motion ${ }^{5}$ (with N_{1}, σ_{h} positive quantities).

This type of metric usually corresponds to the analytical continuation of Lorentzian black hole solutions. The absence of conical singularities at $r=r_{h}$ fixes the periodicity of the coordinate τ

$$
\begin{equation*}
\beta=\frac{4 \pi}{\sigma_{h} N_{1}} \tag{2.3}
\end{equation*}
$$

(Note that this holds for any gravity-matter model we

[^2]consider.) As $r \rightarrow \infty$, the Euclideanized (thermal-) Minkowski background is approached, with $\sigma(r) \rightarrow 1$, $N(r) \rightarrow 1-\left(r_{0} / r\right)^{k}$, with r_{0} a positive constant, the value of k depending on the gravity model we are using (e.g. $k=$ $d-3$ for the usual Einstein gravity).

Since some of the numerical work in Sec. III is carried out for p-Einstein backgrounds defined for the system (A1) with $p=q$, we state the reduced one-dimensional gravitational Lagrangian in d spacetime subject to the static spherically symmetric metric Ansatz (2.1)

$$
\begin{equation*}
L_{\text {(grav) }}^{(p, d)}=\frac{\kappa_{p}}{2^{2 p-1}} \frac{(d-2)!}{(d-2 p-1)!} \sigma \frac{d}{d r}\left[r^{d-2 p-1}(1-N)^{p}\right] \tag{2.4}
\end{equation*}
$$

Next, we impose spherical symmetry in $d-1$ dimensions on the static YM connection $A_{\mu}=\left(A_{0}, A_{i}\right), i=1,2, \ldots$, $d-1$ and $\mu=0, i$, resulting in the following Ansatz:

$$
\begin{gather*}
A_{0}=u(r) \hat{x}_{j} \Sigma_{j, d}^{(\pm)}, \quad A_{i}=\left(\frac{1-w(r)}{r}\right) \Sigma_{i j}^{(\pm)} \hat{x}_{j}, \\
\Sigma_{i j}^{(\pm)}=-\frac{1}{4}\left(\frac{1 \pm \Gamma_{d+1}}{2}\right)\left[\Gamma_{i}, \Gamma_{j}\right] \tag{2.5}
\end{gather*}
$$

described by two functions $w(r)$ and $u(r)$ which we shall refer to as magnetic and electric potential, respectively. The Γ 's denote the d-dimensional gamma matrices, and Γ_{d+1}, the chiral matrix in that dimension. The radial variable in (1.2) is $r=\sqrt{\left|x_{i}\right|^{2}}$ and $\hat{x}_{i}=x_{i} / r$ is the unit radius vector, while $x_{0}=\tau$.

Inserting the YM ansatz (2.5) in the p th term in (1.2), we have the corresponding term in the resulting reduced onedimensional YM Lagrangian

$$
\begin{align*}
L_{\mathrm{YM}}^{(p, d)}= & \frac{\tau_{p}}{2 \cdot(2 p)!} \frac{(d-2)!}{(d-2 p-1)!} r^{d-4 p}\left\{\sigma\left(1-w^{2}\right)^{2(p-1)}\right. \\
& \times\left[(2 p) N w^{\prime 2}+\frac{(d-2 p-1)}{r^{2}}\left(1-w^{2}\right)^{2}\right] \\
& +\frac{2 p}{2 p-1} \frac{1}{\sigma}\left[\frac{\left(\left[\left(1-w^{2}\right)^{p-1} u\right]^{\prime}\right)^{2}}{d-2 p} r^{2}+\frac{2 p-1}{N}\right. \\
& \left.\left.\times\left[\left(1-w^{2}\right)^{p-1} u\right]^{2} w^{2}\right]\right\}, \tag{2.6}
\end{align*}
$$

where a prime denotes the derivative with respect to r.
We now adapt the expression (2.6) to the relevant models in $d=4 p$ and $d=2(p+q),(p \neq q)$.

$$
\text { B. } d=4 p
$$

In this case the action density corresponding to (1.2) with only one term $p=\frac{1}{4} d$ can be written as a sum of complete squares plus (or minus) a total derivative

$$
\begin{align*}
L_{\mathrm{YM}}^{(p, d=4 p)}= & \frac{\tau_{p}}{2 \cdot(2 p)!} \frac{(4 p-2)!}{(2 p-1)!} \\
& \times\left\{\left[\frac{r}{\sqrt{\sigma(2 p-1)}}\left[\left(1-w^{2}\right)^{p-1} u\right]^{\prime}\right.\right. \\
& \left.\mp \frac{\sqrt{\sigma(2 p-1)}}{r}\left(1-w^{2}\right)^{p}\right]^{2} \\
& +2 p\left(1-w^{2}\right)^{2(p-1)}\left[\sqrt{\sigma N} w^{\prime} \pm \frac{1}{\sqrt{\sigma N}} u w\right]^{2} \\
& \left. \pm \frac{d}{d r}\left[\left(1-w^{2}\right)^{2 p-1} u\right]\right\}, \tag{2.7}
\end{align*}
$$

implying that the second order YM equations are solved by the following (anti-)self-duality equations

$$
\begin{equation*}
\sqrt{\sigma N} w^{\prime} \pm \frac{1}{\sqrt{\sigma N}} u w=0 \tag{2.8}
\end{equation*}
$$

$\frac{r}{\sqrt{\sigma(2 p-1)}}\left[\left(1-w^{2}\right)^{p-1} u\right]^{\prime} \mp \frac{\sqrt{\sigma(2 p-1)}}{r}\left(1-w^{2}\right)^{p}=0$,
which arise directly from the imposition of spherical symmetry (2.1), (2.2), (2.3), (2.4), and (2.5) on the (anti)selfduality Eqs. (1.3).

Without any loss of generality, we will solve the selfduality equations by taking the upper sign in the above
relations; the anti-instanton solutions are found by reversing the sign of the electric potential.

The action of the self-dual solutions is

$$
\begin{align*}
S= & \beta V_{d-2} \int_{r_{h}}^{\infty} d r L_{\mathrm{YM}}^{(p, d)} \\
= & \frac{\tau_{p}}{2 \cdot(2 p)!} \frac{(4 p-2)!}{(2 p-1)!} \\
& \times\left(\left.\left(1-w^{2}\right)^{2 p-1} u\right|_{r=\infty}-\left.\left(1-w^{2}\right)^{2 p-1} u\right|_{r=r_{h}}\right), \tag{2.10}
\end{align*}
$$

where V_{d-2} is the area of the unit S^{d-2} sphere.
We consider in Sec. III two different sets of boundary conditions for the first order Eqs. (2.8) and (2.9), leading to different types of solutions and different values of the action (2.10).

$$
\text { C. } d=2(p+q), p \neq q
$$

The YM reduced one-dimensional Lagrangian in this case is

$$
\begin{equation*}
L_{\mathrm{YM}}=L_{\mathrm{YM}}^{(p, d=2(p+q))}+L_{\mathrm{YM}}^{(q, d=2(p+q))} \tag{2.11}
\end{equation*}
$$

each of the two terms in which is readily read off (2.6), with coupling strengths τ_{p}^{2} and τ_{q}^{2} respectively. Just like (2.6) in $d=4 p$ was rewritten in the form (2.7), so can (2.11) be cast into the following useful form, consisting of sums of complete squares, plus (or minus) a total derivative:

$$
\begin{align*}
L_{\mathrm{YM}}= & \left(\tau_{p} \sqrt{\frac{2 p}{(2 q-1)!}} r^{q-p} \sqrt{\sigma N}\left(1-w^{2}\right)^{p-1} w^{\prime} \pm \tau_{q} \sqrt{\frac{2 q}{(2 p-1)!}} r^{p-q} \frac{1}{\sqrt{\sigma N}}\left(1-w^{2}\right)^{q-1} w u\right)^{2} \\
& +\left(\tau_{q} \sqrt{\frac{2 q}{(2 p-1)!}} r^{p-q} \sqrt{\sigma N}\left(1-w^{2}\right)^{q-1} w^{\prime} \pm \tau_{p} \sqrt{\left.\frac{2 p}{(2 q-1)!} r^{q-p} \frac{1}{\sqrt{\sigma N}}\left(1-w^{2}\right)^{p-1} w u\right)^{2}}\right. \\
& +\left(\tau_{p} \sqrt{\frac{2 p}{(2 p-1)(2 q)!}} r^{q-p+1} \frac{1}{\sqrt{\sigma}}\left[\left(1-w^{2}\right)^{p-1} u\right]^{\prime} \mp \frac{\tau_{q}}{\sqrt{(2 p-2)!}} r^{p-q-1} \sqrt{\sigma}\left(1-w^{2}\right)^{q}\right)^{2} \\
& +\left(\tau_{q} \sqrt{\frac{2 q}{(2 q-1)(2 p)!}} r^{p-q+1} \frac{1}{\sqrt{\sigma}}\left[\left(1-w^{2}\right)^{q-1} u\right]^{\prime} \mp \frac{\tau_{p}}{\sqrt{(2 q-2)!}} r^{q-p-1} \sqrt{\sigma}\left(1-w^{2}\right)^{p}\right)^{2} \\
& \pm \tau_{p} \tau_{q} \frac{4(p+q)}{\sqrt{(2 p)!(2 q)!}} \frac{d}{d r}\left[\left(1-w^{2}\right)^{p+q-1} u\right] . \tag{2.12}
\end{align*}
$$

Equation (2.12) implies that the action of (2.11) is absolutely minimized by a set of (anti)self-duality equations. These can be expressed most simply by redefining the coupling strengths τ_{p} and τ_{q} in (2.11) and (2.12) according to

$$
\hat{\tau}_{p}=\tau_{p} \sqrt{(2 p)!}, \quad \hat{\tau}_{q}=\tau_{q} \sqrt{(2 q)!},
$$

resulting in

$$
\begin{align*}
& \hat{\tau}_{p} r^{q-p} \sqrt{\sigma N}\left(1-w^{2}\right)^{p-1} w^{\prime} \\
& =\mp \hat{\tau}_{q} r^{p-q} \frac{1}{\sqrt{\sigma N}}\left(1-w^{2}\right)^{q-1} w u \tag{2.13}\\
& \hat{\tau}_{q} r^{p-q} \sqrt{\sigma N}\left(1-w^{2}\right)^{q-1} w^{\prime} \\
& =\mp \hat{\tau}_{p} r^{q-p} \frac{1}{\sqrt{\sigma N}}\left(1-w^{2}\right)^{p-1} w u \tag{2.14}
\end{align*}
$$

$$
\begin{align*}
& \hat{\tau}_{p} r^{q-p+1} \frac{1}{(2 p-1) \sqrt{\sigma}}\left[\left(1-w^{2}\right)^{p-1} u\right]^{\prime} \\
& \quad= \pm \hat{\tau}_{q} r^{p-q-1} \sqrt{\sigma}\left(1-w^{2}\right)^{q}, \tag{2.15}\\
& \hat{\tau}_{q} r^{p-q+1} \frac{1}{(2 q-1) \sqrt{\sigma}}\left[\left(1-w^{2}\right)^{q-1} u\right]^{\prime} \\
& \quad= \pm \hat{\tau}_{p} r^{q-p-1} \sqrt{\sigma}\left(1-w^{2}\right)^{p}, \tag{2.16}
\end{align*}
$$

which also follow by directly imposing spherical symmetry (2.1), (2.2), (2.3), (2.4), and (2.5) on the self-duality Eq. (1.4) Setting $p=q$, (1.4), (2.13), (2.14), (2.15), and (2.16) revert to (1.3), (2.8), and (2.9), respectively.

III. SOLUTIONS WITH SPHERICAL SYMMETRY IN \boldsymbol{d} - 1 DIMENSIONS

Here we will construct the types I and II solutions in the following two subsections, respectively. Both these describe self-dual YM on black hole backgrounds and differ from each other in the different boundary conditions they satisfy, respectively.

A. Type I solutions: Extended Charap-Duff configurations and their deformations

This subsection is divided in three parts, the first two pertaining to solutions in $d=4 p$ and the third in $d=$ $2(p+q)$. In the first subsection we present closed form instantons on double-self-dual backgrounds in $d=4 p$, generalizing the usual Schwarzschild black hole $d=4$, to which we refer to as p-Schwarzschild metrics. (These are not to be confused with the Schwarzschild-Tangherlini metrics in higher dimensions, which are not double-selfdual.) In the second subsection we construct numerical solutions on generic $4 p$-dimensional backgrounds, which are not double-self-dual. The third subsection is concerned with solutions in $d=2(p+q)$, which are given in fixed symmetric spaces only, and not on black holes.

1. Type I instantons in $d=4 p$ on double-self-dual backgrounds

For $p=1$, the YM self-duality Eqs. (2.8) and (2.9) present a well-known closed form solution, found a long time ago by Charap and Duff [1]. This solution has been constructed for the case of double-self-dual p-Schwarzschild background. ${ }^{6}$

The generalization of the CD solution to $d=4 p$ case is given formally in [12], and here we construct these solu-

[^3]tions concretely. This is straightforward and is effected by the replacement of the usual $(p=1)$ Schwarzschild background with the solution to the double-self-duality Eq. (A6) corresponding to the p-Einstein gravity defined by (A10). It should be emphasized here that, using the gravitational background of any other member of the gravitational hierarchy other than the p-Einstein gravity does not support a CD instanton solution. The YM instanton is found by embedding the gauge connection into the gravity spin connection according to (1.1). The resulting solution reads
\[

$$
\begin{equation*}
w(r)=-\sqrt{N(r)}, \quad u(r)=-\frac{1}{2} N^{\prime}(r), \quad \text { with } \sigma(r)=1, \tag{3.1}
\end{equation*}
$$

\]

where $N(r)$ is the metric function pertaining to the solution of the p-Einstein equations with cosmological term in $d=$ $4 p$ dimensions. This is the $d=4 p$ special case of the solution given in [32] and can be found by solving

$$
\begin{equation*}
\left(\frac{1-N(r)}{r^{2}}\right)^{p}=c_{1}+\left(\frac{r_{0}}{r}\right)^{d-1}, \tag{3.2}
\end{equation*}
$$

which results from substitution of the metric Ansatz (2.1) in the double-self-duality Eq. (A6). r_{0} here is related to the mass of the solution, c_{1} being fixed by the cosmological constant. This result, namely, that the double-self-dual metric with Euclidean signature ${ }^{7}$ supports a YM instanton in the presence of a cosmological constant, agrees with that of Julia et al. [33] in $d=4$.

One can see that the gauge potentials diverge for solutions with AdS asymptotics which leads to a diverging action, according to (2.10). For a vanishing cosmological constant $c_{1}=0$, these solutions have a finite action

$$
\begin{equation*}
S=\frac{\tau_{p}}{2 \cdot(2 p)!} \frac{(4 p-2)!}{(2 p-1)!} 2 \pi V_{d-2} \tag{3.3}
\end{equation*}
$$

(One can see that the background features do no enter here.) Another interesting case is provided by dS (de Sitter) instantons. Here the radial coordinate has a finite range and in the general case the spacetime presents a conical singularity at $r=r_{h}$ or $r=r_{c}$ [with $r_{h}<r_{c}$, $\left.N\left(r_{h}\right)=N\left(r_{c}\right)=0\right]$. The action of these solutions is

$$
\begin{equation*}
S=\frac{\tau_{p}}{2 \cdot(2 p)!} \frac{(4 p-2)!}{(2 p-1)!} \beta V_{d-2}\left(N^{\prime}\left(r_{h}\right)-N^{\prime}\left(r_{c}\right)\right) \tag{3.4}
\end{equation*}
$$

2. Type I instantons in deformed $d=4 p$-Schwarzschild backgrounds

Interestingly, in addition to these solutions given in closed form, we have constructed numerical solutions with similar properties in other $d=4 p$ backgrounds with

[^4]a vanishing cosmological constant. The only restriction we impose on these backgrounds is to present the expansion (2.2) as $r \rightarrow r_{h}$ and to approach asymptotically the p-Schwarzschild solution in p-Einstein gravity [e.g. $N(r) \rightarrow 1-\left(r_{0} / r\right)^{(2 p-1) / p}$ as $\left.r \rightarrow \infty\right]$.

These YM instanton solutions have the following expansion near the event horizon ${ }^{8}$:

$$
\begin{align*}
w(r)= & w_{1} \sqrt{r-r_{h}}+\frac{w_{1}}{2}\left(\frac{2(1-2 p)-N_{2} r_{h}^{2}}{N_{1} r_{h}^{2}}-\frac{\sigma_{1}}{\sigma_{0}}\right. \\
& \left.+w_{1}^{2}(p-1)\right)\left(r-r_{h}\right)^{3 / 2}+o\left(r-r_{h}\right)^{5 / 2} \tag{3.5}\\
u(r)= & -\frac{N_{1} \sigma_{0}}{2}+\sigma_{0}\left(\frac{2 p-1}{r_{h}^{2}}-\frac{1}{2} N_{1}(p-1) w_{1}^{2}\right) \\
& \times\left(r-r_{h}\right)+o\left(r-r_{h}\right)^{2}
\end{align*}
$$

and at infinity,

$$
\begin{align*}
& w(r)=1-\frac{1}{2}\left(\frac{r_{0}}{r}\right)^{(2 p-1) / p}+\ldots \\
& u(r)=-\frac{2 p-1}{2 p r}\left(\frac{r_{0}}{r}\right)^{(2 p-1) / p}+\ldots \tag{3.6}
\end{align*}
$$

Our numerical constructions of type I p-YM self-dual solutions is limited here to those on Reissner-Nordström p-Einstein gravity backgrounds, as interesting examples of the generic case. This p-Reissner-Nordström metric is parametrized explicitly by the functions [32]

$$
\begin{equation*}
N(r)=1-\left[\left(\frac{r_{0}}{r}\right)^{2 p-1}+\frac{c_{2}}{r^{2(3 p-2)}}\right]^{1 / p}, \quad \sigma(r)=1, \tag{3.7}
\end{equation*}
$$

where $r_{0}>0$ and $c_{2} \neq 0$ is an unspecified constant related to the electric charge, so that $N(r)$ has exactly one positive root at some $r=r_{h}$ and $N(r)>0$ for all $r>r_{h}$. The metric function (3.7) pertains to the p-Einstein(-Maxwell) system, which we here refer to as p-Reissner-Nordström. For small c_{2}, these can be viewed locally as deformations of the p-Schwarzschild double-self-dual backgrounds, which may give an heuristic explanation for the existence of these YM instantons.

Here we have excluded backgrounds of gravity with cosmological constant for purely practical reasons. Moreover, while in the presence of a cosmological constant the Einstein equations are satisfied by a double-self-dual metric, in the presence of a $U(1)$ field this is not the case. Thus, we learn something new by employing a p-Einstein Reissner-Nordström background, namely, that even when the background Riemann curvature is not double-self-dual, the YM instantons remain self-dual. While this is consis-

[^5]tent with the assertions in [1,12], namely, that to construct (analytically or numerically) a single-self-dual YM solution it is sufficient to employ the embedding (1.1) of a double-self-dual Riemann curvature, it is not actually necessary.

For all considered solutions, the gauge functions $w(r)$ and $u(r)$ interpolate monotonically between the corresponding values at $r=r_{h}$ and the asymptotic values at infinity, without presenting any local extrema. Type I solutions exist for all values of the parameter r_{h}, in contrast to the type II solutions presented in Sec. III B below, which exist for r_{h} up to a maximal value. In Fig. 1 we plot the $p=2$ Charap-Duff solution (with $c_{2}=0$), known in closed form, together with the numerically evaluated profiles of a typical self-dual YM solution in a $d=8$ Euclideanized nondouble-self-dual background. This last has been chosen to be the $p=2$ Reissner-Nordström background (with $c_{2}=0.01$).

Another interesting property of numerically constructed solutions in $d=4 p$ with type I boundary conditions concerns the solutions to the second order equations rather than the first order self-duality equations. In this case one might have expected that higher node radial excitations of the spherically symmetric self-dual solutions existed. Our numerical results indicate, quite definitely, that no such solutions exist. Had such nonself-dual solutions, describing the backreaction from gravity on the YM field been found, they would have been expected to be sphaleronlike configurations.

For $c_{2} \neq 0$, the instanton solutions are evaluated numerically. For any choice of the metric functions [$N(r), \sigma(r)]$ the action of the self-dual solutions satisfying (3.5) and (3.6) is still given by (3.3). An existence proof for type I solutions in a general metric background satisfying a suitable set of conditions is given in the next section. One

FIG. 1. The YM gauge functions are shown as a function of the radial coordinate r for two type I $p=2$ YM self-dual solutions, showing the deformation of the explicit DC solution with $c_{2}=0$ by the $c_{2}=0.012$-Reissner-Nordström metric.
can easily verify that the metric functions (3.7) satisfy the conditions there.

Somewhat surprisingly, it turns out that similar self-dual solutions to p-YM systems on other spherically symmetric background also exist. Therefore, the condition for the metric background to approach asymptotically the p-Schwarzschild solution in p-Einstein gravity is not really crucial after all. These instanton configurations satisfy the same set of boundary conditions as the solutions above [e.g $w\left(r_{h}\right)=0, u\left(r_{h}\right)=0$], with an expansion differing completely from (3.5) and (3.6), however. We have tested this for the example of the $d=82$-YM system on the 1-Reissner-Nordström background (of the usual $p=1$ Einstein-Maxwell gravity). These last differ from the former only quantitatively, the profiles of the functions asymptoting at least 1 order of magnitude longer, and exhibiting a similarly magnified steepness at the origin. Such solutions cannot be viewed as deformations of the CD configurations. However, the numerical results are supported by the existence proof given in the next section. A discussion of these more general solutions will be presented elsewhere.

3. Self-dual type I Yang-Mills solutions in $d=2(p+q)$

The extension of the Charap-Duff solution in $d=4$ to $d=2(p+q)$ dimensions is also given formally in [12]. In this case, however, there exist no black hole solutions, and the only concrete instantons are those on the symmetric dS/ AdS (anti-de Sitter) spaces given below.

On flat space the self-duality equations in $d=2(p+q)$ dimensions (2.13), (2.14), (2.15), and (2.16) have no nontrivial solutions, but on a curved spacetime it is possible to find nontrivial solutions, albeit on maximally symmetric spaces. These solutions minimize absolutely the action of the reduced one-dimensional YM Lagrangian (2.11).

The dimensions of τ_{p} being different from the dimensions of τ_{q}, the system (2.11) is not scale invariant, and the self-duality Eqs. (2.13), (2.14), (2.15), and (2.16) feature the dimensional constant $\frac{\tau_{p}}{\tau_{q}}$, as a result of which no asymptotically flat solutions to the latter exist.

Unfortunately, the only solution of these equations we could find is

$$
\begin{equation*}
w(r)=-\epsilon \sqrt{N(r)}, \quad u(r)=\epsilon \frac{1}{2} N^{\prime}(r) \tag{3.8}
\end{equation*}
$$

where

$$
\begin{equation*}
N=1+\epsilon\left(\hat{\tau}_{p} / \hat{\tau}_{q}\right)^{1 /(q-p)} r^{2}, \quad \sigma(r)=1 \tag{3.9}
\end{equation*}
$$

and $q-p=2 n+1$, with n an integer, while $\epsilon= \pm 1$. For $q-p=2 n$ one finds

$$
\begin{equation*}
w(r)=\sqrt{N(r)}, \quad u(r)=-\frac{1}{2} N^{\prime}(r) \tag{3.10}
\end{equation*}
$$

with the metric functions given by (3.9) above. Restricting for simplicity to the case $\tau_{p}>0, \tau_{q}>0$, we see from (3.9) that these self-dual (p, q) - YM instantons are given on an

Euclideanized $\mathrm{dS}(\epsilon=-1)$ or $\operatorname{AdS}(\epsilon=1)$ background, the cosmological constant here being fixed by the coupling constants of the YM model. ${ }^{9}$

B. Type II solutions: Deformed p-Prasad-Sommerfield configurations

This subsection deals only with $d=4 p$ solutions, and not $d=2(p+q)$ ones with $p \neq q$. The reason for this is that the radial function $w(r)$ in (2.5) in this case vanishes asymptotically. The scaling properties consistent with finite action require that in $d=2(p+q)$ both $F(2 p)$ and $F(2 q)$ terms be present in the Lagrangian. Then $w(r) \rightarrow 0$ for $r \rightarrow \infty$ causes the contribution of the $F(2 p)$ (for $p<q$) to the action to diverge.

The hierarchy of type II instantons basically consists of the deformed hierarchy of Prasad-Sommerfield [5] monopoles in $4 p-1$ dimensions presented in [34] (cf. [35-37] for analytic proofs of existence and uniqueness of solutions), generalizing the usual $3+1$-dimensional PS monopoles [5] to $(4 p-1)+1$ dimensions.

These p-PS monopoles are deformed by the usual ($p=$ 1) Einstein-Hilbert gravity. We shall refer to these as p-PS monopoles. Here we have used only $p=1$ gravity in all $4 p$ dimensions, since the background gravity here does not play a special role as it does in the type I cases. It would have been equally valid to employ any p-Einstein gravity instead, but we chose to work with the simplest background. Type II instantons differ substantially from the type I solutions given in Sec. III A. In particular, they satisfy a different set of boundary conditions and have different actions.

These solutions are found for a set of boundary conditions familiar from previous studies on gravitating nonAbelian solutions possessing an event horizon, where the YM connection A_{μ} has a nonvanishing electric component A_{0} (see e.g. $[38,39]$). Here the magnetic gauge potential w starts from a nonzero value at the horizon and vanishes at infinity, while the electric one u behaves in the opposite way. The YM potentials have the following expansion as $r \rightarrow r_{h}$:

$$
\begin{aligned}
& w(r)=w_{h}+\frac{(2 p-1) w_{h}\left(w_{h}^{2}-1\right)}{r_{h}^{2} N_{1}}\left(r-r_{h}\right)+o\left(r-r_{h}\right)^{2} \\
& u(r)=\frac{(2 p-1) \sigma_{h}\left(1-w_{h}^{2}\right)}{r_{h}^{2}}\left(r-r_{h}\right)+o\left(r-r_{h}\right)^{2}
\end{aligned}
$$

with $0 \leq w_{h} \leq 1$.

[^6]For large r, the solution reads
$w(r)=\frac{e^{-\Phi r}}{r^{\Phi r_{0}-1}}+\ldots, \quad$ for $p=1$,
$w(r)=r^{2 p-1} e^{-\Phi\left(r-\left(r_{0} / r\right)^{k} /(k-1)\right)}+\ldots, \quad$ for $p \neq 1, \quad$ and
$u(r)=\Phi-\frac{(2 p-1)}{r}+\ldots, \quad$ for any p,
where Φ is an arbitrary nonzero constant. From (2.10), we find the action of the type II instanton solutions

$$
\begin{equation*}
S=\frac{\tau_{p}}{2 \cdot(2 p)!} \frac{(4 p-2)!}{(2 p-1)!} \beta V_{d-2} \Phi \tag{3.13}
\end{equation*}
$$

One can see that the properties of the background metric enter here through the expression of β - the periodicity of the Euclidean time coordinate. Employing (3.11) and (3.12) to estimate the integral of (2.9) implies the existence of a maximal allowed magnitude of the electric potential at infinity for a given r_{h}

$$
\begin{equation*}
\Phi<(2 p-1) \int_{r_{h}}^{\infty} d r \frac{\sigma(r)}{r^{2}} \tag{3.14}
\end{equation*}
$$

In practice, we choose $\Phi=1$ without any loss of generality, which sets the maximal value of the r_{h} for a given background. This is in contrast to the type I solutions where the value of the horizon radius r_{h} is not constrained.

In Ref. [4], arguments for the existence of $p=1$ type II self-dual Yang-Mills instantons for several $d=4$ spherically symmetric backgrounds with Euclidean signature were presented. These solutions were evaluated numerically. The existence of similar solutions for any nonextremal $S O$ (3)-spherically symmetric background approaching at infinity the $d=4$ Euclideanized Minkowski spacetime was also conjectured. These solutions can be interpreted as curved spacetime deformations of the well-known PrasadSommerfield monopoles [5], viewed as instantons of the YM theory in a $R^{3} \times S^{1}$ background. Here we extend some of these arguments to the p-PS monopoles [34] in $4 p-1$ spacelike dimensions. It is natural to suppose that these solutions will survive when the background has a nontrivial geometry, at least for a small curvature. Unlike in the previous case of type I instantons where the gravitational background was specified to be the p-Einstein Schwarzschild-like solution (with or without cosmological constant), here the curving of the background is not similarly constrained. Like in the four-dimensional case [4], here we have found numerical arguments for the existence of an hierarchy of $d=4 p$ YM self-dual solutions, the $p=$ 1 case in [4] being the first member only. For $p=2$, 3, we have considered several different spherically symmetric backgrounds, the Schwarzschild-Tangherlini and Reissner-Nordström-Tangherlini solutions in EinsteinMaxwell theory being the simplest cases (the metric functions for the second situation are $\sigma=1, N=1-$
$\left(\left(\frac{r_{0}}{r}\right)^{d-3}+\frac{c_{2}^{2}}{r^{2(d-3)}}\right), r_{0}$ being related to the mass and c_{2} to the electric charge of the fixed backgrounds, respectively).

As in the $p=1$ case, the $r_{h} \rightarrow 0$ limit (when physically possible), provides instanton solutions in a topologically trivial background. This is nicely illustrated by the case of p-YM self-dual instantons in the background of an Einstein-Yang-Mills purely magnetic hairy black hole discussed in [40], which solve also the field equations for an Euclidean signature. These solutions have a particlelike globally regular limit with a nonvanishing curvature, the Killing vector $\partial / \partial \tau$ presenting in this case no fixed point sets (i.e. $g_{\tau \tau}>0$ for any $r \geq 0$ and an arbitrary periodicity β). When taking instead the $r_{h} \rightarrow 0$ limit for a Schwarzschild background, the p-PS-type configurations in [34] are approached. In all these cases, the approximate expression of the YM instanton solutions as $r \rightarrow 0$ is

$$
\begin{equation*}
w(r)=1-b r^{2}+O\left(r^{4}\right), \quad u(r)=2 b \sigma_{0} r+O\left(r^{2}\right) \tag{3.15}
\end{equation*}
$$

[with $b>0$ and $\sigma_{0}=\sigma(r=0)$], the asymptotic form (3.12) being valid in this case, too.

In all cases, the gauge functions $w(r)$ and $u(r)$ interpolate monotonically between the corresponding values at $r=r_{h}$ and the asymptotic values at infinity, without presenting any local extrema. For small enough values of r_{h}, the solutions look very similar to the flat space self-dual YM configuration. These solutions get deformed with the value of r_{h} increasing, while the value of the magnetic potential w at $r=r_{h}$ steadily decreases. As r_{h} approaches some maximal value implied by (3.14), we find that $w_{h} \rightarrow$ 0 and the solution approaches the limiting configuration

$$
\begin{equation*}
w(r)=0, \quad u(r)=\Phi+(2 p-1) \int \frac{\sigma(r)}{r^{2}} d r \tag{3.16}
\end{equation*}
$$

In Fig. 2 we plotted several relevant parameters of the YM

FIG. 2. The parameters $w_{h}, w^{\prime}\left(r_{h}\right)$, and $u^{\prime}\left(r_{h}\right)$ of the $p=2$ type II YM instantons in a $d=8$ Schwarzschild-Tangherlini background are plotted as a function of r_{h}.

FIG. 3. The YM gauge functions are shown as a function of the radial coordinate r for $p=2$ type II YM self-dual solutions in $d=8$ Euclideanized Reissner-Nordström-Tangherlini backgrounds.
instanton solutions as a function of r_{h}, for the case of $p=$ $2(d=8)$ Schwarzschild-Tangherlini background. A typical self-dual YM solution in an Euclideanized Reissner-Nordström-Tangherlini black hole is plotted in Fig. 3. These plots retain the generic features of the picture we found in other cases.

IV. ANALYTIC PROOFS OF EXISTENCE

To underpin the numerically constructed solutions with spherical symmetry in $d-1$ dimensions presented in the previous section, we present analytic existence proofs for these in the present section. As in Sec. III above, we have split this section into two subsections, dealing with types I and II solutions, respectively.

A. Type I solutions

1. The problem

In this subsection, we present an analytic proof for the existence of those type I solutions which were evaluated numerically in the previous section.

Without loss of generality, we will consider only the case of upper signs in the system of self-duality Eqs. (2.8) and (2.9) over $\left(r_{h}, \infty\right)$, subject to the boundary conditions

$$
\begin{array}{ll}
w\left(r_{h}\right)=0, & u\left(r_{h}\right)=u_{h}, \\
w(\infty)=1, & u(\infty)=0, \tag{4.2}
\end{array}
$$

where $u_{h}<0$ is a constant. We will be interested in solutions such that u remains nonpositive and w remains nonnegative for all $r>r_{h}$.

From (2.8), we have

$$
\begin{equation*}
\sigma N w^{\prime}+w u=0, \quad r>r_{h}, \tag{4.3}
\end{equation*}
$$

which implies that $w^{\prime} \geq 0$ for all $r>r_{h}$. In fact, we also have $w>0$ everywhere. Indeed, if there is an $r_{0}>r_{h}$ such that $w\left(r_{0}\right)=0$, then $w \equiv 0$ due to the uniqueness theorem for initial value problems of ordinary differential equations, which violates the boundary condition for w stated in (4.2). Similarly, $w<1$ everywhere. Otherwise, if there is an $r_{0}>r_{h}$ such that $w\left(r_{0}\right)=1$, then $w(r) \equiv 1$ for all $r \geq$ r_{0}. Using the analyticity of solutions in the BPS system of equations, (2.8) and (2.9), we see that $w(r) \equiv 1$ for all $r>$ r_{h}, which contradicts $w\left(r_{h}\right)=0$ in (4.1). These established facts now allow us to assert that $u(r)<0$ for all $r>r_{h}$. Suppose otherwise that there is a $r_{0}>r_{h}$ such that $u\left(r_{0}\right)=$ 0 . Hence, r_{0} is a maximum point for u and $u^{\prime}\left(r_{0}\right)=0$. Inserting these into (2.9) evaluated at $r=r_{0}$, we obtain $w\left(r_{0}\right)=1$, which is false. A special consequence from the conclusion $w>0, u<0$ and (4.3) is that $w^{\prime}>0$ for all $r>$ r_{h}. Another is that the fact $w>0$ allows us to suppress (4.3) into

$$
\begin{equation*}
-\sigma N(\ln w)^{\prime}=u, \quad r>r_{h} . \tag{4.4}
\end{equation*}
$$

Inserting (4.4) into (2.9), we have

$$
\begin{align*}
{\left[\left(1-w^{2}\right)^{p-1} \sigma N(\ln w)^{\prime}\right]^{\prime} } & +\frac{(2 p-1) \sigma}{r^{2}}\left(1-w^{2}\right)^{p}=0, \\
& r>r_{h} . \tag{4.5}
\end{align*}
$$

Furthermore, with $v=\ln w$ or $w=\mathrm{e}^{v}$, we rewrite (4.5) into the form

$$
\begin{gather*}
{\left[\left(1-\mathrm{e}^{2 v}\right)^{p-1} \sigma N v^{\prime}\right]^{\prime}+\frac{(2 p-1) \sigma}{r^{2}}\left(1-\mathrm{e}^{2 v}\right)^{p}=0} \tag{4.6}\\
r>r_{h}
\end{gather*}
$$

so that the boundary condition for w is converted to the boundary condition for v which says

$$
\begin{equation*}
v\left(r_{h}\right)=-\infty, \quad v(\infty)=0 \tag{4.7}
\end{equation*}
$$

Recall that since $w(r)$ stays within the interval $(0,1)$ when $r>r_{h}$, the range of $v(r)$ for $r>r_{h}$ is $(-\infty, 0)$. This property suggests that we may use the invertible transformation from $(-\infty, 0]$ to itself defined by

$$
\begin{equation*}
f=P(v)=\int_{0}^{v}\left(1-\mathrm{e}^{2 s}\right)^{p-1} \mathrm{~d} s, \tag{4.8}
\end{equation*}
$$

to simplify (4.6) further into

$$
\begin{gather*}
f^{\prime \prime}+f^{\prime}(\ln [\sigma N])^{\prime}+\frac{(2 p-1)}{r^{2} N}\left(1-\mathrm{e}^{2 Q(f)}\right)^{p}=0, \tag{4.9}\\
r_{h}<r<\infty .
\end{gather*}
$$

Here and in the sequel, we use Q to denote the inverse of P over $(-\infty, 0]$. It is clear that P, Q are increasing and $P(0)=Q(0)=0$.

To motivate our general study, we start from the simplest (but instructive) situation in (2.8) and (2.9) for which $p=1$ in (3.7) and $\sigma \equiv 1$. Therefore, $N(r)$ takes the form

$$
\begin{equation*}
N(r)=1-\left(\frac{r_{0}}{r}+\frac{c_{2}}{r^{2}}\right) \tag{4.10}
\end{equation*}
$$

It is seen that the function $N(r)$ has a single positive root if and only if $c_{2}>0$ and the root is given by

$$
\begin{equation*}
r_{h}=\frac{1}{2}\left(r_{0}+\sqrt{r_{0}^{2}+4 c_{2}}\right) \tag{4.11}
\end{equation*}
$$

which allows us to rewrite (4.10) as

$$
\begin{equation*}
N(r)=\left(1-\frac{r_{h}}{r}\right)\left(1+\frac{R_{h}}{r}\right)=\frac{1}{r^{2}}\left(r-r_{h}\right)\left(r+R_{h}\right) \tag{4.12}
\end{equation*}
$$

for some number $R_{h}>0$ and consider the equations over $r_{h}<r<\infty$.

With $\sigma \equiv 1$ and N given in (4.12), Eq. (4.9) becomes

$$
\begin{align*}
f^{\prime \prime}+f^{\prime}\left(\frac{1}{\rho}+\right. & \left.\frac{1}{\rho+r_{h}+R_{h}}-\frac{2}{\rho+r_{h}}\right) \\
& +\frac{1}{\rho\left(\rho+r_{h}+R_{h}\right)}\left(1-\mathrm{e}^{2 Q(f)}\right)=0 \tag{4.13}
\end{align*}
$$

where we have used the translated radial variable $\rho=r-$ $r_{h}>0$. Using the Euler transformation $\rho=\mathrm{e}^{t}$, we obtain from (4.13) the equation

$$
\begin{equation*}
f_{t t}-f_{t} g(t)+h(t)\left(1-\mathrm{e}^{2 Q(f)}\right)=0, \quad-\infty<t<\infty \tag{4.14}
\end{equation*}
$$

where the coefficient functions $g(t)$ and $h(t)$ are given by the expressions

$$
\begin{gather*}
g(t)=\frac{\mathrm{e}^{t}\left(\mathrm{e}^{t}+r_{h}+2 R_{h}\right)}{\left(\mathrm{e}^{t}+r_{h}\right)\left(\mathrm{e}^{t}+r_{h}+R_{h}\right)}, \tag{4.15}\\
h(t)=\frac{\mathrm{e}^{t}}{\left(\mathrm{e}^{t}+r_{h}+R_{h}\right)} . \tag{4.16}
\end{gather*}
$$

2. The proof

We now consider the general situation when $p \geq 1$ and σ is arbitrary. With the same sequence of variable substitutions, we rewrite the governing equation in terms of the radial variable r as (4.9).

Similar to (4.12), we express $N(r)$ as

$$
\begin{equation*}
N(r)=\left(1-\frac{r_{h}}{r}\right) M(r) \tag{4.17}
\end{equation*}
$$

where $M>0$ for all $r \geq r_{h}$ and $M(\infty)=1$. With $\rho=r-$ $r_{h}, t=\ln \rho$, and

$$
\begin{gather*}
g(t)=1-\left[\rho\left(\frac{\sigma^{\prime}(r)}{\sigma(r)}+\frac{N^{\prime}(r)}{N(r)}\right)\right]_{\rho=\mathrm{e}^{t^{\prime}}} \tag{4.18}\\
h(t)=\left[\frac{(2 p-1) \rho}{r M(r)}\right]_{\rho=\mathrm{e}^{t}} \tag{4.19}
\end{gather*}
$$

Eq. (4.9) becomes

$$
\begin{equation*}
f_{t t}-f_{t} g(t)+h(t)\left(1-\mathrm{e}^{2 Q(f)}\right)^{p}=0 \tag{4.20}
\end{equation*}
$$

subject to the updated boundary condition

$$
\begin{equation*}
f(-\infty)=-\infty, \quad f(\infty)=0 \tag{4.21}
\end{equation*}
$$

It is seen that (4.20) generalizes (4.14). In view of (4.15) and (4.16), we impose the following conditions on the coefficient functions $g(t)$ and $h(t)$:
(i) $g(t) \geq 0, h(t)>0$ for all t;
(ii) as $t \rightarrow-\infty$, there are the asymptotics

$$
\begin{equation*}
g(t)=O\left(\mathrm{e}^{\delta t}\right), \quad h(t)=O\left(\mathrm{e}^{\varepsilon t}\right) \tag{4.22}
\end{equation*}
$$

for some constant $\delta, \varepsilon>0$;
(iii) there hold

$$
\begin{equation*}
\lim _{t \rightarrow \infty} g(t)=g(\infty)>0, \quad \lim _{t \rightarrow \infty} h(t)=h(\infty)>0 \tag{4.23}
\end{equation*}
$$

Note that in view of the definition (4.18) and (4.19) and the fact that $M(\infty)=1$ we actually have $h(\infty)=2 p-1$. However, this precise value is not important for our subsequent discussion.

In order to solve (4.20) subject to (4.21), we consider the solution of Eq. (4.20) over the interval $-\infty<t<\infty$ subject to the initial value condition

$$
\begin{equation*}
f\left(t_{0}\right)=-a, \quad f_{t}\left(t_{0}\right)=b \tag{4.24}
\end{equation*}
$$

where $t_{0} \in(-\infty, \infty)$ and $a>0$. We shall show that for any $a>0$, there exists a unique number $b(a)>0$ so that when $b=b(a)$ the initial value problem consisted of (4.20) and (4.24) has a uniquely and globally defined solution $f(t)$ satisfies $f_{t}(t)>0$ and $f(t)<0$ for all t. Moreover, such a solution satisfies the desired boundary condition (4.21).

For technical reasons, we shall also consider the possibility that the solution f of (4.20) and (4.24) takes positive values under certain initial conditions. Consequently we need to modify (4.20) as

$$
\begin{equation*}
f_{t t}-f_{t} g(t)=h(t) R(f) \tag{4.25}
\end{equation*}
$$

where we define

$$
R(s)= \begin{cases}-\left(1-\mathrm{e}^{2 Q(s)}\right)^{p}, & s \leq 0 \tag{4.26}\\ 2 p s, & s>0\end{cases}
$$

so that $R(s)$ is a differentiable increasing function.
For given t_{0} and fixed $a>0$, we use $f(t ; b)$ to represent the unique solution of (4.25) satisfying (4.24) which is defined in its local or global interval of existence.

We will conduct a shooting analysis. To this end, we define our sets of shooting slopes as follows:

$$
\begin{aligned}
\mathcal{S}^{-} & =\left\{b \in \mathbb{R} \mid \exists t>t_{0} \quad \text { so that } f_{t}(t ; b)<0\right\}, \\
\mathcal{S}^{0} & =\left\{b \in \mathbb{R} \mid f_{t}(t ; b)>0 \quad \text { and } \quad f(t ; b) \leq 0 \quad \text { for all } t>t_{0}\right\}, \\
\mathcal{S}^{+} & =\left\{b \in \mathbb{R} \mid f_{t}(t ; b)>0 \quad \text { for all } t \geq t_{0} \quad \text { and } \quad f(t ; b)>0 \quad \text { for some } t>t_{0}\right\} .
\end{aligned}
$$

Lemma 4.1.-The set of real numbers \mathbb{R} may be expressed as the disjoint union $\mathbb{R}=\mathcal{S}^{-} \cup \mathcal{S}^{0} \cup \mathcal{S}^{+}$.

Proof.-Let $t>t_{0}$ be any point in the interval of existence of the solution $f(\cdot ; b)$. Of course $(-\infty, 0) \subset \mathcal{S}^{-}$. For any $b \notin \mathcal{S}^{-}$, we have $f_{t}(t ; b) \geq 0$ for all $t \geq t_{0}$. We claim that $f_{t}(t ; b)>0$ everywhere. In fact, if there is some point $t_{1}>t_{0}$ such that $f_{t}\left(t_{1} ; b\right)=0$, then $f\left(t_{1} ; b\right) \neq 0$ since $f=$ 0 is an equilibrium of Eq. (4.25) which cannot be attained by a solution trajectory originating from a nonequilibrium initial state. Using the fact that $f_{t}\left(t_{1} ; b\right)=0$ but $f\left(t_{1} ; b\right) \neq$ 0 in (4.25), we have

$$
\begin{equation*}
f_{t t}\left(t_{1} ; b\right)=h\left(t_{1}\right) R\left(f\left(t_{1} ; b\right)\right) \neq 0 \tag{4.27}
\end{equation*}
$$

Hence, depending on the sign of $f_{t t}\left(t_{1} ; b\right)$, we have either $f_{t}(t ; b)<0$ for $t<t_{1}$ but t is close to t_{1} when $f_{t t}\left(t_{1} ; b\right)>0$ or $f_{t}\left(t_{1} ; b\right)<0$ for $t>t_{1}$ but t is close to t_{1} when $f_{t t}\left(t_{1} ; b\right)<0$. Therefore, $b \in \mathcal{S}^{-}$, a contradiction. Hence $f_{t}(t ; b)>0$ for all $t>t_{0}$ which proves $b \in \mathcal{S}^{-} \cup \mathcal{S}^{+}$as claimed.

Lemma 4.2. -The sets \mathcal{S}^{-}and \mathcal{S}^{+}are both open and nonempty.

Proof.-The set \mathcal{S}^{-}is of course nonempty because $(-\infty, 0) \subset \mathcal{S}^{-}$by the definition of \mathcal{S}^{-}. The openness of \mathcal{S}^{-}follows immediately from the continuous dependence theorem of the solution of an ordinary differential equation on its initial values.

We now prove that \mathcal{S}^{+}is also nonempty. To this end, we observe that, when $b>0, f_{t}(t ; b)$ remains positive for $t \in$ $\left(t_{0}, t_{0}+\varepsilon\right)$ when $\varepsilon>0$ is small enough. Since $g(t) \geq 0$, we see that (4.25) gives us $f_{t t} \geq h(t) R(f)$. Integrating this inequality twice and using the initial condition (4.24), we have

$$
\begin{equation*}
f_{t}(t ; b) \geq b+\int_{t_{0}}^{t} h\left(s_{1}\right) R\left(f\left(s_{1} ; b\right)\right) \mathrm{d} s_{1}, \quad t_{0}<t<t_{0}+\varepsilon \tag{4.28}
\end{equation*}
$$

$$
\begin{gather*}
f(t ; b) \geq-a+b\left(t-t_{0}\right)+\int_{t_{0}}^{t} \int_{t_{0}}^{s_{2}} h\left(s_{1}\right) R\left(f\left(s_{1} ; b\right)\right) \mathrm{d} s_{1} \mathrm{~d} s_{2} \\
t_{0}<t<t_{0}+\varepsilon \tag{4.29}
\end{gather*}
$$

Of course, (4.28) and (4.29) continue to hold wherever $f_{t}(t ; b) \geq 0\left(t>t_{0}\right)$. We show that, when $b>0$ is large enough, we have $b \in \mathcal{B}^{+}$. In fact, for any $t_{1}>t_{0}$, the slope number $b>0$ can be chosen so that

$$
\begin{equation*}
b+\int_{t_{0}}^{t_{1}} h\left(s_{1}\right) R(-a) \mathrm{d} s_{1}>0 \tag{4.30}
\end{equation*}
$$

$$
\begin{equation*}
-a+b\left(t_{1}-t_{0}\right)+\int_{t_{0}}^{t_{1}} \int_{t_{0}}^{s_{2}} h\left(s_{1}\right) R(-a) \mathrm{d} s_{1} \mathrm{~d} s_{2}>0 \tag{4.31}
\end{equation*}
$$

Initially, since $f_{t}(t ; b)>0$, we have $f(t ; b)>f\left(t_{0} ; b\right)=$ $-a$ (for $\left.t>t_{0}\right)$. Hence $R(f(t ; b))>R(-a)$. In view of (4.28) and (4.30), we get

$$
\begin{equation*}
f_{t}(t ; b)>b+\int_{t_{0}}^{t_{1}} h\left(s_{1}\right) R(-a) \mathrm{d} s_{1}>0, \quad t_{0}<t \leq t_{1}, \tag{4.32}
\end{equation*}
$$

which implies $f(t ; b)>f\left(t_{0} ; b\right)=-a$ and $R(f(t ; b))>$ $R(-a)$ for all $t_{0}<t \leq t_{1}$. Using this fact in (4.29) and (4.31), we have $f\left(t_{1} ; b\right)>0$. Since $f(t ; b)$ strictly increases in $\left(t_{0}, t_{1}\right)$, there is a unique point $t_{2} \in\left(t_{0}, t_{1}\right)$ such that $f\left(t_{2} ; b\right)=0$ but $f(t ; b)<0$ for all $t \in\left(t_{0}, t_{2}\right)$. However, the definition (4.26) says that $R(f) \geq 0$ whenever $f \geq 0$, we see that for all $t>t_{2}$, we have

$$
\begin{gather*}
f_{t}(t ; b) \geq b+\int_{t_{0}}^{t} h\left(s_{1}\right) R\left(f\left(s_{1} ; b\right)\right) \mathrm{d} s_{1} \\
\geq b+\int_{t_{0}}^{t_{2}} h\left(s_{1}\right) R\left(f\left(s_{1} ; b\right)\right) \mathrm{d} s_{1} \\
\geq b+\int_{t_{0}}^{t_{1}} h\left(s_{1}\right) R(-a) \mathrm{d} s_{1}>0, \tag{4.33}\\
f(t ; b)>0, \tag{4.34}
\end{gather*}
$$

which establishes $b \in \mathcal{S}^{+}$and the nonemptiness of \mathcal{S}^{+} follows.

It is not hard to show that \mathcal{S}^{+}is open. In fact, let $b_{0} \in$ \mathcal{S}^{+}. Then $f_{t}\left(t ; b_{0}\right)>0$ for all $t>t_{0}$ and there is a $t_{3}>t_{0}$ so that $f\left(t_{3} ; b_{0}\right)>0$. By the continuous dependence theorem for the solution to the initial value problem of an ordinary differential equation, we see that when b is sufficiently close to b_{0}, we still have $f\left(t_{3} ; b\right)>0$ and $f_{t}(t ; b)>0$ for all $t \in\left[t_{0}, t_{3}\right]$. Applying the same argument as that for deriving (4.33), we conclude that $f_{t}(t ; b)>0$ for all $t>t_{3}$ as well. Therefore $b \in \mathcal{S}^{+}$and \mathcal{S}^{+}is indeed open.

Lemma 4.3.-The set \mathcal{S}^{0} is nonempty and closed. Furthermore, for $b \in \mathcal{S}^{0}$, we have $f(t ; b)<0$ for all $t>$ t_{0} and $f(t ; b) \rightarrow 0$ as $t \rightarrow \infty$.

Proof.-Since \mathbb{R} is connected, it cannot be expressed as the disjoint union of two open sets, \mathcal{S}^{-}and \mathcal{S}^{+}established in lemma 4.2. Hence \mathcal{S}^{0} is nonempty and closed.

The definition of \mathcal{S}^{0} gives us $f(t ; b) \leq 0$ for all $t>t_{0}$. If there is a point $t_{1}>t_{0}$ such that $f\left(t_{1} ; b\right)=0$, then $f_{t}\left(t_{1} ; b\right)=0$ which is false.

Since $f(t ; b)$ increases and stays negative-valued for all $t>t_{0}$, the limit

$$
\begin{equation*}
\eta \equiv \lim _{t \rightarrow \infty} f(t ; b) \tag{4.35}
\end{equation*}
$$

exists and satisfies $-a<\eta \leq 0$. The finiteness of the limit η in (4.35) implies that there is a sequence $\left\{t_{j}\right\}\left(t_{j} \rightarrow \infty\right.$ as $j \rightarrow \infty)$ so that

$$
\begin{equation*}
f_{t}\left(t_{j} ; b\right) \rightarrow 0 \quad \text { as } j \rightarrow \infty \tag{4.36}
\end{equation*}
$$

As a consequence of (4.23) and (4.36), we see from (4.25) [or more precisely, (4.20)] that $f_{t t}(t ; b)$ will stay below a negative number when t is sufficiently large if $\eta<0$, which contradicts (4.36).

In fact, we know more about the "good slope" set \mathcal{S}^{0}. We have the following:

Lemma 4.4. - The set \mathcal{S}^{0} consists of a single point.
Proof. -Let b_{1} and b_{2} be taken from \mathcal{S}^{0} and $f\left(t ; b_{1}\right)$ and $f\left(t ; b_{2}\right)$ the corresponding solutions of (4.20) and (4.24). Then $z(t)=f\left(t ; b_{1}\right)-f\left(t ; b_{2}\right)\left(t \geq t_{0}\right)$ satisfies

$$
\begin{equation*}
z_{t t}-g(t) z_{t}=h(t) R^{\prime}(\xi(t)) z, \quad t_{0}<t<\infty \tag{4.37}
\end{equation*}
$$

where $\xi(t)$ lies between the quantities $f\left(t ; b_{1}\right)$ and $f\left(t ; b_{2}\right)$. Using $h(t) R^{\prime}(\xi(t))>0, z\left(t_{0}\right)=z(\infty)=0$, and the maximum principle in (4.37), we deduce $z \equiv 0$. In particular, $z_{t}\left(t_{0}\right)=b_{1}-b_{2}=0$ as claimed.

In view of lemma 4.4, for given $a>0$ in (4.24), let the unique point in \mathcal{S}^{0} be denoted by $b=b(a)$ and the corresponding solution of (4.20) and (4.24) be simply denoted by $f=f(t)$. We have the following:

Lemma 4.5. -For $b=b(a)$, the solution $f(t)$ of (4.20) and (4.24) exists globally for all t. Furthermore, it satisfies $f_{t}(t)>0$ and $f(t)<0$ for all t and realizes the other expected boundary condition

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} f(t)=-\infty \tag{4.38}
\end{equation*}
$$

Proof.-With the notation just mentioned, we consider the solution over the left-half line $t<t_{0}$. Multiplying (4.20) by e $\int_{t}^{t_{0}} g(s) \mathrm{d} s$ and integrating, we get

$$
\begin{align*}
& f_{t}(t)= \mathrm{e}^{-\int_{t}^{t_{0}} g(s) \mathrm{d} s} \\
& \times\left(b(a)+\int_{t}^{t_{0}} h(s)\left(1-\mathrm{e}^{2 Q(f(s))}\right)^{p} \mathrm{e}_{s}^{t_{0}} g\left(s_{1}\right) \mathrm{d} s_{1}\right. \\
&\mathrm{d} s) \tag{4.39}\\
& t<t_{0} .
\end{align*}
$$

In particular,

$$
\begin{equation*}
f_{t}(t)>b(a) \mathrm{e}^{-\int_{t}^{t_{0}} g(s) \mathrm{d} s} \geq b(a) \mathrm{e}^{-\int_{-\infty}^{t_{0}} g(s) \mathrm{d} s} \equiv b_{0}>0 \tag{4.40}
\end{equation*}
$$

for all $t<t_{0}$, where the convergence of the improper integral in (4.40) follows from (4.22). So $f(t)<f\left(t_{0}\right)-$ $b_{0}\left(t_{0}-t\right)$ for $t<t_{0}$ and we obtain $f(-\infty)=-\infty$ as claimed.

We can now check the boundary conditions for the original field configuration pair w and u in terms of the radial variable r.

First, using the relations $v=\ln w$ and $v=Q(f)$, we may immediately deduce from lemmas 4.3 and 4.5 that $w(r) \rightarrow 1$ as $r \rightarrow \infty$ and $w(r) \rightarrow 0$ as $r \rightarrow r_{h}$, respectively.

Next, since [by (4.4)]

$$
\begin{align*}
u & =-\sigma N \frac{\mathrm{~d} v}{\mathrm{~d} r}=-\frac{\sigma(r) M(r)}{r} \rho \frac{\mathrm{~d} v}{\mathrm{~d} \rho} \\
& =-\frac{\sigma\left(\mathrm{e}^{t}+r_{h}\right) M\left(\mathrm{e}^{t}+r_{h}\right)}{\left(\mathrm{e}^{t}+r_{h}\right)} \frac{\mathrm{d} v}{\mathrm{~d} t} \\
& =-\frac{\sigma\left(\mathrm{e}^{t}+r_{h}\right) M\left(\mathrm{e}^{t}+r_{h}\right)}{\left(\mathrm{e}^{t}+r_{h}\right)}\left(1-\mathrm{e}^{2 Q(f(t))}\right)^{-(p-1)} f_{t}(t), \tag{4.41}
\end{align*}
$$

we can use the statement $f(-\infty)=-\infty$ in lemma 4.5 to arrive at the expression

$$
\begin{align*}
\lim _{r \rightarrow r_{h}} u(r) & =-\frac{\sigma\left(r_{h}\right) M\left(r_{h}\right)}{r_{h}} \lim _{t \rightarrow-\infty} f_{t}(t) \\
& \equiv-\frac{\sigma\left(r_{h}\right) M\left(r_{h}\right)}{r_{h}} f_{t}(-\infty) \tag{4.42}
\end{align*}
$$

Note that, using (4.39), we have

$$
\begin{align*}
f_{t}(-\infty)= & \mathrm{e}^{-\int_{-\infty}^{t_{0}} g(s) \mathrm{d} s}\left(b(a)+\int_{-\infty}^{t_{0}} h(s)\left(1-\mathrm{e}^{2 Q(f(s))}\right)^{p}\right. \\
& \left.\times \mathrm{e}^{t_{s}^{t_{0}} g\left(s_{1}\right) \mathrm{d} s_{1}} \mathrm{~d} s\right) \tag{4.43}
\end{align*}
$$

and the uniform convergence of the right-hand side of (4.43) is a consequence of the assumption (4.22). In particular, the left-hand side of (4.43) is a well-defined positive number which gives rise to the negative limiting value of u at $r=r_{h}$.

In order to see what happens for u when $r \rightarrow \infty$, we can linearize (4.20) around $t=\infty$ to get

$$
\begin{equation*}
\theta_{t t}-g(\infty) \theta_{t}-2[h(\infty) p] \theta=0 \tag{4.44}
\end{equation*}
$$

which has exactly one negative characteristic root, $-\lambda$ (say). Therefore, f vanishes at $t=\infty$ exponentially fast like $\mathrm{e}^{-\lambda t}$. Using (4.91), we have $v=Q(f)=O\left(\mathrm{e}^{-\lambda t / p}\right)$ when t is large. Inserting these results into (4.41) and noting that $f_{t}(t)=O\left(\mathrm{e}^{-\lambda t}\right)$ for t large, we have

$$
\begin{align*}
u & =-\frac{\sigma\left(\mathrm{e}^{t}+r_{h}\right) M\left(\mathrm{e}^{t}+r_{h}\right)}{\left(\mathrm{e}^{t}+r_{h}\right)} O\left(\mathrm{e}^{\lambda(p-1) t / p}\right) f_{t}(t) \\
& =O\left(\mathrm{e}^{-\lambda t / p}\right) \quad \text { as } t \rightarrow \infty \tag{4.45}
\end{align*}
$$

Therefore, we have shown that $u(r) \rightarrow 0$ as $r \rightarrow \infty$ as expected.

Returning to the original variables, we can summarize our study of the type I solutions as follows.

Theorem 4.6.-Suppose that the background metric functions $N(r)$ and $\sigma(r)$ satisfy the conditions that $N(r)$
has exactly one positive root $r=r_{h}$ (say), $N(r)>0$ when $r>r_{h}$,

$$
\begin{gather*}
\lim _{r \rightarrow \infty} N(r) \equiv N(\infty)>0 \tag{4.46}\\
\lim _{r \rightarrow \infty}\left[1-\left(r-r_{h}\right)\left(\frac{\sigma^{\prime}(r)}{\sigma(r)}+\frac{N^{\prime}(r)}{N(r)}\right)\right] \equiv g(\infty)>0 \tag{4.47}
\end{gather*}
$$

there are constants $\delta, \varepsilon>0$ such that for r near r_{h}, there holds

$$
\begin{gather*}
1-\left(r-r_{h}\right)\left(\frac{\sigma^{\prime}(r)}{\sigma(r)}+\frac{N^{\prime}(r)}{N(r)}\right)=O\left(\left(r-r_{h}\right)^{\delta}\right) \tag{4.48}\\
\frac{\left(r-r_{h}\right)^{2}}{r^{2} N(r)}=O\left(\left(r-r_{h}\right)^{\varepsilon}\right) \tag{4.49}
\end{gather*}
$$

and for all $r>r_{h}$, there is the bound

$$
\begin{equation*}
\left(r-r_{h}\right)\left(\frac{\sigma^{\prime}(r)}{\sigma(r)}+\frac{N^{\prime}(r)}{N(r)}\right) \leq 1 \tag{4.50}
\end{equation*}
$$

Then the BPS system of Eqs. (2.8) and (2.9) has a solution pair (w, u) over $r>r_{h}$ satisfying the boundary condition

$$
\begin{array}{ll}
w\left(r_{h}\right)=0, & w(\infty)=1 \tag{4.51}\\
u\left(r_{h}\right)=u_{h}, & u(\infty)=0,
\end{array}
$$

where $u_{h}<0$ is a suitable constant, $w(r)>0, w^{\prime}(r)>0$, and $u<0$ for all $r>r_{h}$.

It can easily be seen that the conditions (4.46), (4.47), and (4.48) are satisfied by any reasonable metric background and are in agreement with the asymptotics at the beginning of the Sec. II. The requirement (4.50) appears to be difficult to prove for an arbitrary metric. However, we have verified that this condition is satisfied in the concrete case we have considered in the numerics.

B. Type II solutions

1. The proof for a Schwarzschild background

We now consider type II solutions considered in Sec. III B. As before, we will start from a concrete situation.

We first set $\sigma \equiv 1$ in the system of self-duality Eqs. (2.8) and (2.9), and we seek solutions with boundary conditions

$$
\begin{array}{ll}
w\left(r_{h}\right)=w_{h}, & u\left(r_{h}\right)=0 \\
w(\infty)=0, & u(\infty)=\Phi \tag{4.53}
\end{array}
$$

where $w_{h} \in[0,1]$ and $\Phi>0$ are constants. For convenience, we shall now concentrate on nonnegative-valued solutions.

Like before, some elementary but useful properties of the solutions of Eq. (2.8), (2.8) together with the boundary conditions (4.52), (4.53) may be deduced immediately. First, note that (2.8) implies that $w^{\prime} \leq 0$. If $w_{h}=0$ in (4.52), then it follows from (4.53) that $w \equiv 0$. Inserting
this into (2.9) and using (4.52), we obtain $u(r)=(2 p-$ 1) $\left(r_{h}^{-1}-r^{-1}\right)$. Hence, in (4.53), we have

$$
\begin{equation*}
\Phi=\frac{(2 p-1)}{r_{h}} \tag{4.54}
\end{equation*}
$$

In other words, the positive constant Φ in (4.53) in this trivial solution situation cannot be arbitrary. For the nontrivial solution situation, we have $0<w_{h} \leq 1$. The uniqueness theorem for the initial value problem of ordinary differential equations implies that a nontrivial solution w of (2.8) cannot assume zero value at finite $r>r_{h}$. Hence, $w(r)>0$ for all $r>r_{h}$ which allows us to rewrite (2.8) as

$$
\begin{equation*}
-N(\ln w)^{\prime}=u, \quad r>r_{h} \tag{4.55}
\end{equation*}
$$

Similarly, $w(r)<1$ for all $r>r_{h}$. Otherwise, suppose that there is an $r_{0}>r_{h}$ such that $w\left(r_{0}\right)=1$. Hence $w_{h}=1$ and $w(r)=1$ for all $r_{h}<r<r_{0}$. Since the solution is necessarily analytic at r_{0}, we see that $w(r)=1$ for r around r_{0} which establishes $w(r)=1$ for all $r>r_{h}$, contradicting $w(\infty)=0$ in (4.53). We assert that $u(r)>0$ for all $r>r_{h}$. Otherwise, suppose there is an $r_{0}>r_{h}$ such that $u\left(r_{0}\right)=0$. Then u attains its minimum at r_{0}. Therefore $u^{\prime}\left(r_{0}\right)=0$. Using these in (2.9), we arrive at a contradiction to the established fact $0<w\left(r_{0}\right)<1$. As a consequence of this fact and (2.8), we see that $w^{\prime}(r)<0$ for all $r>r_{h}$. These derived properties will serve as major clues for our resolution of the boundary value problem (2.8), (2.9), (4.52), and (4.53) which is to follow in the sequel.

Let us now consider the concrete case where N is given as

$$
\begin{equation*}
N(r)=1-\left(\frac{r_{h}}{r}\right)^{d-3}, \quad r \geq r_{h} \tag{4.56}
\end{equation*}
$$

which corresponds to a Schwarzschild background. Our existence theorem for a nontrivial solution of (2.8), (2.9), (4.52), and (4.53) may be stated as follows.

Theorem 4.7.-For the metric function N defined by (4.56) and $\sigma=1$, the boundary value problem (2.8), (2.9), (4.52), and (4.53) has a solution pair (w, u) for some constants $w_{h} \in(0,1]$ and $\Phi>0$ so that both w and u are positive-valued functions of the radial variable $r>r_{h}$ and w strictly increases.

In order to get a proof of the theorem, we shall again pursue a suitable simplification of the system of Eqs. (2.8) and (2.9). To this end, inserting (4.55) into (2.9), we obtain

$$
\begin{equation*}
\left[\left(1-w^{2}\right)^{p-1} N(\ln w)^{\prime}\right]^{\prime}+\frac{(2 p-1)}{r^{2}}\left(1-w^{2}\right)^{p}=0 \tag{4.57}
\end{equation*}
$$

Next set $v=\ln w$ or $w=\mathrm{e}^{v}$. We can rewrite (4.57) as

$$
\begin{equation*}
\left[\left(1-\mathrm{e}^{2 v}\right)^{p-1} N v^{\prime}\right]^{\prime}+\frac{(2 p-1)}{r^{2}}\left(1-\mathrm{e}^{2 v}\right)^{p}=0 \tag{4.58}
\end{equation*}
$$

and arrive at the corresponding boundary condition

$$
\begin{equation*}
\boldsymbol{v}\left(r_{h}\right)=\boldsymbol{v}_{h}=\ln w_{h} \leq 0, \quad v(\infty)=-\infty \tag{4.59}
\end{equation*}
$$

Moreover, using (4.8) and its inverse, we can again rewrite (4.58) into a semilinear equation,

$$
\begin{gather*}
f^{\prime \prime}+f^{\prime}(\ln N)^{\prime}+\frac{(2 p-1)}{r^{2} N}\left(1-\mathrm{e}^{2 Q(f)}\right)^{p}=0 \tag{4.60}\\
r_{h}<r<\infty
\end{gather*}
$$

Set $r=\rho+r_{h}$. Then, in terms of the differentiation with respect to $\rho>0$, we rewrite (4.60) as

$$
\begin{align*}
& \rho^{2} f^{\prime \prime}+\rho f^{\prime} \frac{(d-3) r_{h}^{d-3} \rho}{\left(\left[\rho+r_{h}\right]^{d-3}-r_{h}^{d-3}\right)\left(\rho+r_{h}\right)} \\
& \quad+\frac{(2 p-1)\left(\rho+r_{h}\right)^{d-5} \rho^{2}}{\left(\rho+r_{h}\right)^{d-3}-r_{h}^{d-3}}\left(1-\mathrm{e}^{2 Q(f)}\right)^{p}=0 \\
& 0<\rho<\infty \tag{4.61}
\end{align*}
$$

With $t=\ln \rho$, we convert (4.61) into

$$
\begin{gather*}
f_{t t}-f_{t}+g(t) f_{t}+h(t)\left(1-\mathrm{e}^{2 Q(f)}\right)^{p}=0 \tag{4.62}\\
-\infty<t<\infty
\end{gather*}
$$

subject to the boundary conditions

$$
\begin{equation*}
f(-\infty)=-\alpha \quad(0 \leq \alpha<\infty), \quad f(\infty)=-\infty \tag{4.63}
\end{equation*}
$$

where the functions $g(t)$ and $h(t)$ in (4.62) are defined by

$$
\begin{equation*}
g(t)=\frac{(d-3) r_{h}^{d-3} \mathrm{e}^{t}}{\left(\left[\mathrm{e}^{t}+r_{h}\right]^{d-3}-r_{h}^{d-3}\right)\left(\mathrm{e}^{t}+r_{h}\right)}, \tag{4.64}
\end{equation*}
$$

$$
\begin{equation*}
h(t)=\frac{(2 p-1)\left(\mathrm{e}^{t}+r_{h}\right)^{d-5} \mathrm{e}^{2 t}}{\left(\mathrm{e}^{t}+r_{h}\right)^{d-3}-r_{h}^{d-3}} \tag{4.65}
\end{equation*}
$$

and $\alpha=-P\left(v_{h}\right)$ [see (4.8)].
Recall that we are to solve (4.62) and (4.63) so that its solution $f(t)$ is a negative-valued decreasing function of t. For this purpose, we will use a shooting method and consider the initial value problem

$$
\begin{gather*}
f_{t t}-f_{t}+g(t) f_{t}+h(t)\left(1-\mathrm{e}^{2 Q(f)}\right)^{p}=0, \\
-\infty<t<\infty, \tag{4.66}\\
f\left(t_{0}\right)=-a, \quad f_{t}\left(t_{0}\right)=-b, \tag{4.67}
\end{gather*}
$$

where $a, b>0$ and t_{0} is fixed. Of course, consistency requires

$$
\begin{equation*}
a>\alpha \tag{4.68}
\end{equation*}
$$

In order to realize the boundary condition $f(-\infty)=-\alpha$, we set $\tau=-t, \tau_{0}=-t_{0}$, and convert (4.66) in the half interval $-\infty<t \leq t_{0}$ into the form

$$
\begin{equation*}
f_{\tau \tau}+f_{\tau}-G(\tau) f_{\tau}=H(\tau) R(f), \quad \tau_{0} \leq \tau<\infty, \tag{4.69}
\end{equation*}
$$

$$
\begin{equation*}
f\left(\tau_{0}\right)=-a, \quad f_{\tau}\left(\tau_{0}\right)=b \tag{4.70}
\end{equation*}
$$

where $G(\tau)=g(-\tau)$ and $H(\tau)=h(-\tau)$ are both positivevalued and $R(\cdot)$ is defined by (4.26) as before.

For fixed a satisfying (4.68), we use $f(\tau ; b)$ to denote the unique solution of (4.69) and (4.70) which is defined in its interval of existence.

To engage in a shooting analysis for (4.69) and (4.70), we define

$$
\begin{aligned}
\mathcal{B}^{-} & =\left\{b \in \mathbb{R} \mid \exists \tau>\tau_{0} \quad \text { so that } f_{\tau}(\tau ; b)<0\right\} \\
\mathcal{B}^{0} & =\left\{b \in \mathbb{R} \mid f_{\tau}(\tau ; b)>0 \quad \text { and } \quad f(\tau ; b) \leq 0 \quad \text { for all } \tau>\tau_{0}\right\} \\
\mathcal{B}^{+} & =\left\{b \in \mathbb{R} \mid f_{\tau}(\tau ; b)>0 \quad \text { for all } \tau \geq \tau_{0} \quad \text { and } \quad f(\tau ; b)>0 \quad \text { for some } \tau>\tau_{0}\right\} .
\end{aligned}
$$

Lemma 4.8. -We have the disjoint union $\mathbb{R}=$ $\mathcal{B}^{-} \cup \mathcal{B}^{0} \cup \mathcal{B}^{+}$.

Proof.-If $b \notin \mathcal{B}^{-}$, then $f_{\tau}(\tau ; b) \geq 0$ for all $\tau>\tau_{0}$. If there is a point $\tau_{1}>\tau_{0}$ so that $f_{\tau}\left(\tau_{1} ; b\right)=0$, then $f\left(\tau_{1} ; b\right) \neq 0$ because $f=0$ is an equilibrium point of the differential Eq. (4.69) which is not attainable in finite τ. Since $f\left(\tau_{1} ; b\right) \neq 0$ but $f_{\tau}\left(\tau_{1} ; b\right)=0$, we see that either $f_{\tau \tau}>0$ or $f_{\tau \tau}<0$ at $\tau=\tau_{1}$. Hence, there is a $\tau<\tau_{1}$ or $\tau>\tau_{1}$ at which $f_{\tau}(\tau ; b)<0$ which implies $b \in \mathcal{B}^{-}$, a contradiction. Thus, $f_{\tau}(\tau ; b)>0$ for all $\tau>\tau_{0}$ and $b \in$ $\mathcal{B}^{0} \cup \mathcal{B}^{+}$.

Lemma 4.9. -The set \mathcal{B}^{-}and \mathcal{B}^{+}are both open and nonempty.

Proof.-The fact that $\mathcal{B}^{-} \neq \varnothing$ follows immediately from the fact that $(-\infty, 0) \subset \mathcal{B}^{-}$. The fact that \mathcal{B}^{-}is
open is self-evident. To see that \mathcal{B}^{+}is nonempty, first note that $\mathcal{B}^{+} \subset(0, \infty)$. Hence, for $\tau>\tau_{0}$ but τ is close to τ_{0}, we have $f_{\tau}>0$ and (4.69) gives us

$$
\begin{equation*}
\left(\mathrm{e}^{\tau} f_{\tau}\right)_{\tau}>\mathrm{e}^{\tau} H(\tau) R(f) \tag{4.71}
\end{equation*}
$$

Integrating (4.71) near τ_{0} where $f_{\tau}>0$, we have

$$
\begin{align*}
& f_{\tau}(\tau ; b)>\left(b \mathrm{e}^{\tau_{0}}+\int_{\tau_{0}}^{\tau} H\left(s_{1}\right) R\left(f\left(s_{1} ; b\right)\right) \mathrm{e}^{s_{1}} \mathrm{~d} s_{1}\right) \mathrm{e}^{-\tau} \tag{4.72}\\
& f(\tau ; b)>-a+b\left(1-\mathrm{e}^{-\left(\tau-\tau_{0}\right)}\right) \\
& \quad+\int_{\tau_{0}}^{\tau} \mathrm{e}^{-s_{2}}\left(\int_{\tau_{0}}^{s_{2}} H\left(s_{1}\right) R\left(f\left(s_{1} ; b\right)\right) \mathrm{e}^{s_{1}} \mathrm{~d} s_{1}\right) \mathrm{d} s_{2} \tag{4.73}
\end{align*}
$$

For any fixed $\tau_{1}>\tau_{0}$, we can choose $b>0$ sufficiently large so that

$$
\begin{array}{rl}
& b \mathrm{e}^{\tau_{0}}+\int_{\tau_{0}}^{\tau_{1}} H\left(s_{1}\right) R(-a) \mathrm{e}^{s_{1}} \mathrm{~d} s_{1}>0, \\
-a & a\left(1-\mathrm{e}^{-\left(\tau_{1}-\tau_{0}\right)}\right) \\
+ & \int_{\tau_{0}}^{\tau_{1}} \mathrm{e}^{-s_{2}}\left(\int_{\tau_{0}}^{s_{2}} H\left(s_{1}\right) R(-a) \mathrm{e}^{s_{1}} \mathrm{~d} s_{1}\right) \mathrm{d} s_{2}>0 . \tag{4.75}
\end{array}
$$

In view of (4.72), (4.73), (4.74), and (4.75), we see that there is a $\tau_{2} \in\left(\tau_{0}, \tau_{1}\right)$ so that $f_{\tau}(\tau ; b)>0$ for $\tau \in$ $\left[\tau_{0}, \tau_{2}\right], f(\tau ; b)<0$ for $\tau \in\left[\tau_{0}, \tau_{2}\right)$, but $f\left(\tau_{2} ; b\right)=0$. Hence, for any $\tau>\tau_{2}$, there holds

$$
\begin{align*}
f_{\tau}(\tau ; b) & \geq\left(b \mathrm{e}^{\tau_{0}}+\int_{\tau_{0}}^{\tau_{2}} H\left(s_{1}\right) R\left(f\left(s_{1} ; b\right)\right) \mathrm{e}^{s_{1}} \mathrm{~d} s_{1}\right) \mathrm{e}^{-\tau} \\
& \geq\left(b \mathrm{e}^{\tau_{0}}+\int_{\tau_{0}}^{\tau_{1}} H\left(s_{1}\right) R(-a) \mathrm{e}^{s_{1}} \mathrm{~d} s_{1}\right) \mathrm{e}^{-\tau}>0 \tag{4.76}
\end{align*}
$$

$$
\begin{equation*}
f(\tau ; b)>0 \tag{4.77}
\end{equation*}
$$

Therefore, $b \in \mathcal{B}^{+}$and the nonemptyness of \mathcal{B}^{+}is established.

Moreover, for $b_{0} \in \mathcal{B}^{+}$, there is a $\tau_{1}>0$ so that $f\left(\tau_{1} ; b_{0}\right)>0$. By the continuous dependence of f on the parameter b we see that when b_{1} is close to b_{0} we have $f_{\tau}\left(\tau ; b_{1}\right)>0$ for all $\tau \in\left[\tau_{0}, \tau_{1}\right]$ and $f\left(\tau_{1}, b_{1}\right)>0$. Using (4.76) again, we see that $f_{\tau}\left(\tau ; b_{1}\right)>0$ for all $\tau>\tau_{0}$ as well, which proves $b_{1} \in \mathcal{B}^{+}$. So \mathcal{B}^{+}is open.

The fact that \mathcal{B}^{-}is open is self-evident.
Lemma 4.10. - The set \mathcal{B}^{0} is nonempty and closed. Furthermore, if $b \in \mathcal{B}^{0}$, then $f(\tau ; b)<0$ for all $\tau>\tau_{0}$.

Proof. - The first part of the lemma follows from the connectedness of \mathbb{R}, lemma 4.8, and lemma 4.9. To prove the second part, we assume otherwise that there is a $\tau_{1}>$ τ_{0} so that $f\left(\tau_{1} ; b\right)=0$. Since $f(\tau ; b) \leq 0$ for all $\tau>\tau_{0}, f$ attains its local maximum at τ_{1}. In particular, $f_{\tau}\left(\tau_{1} ; b\right)=$ 0 , which contradicts the definition of \mathcal{B}^{0}.

Lemma 4.11. -For $b \in \mathcal{B}^{0}$, there is a number α satisfying $0 \leq \alpha<a$ such that $f(\tau ; b) \rightarrow-\alpha$ as $\tau \rightarrow \infty$.

Proof. -Since f increases as a function of $\tau \geq \tau_{0}$ and $f<0$ for all $\tau \geq \tau_{0}$, we see that the limit $\lim _{\tau \rightarrow \infty} f(\tau ; b)$ exists and satisfies $-a<\lim _{\tau \rightarrow \infty} f(\tau ; b) \leq 0$.

Returning to the original variable $t=-\tau$, we see that we have obtained a solution of (4.62) over the left-half line $-\infty<t \leq t_{0}$ satisfying the boundary condition at $t=-\infty$ stated in (4.63).

We next consider the problem over the right-half line $t_{0} \leq t<\infty$. For this purpose, let f be a local solution of (4.66) and (4.67) in a neighborhood of t_{0}. Since $1-g(t)>$ 0 and $h(t)>0$, we deduce from (4.66) that $f, f_{t}, f_{t t}$ all remain negative-valued for all $t \geq t_{0}$ in view of $f\left(t_{0}\right)<0$ and $f_{t}\left(t_{0}\right)<0$. In particular, the solution is defined globally for all $t_{0} \leq t<\infty$. Using $h(\infty)=2 p-1>0$, we see
that $f_{t t}(t) \leq-c$ for some constant $c>0$ for all $t \geq t_{0}$. Consequently, we must have $f(\infty)=-\infty$ which realizes the boundary condition at $t=\infty$ for f stated in (4.63). In other words, we have proved the existence of a solution of the two-point boundary value problem (4.62) and (4.63).

We are now ready to prove the existence theorem. To do so, we need only to examine the boundary conditions for the original field functions w and u in terms of the radial variable r. Using the relations among various variables, we obtain

$$
\begin{align*}
w_{h} & \equiv \lim _{r \rightarrow r_{h}} w=\lim _{\rho \rightarrow 0} w=\lim _{\rho \rightarrow 0} \mathrm{e}^{v}=\lim _{t \rightarrow-\infty} \mathrm{e}^{Q(f)} \\
& =\mathrm{e}^{Q(-\alpha)} \in(0,1], \tag{4.78}
\end{align*}
$$

as desired because $\alpha \geq 0$ in view of lemma 4.11.
In order to realize the boundary condition for $u=$ $-N(\ln w)^{\prime}$ [see (4.55)] at $r=r_{h}$, we insert the definition of the function N [see (4.56)] to get

$$
\begin{align*}
u & =-N \frac{\mathrm{~d} v}{\mathrm{~d} r}=-\frac{\left(\left[\rho+r_{h}\right]^{d-3}-r_{h}^{d-3}\right)}{\left(\rho+r_{h}\right)^{d-3}} \frac{\mathrm{~d} v}{\mathrm{~d} \rho} \\
& =-\frac{(d-3) r_{h}^{d-4}(1+O(\rho))}{\left(\rho+r_{h}\right)^{d-3}} \rho \frac{\mathrm{~d} v}{\mathrm{~d} \rho} \tag{4.79}
\end{align*}
$$

Using (4.79), we obtain

$$
\begin{equation*}
\lim _{r \rightarrow r_{h}} u=-(d-3) r_{h}^{-1} \lim _{t \rightarrow-\infty} \frac{\mathrm{d} v}{\mathrm{~d} t} \tag{4.80}
\end{equation*}
$$

To evaluate the right-hand side of (4.80), recall that (4.8) gives us

$$
\begin{equation*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=\left(1-\mathrm{e}^{2 v}\right)^{-(p-1)} \frac{\mathrm{d} f}{\mathrm{~d} t} \tag{4.81}
\end{equation*}
$$

The easier case is when $w_{h}<1$. In view of (4.80) and (4.81), we have

$$
\begin{equation*}
\lim _{r \rightarrow r_{h}} u=-(d-3) r_{h}^{-1}\left(1-w_{h}^{2}\right)^{-(p-1)} \lim _{t \rightarrow-\infty} \frac{\mathrm{d} f}{\mathrm{~d} t} \tag{4.82}
\end{equation*}
$$

We again use the variable $\tau=-t$. Since f satisfies

$$
\begin{equation*}
f_{\tau \tau}+f_{\tau}(1-G(\tau))=-H(\tau)\left(1-\mathrm{e}^{2 Q(f)}\right)^{p}, \quad \tau \geq \tau_{0} \tag{4.83}
\end{equation*}
$$

we may integrate (4.83) to get

$$
\begin{align*}
f_{\tau}(\tau)= & \mathrm{e}^{-\int_{\tau_{0}}^{\tau}(1-G(s)) \mathrm{d} s}\left(b-\int_{\tau_{0}}^{\tau} H(s)\left(1-\mathrm{e}^{2 Q(f(s))}\right)^{p}\right. \\
& \left.\times \mathrm{e}^{\int_{\tau_{0}}^{s}\left(1-G\left(s_{1}\right)\right) \mathrm{d} s_{1}} \mathrm{~d} s\right) \tag{4.84}
\end{align*}
$$

The definitions of $G(s)$ and $H(s)$ give us the asymptotics

$$
\begin{gather*}
1-G(s)=\left(1+\frac{d-4}{2}\right) \mathrm{e}^{-s}+O\left(\mathrm{e}^{-2 s}\right) \tag{4.85}\\
H(s)=\left(\frac{2 p-1}{d-3}\right) r_{h}^{-1} \mathrm{e}^{-s}+O\left(\mathrm{e}^{-2 s}\right) \tag{4.86}
\end{gather*}
$$

for s large. Using (4.85) and (4.86), and the fact that $Q(f)<0$ in (4.84), we see that $f_{\tau}(\tau)$ is bounded for $\tau \geq$ τ_{0}. As a consequence, (4.83) leads us to the estimate

$$
\begin{equation*}
f_{\tau \tau}(\tau)=O\left(\mathrm{e}^{-\tau}\right) \quad \text { for large } \tau \tag{4.87}
\end{equation*}
$$

Since $f(\infty)=-\alpha$, we infer that there is a sequence $\left\{\tau_{j}\right\}$, $\tau_{j} \rightarrow \infty$ when $j \rightarrow \infty$, such that $f_{\tau}\left(\tau_{j}\right) \rightarrow 0$ when $j \rightarrow \infty$. From this fact and (4.87), we find

$$
\begin{equation*}
f_{\tau}(\tau)=O\left(\mathrm{e}^{-\tau}\right) \quad \text { for large } \tau \tag{4.88}
\end{equation*}
$$

Inserting (4.88) into (4.82), we arrive at the expected result

$$
\begin{equation*}
\lim _{r \rightarrow r_{h}} u=0 . \tag{4.89}
\end{equation*}
$$

We now consider the case when $w_{h}=1$. Note that (4.84), (4.85), (4.86), (4.87), and (4.88) are all valid. Using (4.88) and $f(\infty)=0$, we have

$$
\begin{equation*}
f(\tau)=O\left(\mathrm{e}^{-\tau}\right) \quad \text { for large } \tau \tag{4.90}
\end{equation*}
$$

Note also that (4.8) gives us the relation

$$
\begin{align*}
f & =\int_{0}^{v}\left(-2 s-\frac{(2 s)^{2}}{2!}-\cdots\right)^{p-1} \mathrm{~d} s \\
& =(-2)^{p-1} \frac{v^{p}}{p}+O\left(v^{p+1}\right) \tag{4.91}
\end{align*}
$$

Combining (4.90) and (4.91), we obtain

$$
\begin{equation*}
v(\tau)=O\left(\mathrm{e}^{-\tau / p}\right) \quad \text { when } \tau \text { is large. } \tag{4.92}
\end{equation*}
$$

Inserting (4.88) and (4.92) into (4.81), we get

$$
\begin{gather*}
\frac{\mathrm{d} v}{\mathrm{~d} t}=v^{-(p-1)}(-2+O(v))^{-(p-1)} \frac{\mathrm{d} f}{\mathrm{~d} t}=O\left(\mathrm{e}^{t / p}\right) \\
\text { as } t \rightarrow-\infty \tag{4.93}
\end{gather*}
$$

which establishes (4.89) again in view of (4.80).
We finally examine the behavior of the solution pair (w, u) at $r=\infty$. Since we have derived the limit $f(t) \rightarrow$ $-\infty$ as $t \rightarrow \infty$, we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} w=\lim _{\rho \rightarrow \infty} \mathrm{e}^{v}=\lim _{t \rightarrow \infty} \mathrm{e}^{Q(f)}=0 \tag{4.94}
\end{equation*}
$$

Besides, using the definition (4.56) for the background function N, the relation $u=-N(\ln w)_{r}$, and $v(\infty)=$ $-\infty$, we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} u=-\lim _{\rho \rightarrow \infty} \frac{\mathrm{d}}{\mathrm{~d} \rho}(\ln w)=-\lim _{t \rightarrow \infty} \mathrm{e}^{-t} \frac{\mathrm{~d} v}{\mathrm{~d} t}=-\lim _{t \rightarrow \infty} \mathrm{e}^{-t} \frac{\mathrm{~d} f}{\mathrm{~d} t} \tag{4.95}
\end{equation*}
$$

On the other hand, multiplying (4.62) by $\mathrm{e}^{-\int_{t_{0}}^{t}(1-g(s)) \mathrm{d} s}$ and integrating over $\left(t_{0}, t\right)$, we get

$$
\begin{align*}
f_{t}(t)= & \mathrm{e}^{\int_{t_{0}}^{t}(1-g(s)) \mathrm{d} s}\left(-b-\int_{t_{0}}^{t} h(s)\left(1-\mathrm{e}^{2 Q(f(s))}\right)^{p}\right. \\
& \left.\times \mathrm{e}^{-\int_{t_{0}}^{s}\left(1-g\left(s_{1}\right)\right) \mathrm{d} s_{1}} \mathrm{~d} s\right) \tag{4.96}
\end{align*}
$$

which results in the expression

$$
\begin{align*}
-\lim _{t \rightarrow \infty} \mathrm{e}^{-t} f_{t}(t)= & \mathrm{e}^{-t_{0}-\int_{t_{0}}^{\infty} g(s) \mathrm{d} s}\left(b+\int_{t_{0}}^{\infty} h(s)\left(1-\mathrm{e}^{2 Q(f(s))}\right)^{p}\right. \\
& \left.\times \mathrm{e}^{-\int_{t_{0}}^{s}\left(1-g\left(s_{1}\right)\right) \mathrm{d} s_{1}} \mathrm{~d} s\right) \equiv \Phi>0 \tag{4.97}
\end{align*}
$$

where we have used the properties

$$
\begin{equation*}
g(t)=O\left(\mathrm{e}^{-(d-3) t}\right), \quad h(t)=O(1) \quad \text { as } t \rightarrow \infty \tag{4.98}
\end{equation*}
$$

for the positive-valued functions $g(t)$ and $h(t)$ given in (4.64) and (4.65) to deduce the convergence of the two improper integrals in (4.97). In other words, in view of (4.95), the positive number Φ defined in (4.97) gives us the expected limit,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} u=\Phi \tag{4.99}
\end{equation*}
$$

The proof of the existence theorem is now complete.

2. The proof for a general black hole background

We now turn our attention to the case where the blackhole metric is defined by general functions, $N>0$ and $\sigma>$ 0 (whenever $r>r_{h}$). Focusing again on the self-dual equations with the choice of upper signs, we have (2.8) and (2.9) subject to the same boundary conditions, (4.52) and (4.53). Note that we are interested again in nonnegative-valued solutions. As discussed earlier, when $w_{h}=0$, the solution is unique and explicitly given by

$$
\begin{gather*}
w \equiv 0, \quad u(r)=(2 p-1) \int_{r_{h}}^{r} \frac{\sigma(\rho)}{\rho^{2}} \mathrm{~d} \rho, \tag{4.100}\\
\Phi=(2 p-1) \int_{r_{h}}^{\infty} \frac{\sigma(\rho)}{\rho^{2}} \mathrm{~d} \rho
\end{gather*}
$$

which may be called a trivial solution; when $w_{h} \in(0,1]$; however, the solution will not be trivial. Furthermore, we can see that if (w, u) is a solution with $w_{h}>0$, then $w(r)>$ $0, u(r)>0$ for $r>r_{h}$ and w strictly increases. In particular, (2.8) allows us to represent u by (4.4) which of course generalizes (4.55). Therefore, using the same substitution of variables, $\boldsymbol{v}=\ln w$ and $f=P(v)$ as given in (4.8), we can transform (2.8) and (2.9) into the scalar Eq. (4.9).

Like before, we write $r=\rho+r_{h}(\rho>0)$. Therefore, in terms of $t=\ln \rho$, we convert (4.9) into the familiar form (4.62) in which the coefficient functions $g(t)$ and $f(t)$ are now defined by the updated expressions

$$
\begin{align*}
g(t) & =\left[\rho\left(\frac{\sigma^{\prime}(r)}{\sigma(r)}+\frac{N^{\prime}(r)}{N(r)}\right)\right]_{\rho=\mathrm{e}^{t}} \tag{4.101}\\
h(t) & =\left[(2 p-1) \frac{\rho^{2}}{r^{2} N(r)}\right]_{\rho=\mathrm{e}^{t}} \tag{4.102}
\end{align*}
$$

Recall that the key properties of the functions $g(t)$ and $h(t)$ used in the proof of theorem 4.7 are
(i) $g(t) \geq 0$ and $h(t)>0$ for all t;
(ii) $1-g(t)>0$ for all t;
(iii) $h(\infty)>0$;
(iv) as $t \rightarrow-\infty$, we have the asymptotics

$$
\begin{equation*}
1-g(t)=O\left(\mathrm{e}^{\varepsilon t}\right), \quad h(t)=O\left(\mathrm{e}^{\delta t}\right) \tag{4.103}
\end{equation*}
$$

for some $\varepsilon, \delta>0$;
(v) as $t \rightarrow \infty$, we have the asymptotics

$$
\begin{equation*}
g(t)=O\left(\mathrm{e}^{-\gamma t}\right), \quad h(t)=O(1) \tag{4.104}
\end{equation*}
$$

for some $\gamma>0$.
It is direct to check that the proof of theorem 4.7 is intact for the general N, σ case when the above properties are valid. Consequently, switching back to the original radial variable r, we arrive at the following general existence theorem.

Theorem 4.12. -For the general system of BPS equations (2.8) and (2.9) subject to the boundary condition given by (4.52) and (4.53), the same conclusion for existence of a solution as stated in theorem 4.7 holds provided that the positive-valued metric functions N and σ satisfy the assumptions

$$
\begin{array}{cl}
0 \leq\left(r-r_{h}\right)\left(\frac{\sigma^{\prime}(r)}{\sigma(r)}+\frac{N^{\prime}(r)}{N(r)}\right)<1, \quad \forall r>r_{h}, \\
\lim _{r \rightarrow \infty} N(r)=N_{\infty}>0, & r \approx r_{h}, \\
1-\left(r-r_{h}\right)\left(\frac{\sigma^{\prime}(r)}{\sigma(r)}+\frac{N^{\prime}(r)}{N(r)}\right)=O\left(\left(r-r_{h}\right)^{\varepsilon}\right), & (4.106) \\
\frac{\left(r-r_{h}\right)^{2}}{N(r)}=O\left(\left(r-r_{h}\right)^{\delta}\right), & r \approx r_{h}, \\
\left(r-r_{h}\right)\left(\frac{\sigma^{\prime}(r)}{\sigma(r)}+\frac{N^{\prime}(r)}{N(r)}\right)=O\left(\left(r-r_{h}\right)^{-\gamma}\right), & r \approx \infty \tag{4.109}
\end{array}
$$

where $\varepsilon, \delta, \gamma$ are some positive constants.
The remarks at the end of the Sec. IVA 2 on the generality of these conditions apply in this case, too. Again, the only condition which seems to require a knowledge of N, σ is (4.105). However, (4.105) is satisfied by the various backgrounds we have considered.

3. The proof for a topologically trivial background

We now consider type II YM instantons on a "soliton" background for which the functions N and σ are everywhere positive and regular up to $r=0$:

$$
\begin{equation*}
N(0)=1, \quad \sigma(0)=\sigma_{0} \quad \text { with } 0<\sigma_{0}<1 \tag{4.110}
\end{equation*}
$$

The governing equations are still (2.8) and (2.9) subject to the boundary conditions (4.52) and (4.53). In this situation, we may simply restate our sufficient conditions given in
theorem 4.12 by setting $r_{h}=0$ in order to guarantee the existence of a solution with the only exception that (4.107) is no longer valid when $r_{h}=0$ and the metric functions N and σ are regular at $r=0$ which gives rise to the new property

$$
\begin{equation*}
\lim _{r \rightarrow 0} r\left(\frac{\sigma^{\prime}(r)}{\sigma(r)}+\frac{N^{\prime}(r)}{N(r)}\right)=0 . \tag{4.111}
\end{equation*}
$$

In fact, we note that, with $r_{h}=0, r=\rho=\mathrm{e}^{t}$, and

$$
\begin{gather*}
g(t)=\left[r\left(\frac{\sigma^{\prime}(r)}{\sigma(r)}+\frac{N^{\prime}(r)}{N(r)}\right)\right]_{r=\mathrm{e}^{t}}, \tag{4.112}\\
h(t)=\left[\frac{(2 p-1)}{N(r)}\right]_{r=\mathrm{e}^{t}} \tag{4.113}
\end{gather*}
$$

Eqs. (2.8) and (2.9) are condensed into Eq. (4.62) as before. Thus, in view of (4.110), (4.111), (4.112), and (4.113), we have

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} g(t)=0, \quad \lim _{t \rightarrow-\infty} h(t)=2 p-1 \tag{4.114}
\end{equation*}
$$

which violates the condition (4.103). Therefore, our existence theorem may not be applicable directly to this "regularized" problem. Below we shall show that (4.114) actually allows us to strengthen our existence theorem.

First, it is straightforward to see that (4.114) renders no barrier to the existence of a solution of (4.62) subject to the boundary condition (4.63) which may be obtained as before through solving the initial value problem (4.66) and (4.67) for given $t_{0}, a>0$, and a suitable $b>0$ (recall that the set \mathcal{B}^{0} contains all such suitable b 's).

Lemma 4.13. -Let f be the solution of (4.66) and (4.67) with $b \in \mathcal{B}^{0}$. Then $\alpha=0$ or $f(-\infty)=0$. In particular, \mathcal{B}^{0} contains exactly one point $b=b\left(a, t_{0}\right)$ (say) and

$$
\begin{equation*}
\mathcal{B}^{-}=\left(-\infty, b\left(a, t_{0}\right)\right), \quad \mathcal{B}^{+}=\left(b\left(a, t_{0}\right), \infty\right) \tag{4.115}
\end{equation*}
$$

Proof.-Use the variable $t=-\tau$ and consider instead the problem (4.69) and (4.70) for $\tau \geq \tau_{0}$. We then arrive at (4.84) with $b \in \mathcal{B}^{0}$. Recall that (4.114) implies that

$$
\begin{equation*}
\lim _{s \rightarrow \infty} G(s)=0, \quad \lim _{s \rightarrow \infty} H(s)=2 p-1 \tag{4.116}
\end{equation*}
$$

If $\alpha>0$, then $f(\tau)<-\alpha$ for all $\tau \geq \tau_{0}$ and we conclude from (4.84) that $f_{\tau}(\tau)<0$ when τ is sufficiently large, which contradicts the definition of \mathcal{B}^{0}.

If $b_{1}, b_{2} \in \mathcal{B}^{0}$, then $z(\tau)=f\left(\tau ; b_{1}\right)-f\left(\tau ; b_{2}\right)$ satisfies the boundary condition $z\left(\tau_{0}\right)=z(\infty)=0$. Inserting this into (4.69), we have

$$
\begin{equation*}
z_{\tau \tau}+(1-G(\tau)) z_{\tau}=H(\tau) R^{\prime}(\xi) z, \quad \tau \geq \tau_{0} \tag{4.117}
\end{equation*}
$$

where ξ lies between $f\left(\tau ; b_{1}\right)$ and $f\left(\tau ; b_{2}\right)$. Applying the fact that $H(\tau) R^{\prime}(\xi)>0$ and the maximum principle in (4.117), we get $z \equiv 0$. In particular, $b_{1}=b_{2}$. So \mathcal{B}^{0} contains exactly one point as claimed.

To simplify notation, we set $t_{0}=0$ in (4.97). For any $a>0$ in the initial value problem (4.66) and (4.67), let
$b=b(a)$ be the unique point in \mathcal{B}^{0} ensured by the above lemma. Hence we can rewrite the boundary value Φ given in (4.97) as a well-defined function of a, say $\Phi(a)$, as follows:

$$
\begin{align*}
\Phi(a)= & \mathrm{e}^{-\int_{0}^{\infty} g(s) \mathrm{d} s}\left(b(a)+\int_{0}^{\infty} h(s)\left(1-\mathrm{e}^{2 Q(f(s))}\right)^{p}\right. \\
& \left.\times \mathrm{e}^{-\int_{0}^{s}\left(1-g\left(s_{1}\right)\right) \mathrm{d} s_{1}} \mathrm{~d} s\right) \tag{4.118}
\end{align*}
$$

Lemma 4.14. -The function $\Phi(\cdot)$ depends on $a>0$ continuously so that $\Phi(a) \rightarrow 0^{+}$as $a \rightarrow 0^{+}$and $\Phi(a) \rightarrow$ ∞ as $a \rightarrow \infty$. In particular, the range of $\Phi(\cdot)$ is the entire half interval $(0, \infty)$.

Proof.-First, we show that $b(a)$ is continuous with respect to the parameter $a>0$. Otherwise there is a point $a_{0}>0$ and a sequence $\left\{a_{j}\right\} \subset(0, \infty)$ so that $a_{j} \rightarrow a_{0}$ as $j \rightarrow \infty$ but $\left|b\left(a_{j}\right)-b\left(a_{0}\right)\right| \geq \varepsilon_{0}$ for some $\varepsilon_{0}>0$ and $j=$ $1,2, \cdots$. From the proof of lemma 4.9 [cf. (4.72), (4.73), (4.74), and (4.75)], we see that $\left\{b\left(a_{j}\right)\right\}$ is a bounded sequence. In fact, with $\tau_{0}=0$ and $\tau_{1}=1$ in (4.72), (4.73), (4.74), and (4.75), we see that $b \in \mathcal{B}^{+}$when (4.74) and (4.75) or

$$
\begin{equation*}
b>\Gamma_{1}(a) \equiv \int_{0}^{1} H(s)\left(1-\mathrm{e}^{2 Q(-a)}\right)^{p} \mathrm{e}^{s} \mathrm{~d} s \tag{4.119}
\end{equation*}
$$

and

$$
\begin{align*}
& b\left(1-\mathrm{e}^{-1}\right)>\Gamma_{2}(a) \\
& \equiv a+\int_{0}^{1} \mathrm{e}^{-s_{2}}\left(\int_{0}^{s_{2}} H\left(s_{1}\right)\left(1-\mathrm{e}^{2 Q(-a)}\right)^{p} \mathrm{e}^{s_{1}} \mathrm{~d} s_{1}\right) \mathrm{d} s_{2} \tag{4.120}
\end{align*}
$$

hold. In other words, (4.119) and (4.120) give us the upper bound

$$
\begin{equation*}
b(a) \leq \max \left\{\Gamma_{1}(a),\left(1-\mathrm{e}^{-1}\right)^{-1} \Gamma_{2}(a)\right\} \tag{4.121}
\end{equation*}
$$

In particular, the boundedness of $\left\{b\left(a_{j}\right)\right\}$ follows. Hence, passing to a subsequence if necessary, we may assume $b\left(a_{j}\right) \rightarrow$ some b_{0} as $j \rightarrow \infty$. Of course, $b_{0} \neq b\left(a_{0}\right)$. It is clear that for (4.69) and (4.70) with $a=a_{0}$, both $b(a)$ and b_{0} lie in \mathcal{B}^{0}, which contradicts lemma 4.13 which states that \mathcal{B}^{0} contains exactly one point.

The continuous dependence of $b(a)$ on a implies that the solution f of (4.69) and (4.70) with $b=b(a)$ depends on a continuously as well. Using this fact, we easily obtain the continuous dependence of $\Phi(a)$ on $a>0$ because the improper integral containing f on the right-hand side of (4.118) is uniformly convergent with respect to the parameter $a>0$ in view of (4.104).

We claim that $b(a) \rightarrow 0^{+}$as $a \rightarrow 0^{+}$. Otherwise there is a sequence $\left\{a_{j}\right\}$ in $(0, \infty)$ and a ε_{0} so that $a_{j} \rightarrow 0$ as $j \rightarrow \infty$ but $b\left(a_{j}\right) \geq \varepsilon_{0}(j=1,2, \cdots)$. Using these in the initial value problem (4.69) and (4.70) with $a=a_{j}$ and $b=$ $b\left(a_{j}\right)$, we observe that the solution will assume a positive
value for a slightly positive τ when j is sufficiently large, which contradicts the definition of $b\left(a_{j}\right)$.

We can also claim that $b(a) \rightarrow \infty$ as $a \rightarrow \infty$. To see this, we insert the property $f_{\tau} \geq 0$ in (4.84) (with $\tau_{0}=0$) to get

$$
\begin{gather*}
b(a) \geq \int_{0}^{\tau} H(s)\left(1-\mathrm{e}^{2 Q(f(s))}\right)^{p} \mathrm{e} \int_{0}^{s}\left(1-G\left(s_{1}\right)\right) \mathrm{d} s_{1} \tag{4.122}\\
\mathrm{~d} s \\
\forall \tau \geq 0
\end{gather*}
$$

Since we also know that $f_{\tau \tau} \leq 0$ for $\tau \geq 0$, we have

$$
\begin{equation*}
f(\tau) \leq-a+b(a) \tau \quad \text { for } \tau \geq 0 \tag{4.123}
\end{equation*}
$$

In view of (4.123), we see that $f(\tau) \leq-1$ (say) whenever τ satisfies

$$
\begin{equation*}
\tau \leq \frac{(a-1)}{b(a)}, \quad a>1 \tag{4.124}
\end{equation*}
$$

Combining (4.122) and (4.124), we get the lower bound

$$
\begin{equation*}
b(a) \geq \int_{0}^{(a-1) / b(a)} H(s)\left(1-\mathrm{e}^{2 Q(-1)}\right)^{p} \mathrm{e}^{\int_{0}^{s}\left(1-G\left(s_{1}\right)\right) \mathrm{d} s_{1}} \mathrm{~d} s \tag{4.125}
\end{equation*}
$$

which implies that $b(a) \rightarrow \infty$ as $a \rightarrow \infty$ because the integral

$$
\begin{equation*}
\int_{0}^{\infty} H(s)\left(1-\mathrm{e}^{2 Q(-1)}\right)^{p} \mathrm{e} \int_{0}^{s}\left(1-G\left(s_{1}\right)\right) \mathrm{d} s_{1} \mathrm{~d} s \tag{4.126}
\end{equation*}
$$

is divergent which allows us to argue by contradiction if $b(a) \nrightarrow \infty$ when $a \rightarrow \infty$.

Hence $\Phi(a)$ defined in (4.118) is a continuous function with respect to $a \in(0, \infty)$ so that $\Phi(a) \rightarrow 0^{+}$when $a \rightarrow$ 0^{+}and $\Phi(a) \rightarrow \infty$ when $a \rightarrow \infty$.

The proof of the lemma is now complete.
In summary, we can state our results for the existence of a solution in the regular case as follows.

Theorem 4.15.-Suppose that the background metric functions N and σ are regularly defined for all $r>0$ and satisfy (4.110) at $r=0$ and the conditions (4.105), (4.106), (4.108), and (4.109) (all with $r_{h}=0$), and (4.111). Then the system of Eqs. (2.8) and (2.9) subject to the boundary conditions (4.52) and (4.53) governing a BPS monopole has a nontrivial solution if and only if $w_{h}=1$. Moreover, the positive constant Φ in (4.53) may be taken to be any prescribed number and for any given $\Phi>0$, the solution pair (w, u) satisfies $w>0, u>0$, and w strictly increases for $r>0$.

V. SOLUTIONS WITH SPHERICAL SYMMETRY IN (EVEN) d DIMENSIONS

Here we start by imposing spherical symmetry in the whole d-dimensional (Euclidean) space, treating all coordinates on the same footing. The corresponding metric ansatz in this case is

$$
\begin{equation*}
d s^{2}=d \rho^{2}+f^{2}(\rho) d \Omega_{(d-1)}^{2} \tag{5.1}
\end{equation*}
$$

where $f(\rho)$ is a function fixed by the gravity-matter field equations, ρ being the radial coordinate (with $\rho_{a} \leq \rho \leq$ ρ_{b}).

The YM ansatz compatible with the symmetries of the above line element is expressed as

$$
\begin{equation*}
A_{\mu}=\left(\frac{1-w(\rho)}{\rho}\right) \Sigma_{\mu \nu}^{(\pm)} \hat{x}_{\nu} \tag{5.2}
\end{equation*}
$$

where the spin matrices are precisely those used in (1.2), the radial variable in is $\rho_{\mu}=\sqrt{\left|x_{\mu}\right|^{2}}$, and $\hat{x}_{\mu}=x_{\mu} / \rho$ is the unit radius vector.

The resulting reduced one-dimensional YM Lagrangian for the p th term in the YM hierarchy is

$$
\begin{align*}
L_{\mathrm{YM}}^{(p, d)}= & \frac{\tau_{p}}{2 \cdot(2 p)!} \frac{(d-1)!}{(d-2 p)!} f^{d-4 p+1}\left(w^{2}-1\right)^{2 p-2} \\
& \times\left(w^{\prime 2}+\frac{d-2 p}{2 p} \frac{\left(w^{2}-1\right)^{2}}{f^{2}}\right) \tag{5.3}
\end{align*}
$$

the corresponding $d=4 p$ YM self-duality equations taking the simple form

$$
\begin{equation*}
w^{\prime} \pm \frac{w^{2}-1}{f(\rho)}=0 . \tag{5.4}
\end{equation*}
$$

For any choice of the metric function $f(\rho)$, the solution of the above equation reads

$$
\begin{equation*}
w=\frac{1-c_{0} e^{\mp 2 \int d p / f(\rho)}}{1+c_{0} e^{\mp 2 \int d p / f(p)}} \tag{5.5}
\end{equation*}
$$

where c_{0} is an arbitrary positive constant.
The action of the self-dual solutions can be written as

$$
\begin{equation*}
S= \pm\left. 2 \frac{\tau_{p}(4 p-1)!}{2 \cdot((2 p)!)^{2}} V_{d-1} w_{2} F_{1}\left(\frac{1}{2}, 1-2 p, \frac{3}{2}, w^{2}\right)\right|_{\rho_{0}} ^{\rho_{1}} \tag{5.6}
\end{equation*}
$$

[${ }_{2} F_{1}(a, b, c, z)$ being the hypergeometric function]. For $f(\rho)=\rho$ one recovers the $d=4 p$ generalization of the BPST instanton first found in [15], with $w=\left(\rho^{2}-\right.$ $c) /\left(\rho^{2}+c\right)$. An AdS background $f(\rho)=\rho_{0} \sinh \rho / \rho_{0}$ leads to a $d=4 p$ generalization of the $d=4 \mathrm{AdS}$ selfdual instantons in [9], with $w=\left(\tanh ^{2}\left(\rho / 2 \rho_{0}\right)-\right.$ $c) /\left(\tanh ^{2}\left(\rho / 2 \rho_{0}\right)+c\right)$. The $d=4 p$ self-dual instantons on a sphere (Euclideanized dS space) are found by taking $\rho_{0} \rightarrow i \rho_{0}$ in the corresponding AdS relations.

Again, one can consider as well the superposition of two members of the YM hierarchy, say those labeled by p and q, with $d=2(p+q)$. The generic self-duality Eqs. (1.4) reduce here to

$$
\begin{align*}
& w^{\prime} \pm \sqrt{\frac{\kappa p}{q}}\left(1-w^{2}\right)^{q-p+1} f^{2 p-2 q-1}=0 \tag{5.7}\\
& w^{\prime} \pm \sqrt{\frac{q}{\kappa p}}\left(1-w^{2}\right)^{p-q+1} f^{2 q-2 p-1}=0
\end{align*}
$$

where we note $\kappa=\hat{\tau}_{p} / \hat{\tau}_{q}$, which is supposed to be a positive quantity. The above are overdetermined and have the unique solutions

$$
\begin{align*}
& f=r_{0} \sin \rho / \rho_{0} \\
& w=\cos \rho / \rho_{0} \quad \text { or } \quad f=r_{0} \sinh \rho / \rho_{0} \tag{5.8}\\
& w=\cosh \rho / \rho_{0}, \quad \text { with } r_{0}=(\kappa p / q)^{1 / 4(q-p)},
\end{align*}
$$

accommodating fixed AdS and dS spaces, depending if κ is negative or positive. Note that when κ is negative, r_{0} in (5.8) cannot be real, so we have really only a YM field on dS . Here, unlike in the $d=4 p$ case featuring the single $F(2 p)$, the expression of the metric function $f(\rho)$ is fixed to describe a curved maximally symmetric background. The dS case with $p=1, q=2$ solution of (5.8) was recently found in [13].

VI. SUMMARY AND DISCUSSION

We have considered the problem of constructing instantons of gravitating Yang-Mills field systems in all even dimensions. Our constructions are limited to two highly symmetric kinds of solutions for which the effective field equations are one-dimensional. The larger part of the work concerns (Euclidean time) static fields that are spherically symmetric in the $d-1$ space dimensions, and a smaller part deals with fields that are spherically symmetric in the whole d-dimensional (Euclidean) spacetime, treating all coordinates on the same footing. The main task was the extension of the known results $[1,4,9]$ in $d=4$ to arbitrary even d.

The static, and spherically symmetric (in $d-1$ dimensions) solutions are interesting because in that case instantons on (Euclideanized) black holes can be described. The fully spherically symmetric (in d dimensions) solutions are also interesting because in that case the metric is a conformal deformation of the metric on $S^{4 p}$, relevant to the p-BPST instantons. All cases studied are restricted to Yang-Mills self-dual solutions, which means that the gravitational background is a fixed one offering no backreaction to the YM field, since the stress tensor of self-dual YM fields vanishes. We have nonetheless searched numerically for solutions to the second order field equations that might describe radial excitations of the self-dual ones we construct, and have found no such solutions.

The static spherically symmetric solutions we have studied come in two types. Type I are the d-dimensional generalizations of the Charap-Duff [1] solution in four dimensions, while type II generalize the deformed Prasad-Sommerfield monopole in [4]. For $d=4 p$ we
give the exact type I analogues of the CD solution on double-self-dual p-Schwarzschild backgrounds, with cosmological constant, in closed form. On backgrounds that are not double-self-dual, the solutions are constructed numerically. In our numerical constructions we have mostly employed backgrounds arising from p-Einstein gravity, notably the p-Reissner-Nordström. In addition, we have verified that p-YM instantons of type I satisfying CD like boundary conditions can be constructed numerically on q-Einstein backgrounds $(p \neq q)$, but these are much less robust than when $p=q$. In $d=4 p+2$ the only type I self-dual solutions are those on fixed $\mathrm{AdS}_{2 p}$ and $\mathrm{dS}_{2 p}$ backgrounds, evaluated in closed form, and, in the AdS case the solution is not real.

Type II solutions are evaluated only numerically, and only in $4 p$ dimensions. These are deformations of p -Prasad-Sommerfield monopoles. Both type I an II solutions describe the YM field on a fixed black hole, but while the radius of the horizon r_{h} for type I is unconstrained, r_{h} for a type II solution has a maximal value. The numerical results presented in Sec. III are supported by the existence proofs given in Sec. IV. In evaluating the numerical instantons of both types, we solved the second order field equations, but found no radial excitations above the self-dual solutions. The existence of all numerically constructed solutions was proved analytically using a dynamic shooting method.

The last type of instantons considered in this paper, namely those deforming the p-BPST instanton on $\mathbb{R}^{4 P}$, are evaluated in closed form both on AdS and dS backgrounds. In $4 p+2$ dimensions, the self-duality equations yield the same fixed backgrounds as in the case of type I solutions in these dimensions.

Perhaps one of the most remarkable qualitative features of types I and II instantons is that these are not instantons at all but rather are monopolelike lumps. This is because for a genuine instanton, the radial function w appearing in the ansatz (2.5) must change sign over the full range r_{h} to infinity of the radial coordinate, while in what we have here, the sign of w does not change in this range. This behavior is typical of a monopole. This aspect of the CD solutions is consistent with the conclusion of Tekin [41], who has allowed a time-dependent YM field on the 1Schwarzschild background in four dimensions, and found that the resulting solution remains static, namely, the CD solution itself. This conclusion is clearly true also in the $4 p$-dimensional p-CD instantons here. We intend to carry this line of investigation further.

ACKNOWLEDGMENTS

D.H.T. is deeply indebted to A. Chakrabarti for past collaboration on this subject. The work of E.R. and D.H.T. was carried out in the framework of Science Foundation Ireland (SFI) Research Frontiers Programme (RFP) Project No. RFP07/FPHY330. The research of Y. Y. was supported in part by the National Science Foundation
under Grant No. DMS-0406446 and Polytechnic University.

APPENDIX: DOUBLE-SELF-DUAL SPACES

The considered gravitational system in $d=2(p+q)$ spacetime dimensions is the superposition of all possible scalars $R_{(p, q)}$

$$
\begin{equation*}
\mathcal{L}_{\text {grav }}=\sum_{p=1}^{P} \frac{\kappa_{p}}{2 p} e R_{(p, q)} \tag{A1}
\end{equation*}
$$

where $R_{(p, q)}$ are constructed from the $2 p$-form $R(2 p)=$ $R \wedge R \wedge \ldots \wedge R$ resulting from the totally antisymmetrized p-fold products of the Riemann curvature 2-forms R. We express $R_{(p, q)}$ in the notation of [12] as

$$
\begin{align*}
e R_{(p, q)}= & \varepsilon^{\mu_{1} \mu_{2} \ldots \mu_{2 p} \nu_{1} \nu_{2} \ldots \nu_{2 q}} e_{\nu_{1}}^{n_{1}} e_{\nu_{2}}^{n_{2 q}} \ldots e_{\nu_{2 q}}^{n_{2 q}} \varepsilon_{m_{1} m_{2} \ldots m_{2 p} n_{1} n_{2} \ldots n_{2 q}} \\
& \times R_{\mu_{1} \mu_{2} \ldots \ldots \mu_{2 p}}^{m_{1} m_{2} \ldots m_{2 p}}, \tag{A2}
\end{align*}
$$

where e_{ν}^{n} are the Vielbein fields, $e=\operatorname{det}\left(e_{\nu}^{n}\right)$ in (A1), and $R_{\mu_{1} \mu_{2} \ldots \mu_{2 p}}^{m_{1} m_{2} \ldots m_{2 p}}=R(2 p)$ is the p-fold totally antisymmetrized product of the Riemann curvature, in component notation. It is clear from the definition (A2) that the spacetime dimensionality is $d=2(p+q)$, and that the maximum value p in the sum (A1) is $P=\frac{1}{2}(d-2)$, with the term $e R_{(p=(d / 2), q=0)}$ being the (total divergence) EulerHirzebruch density. Subjecting (A2) to the variational principle one arrives at the p th order Einstein equation

$$
\begin{equation*}
G_{(p) \mu}^{m}=R_{(p) \mu}^{m}-\frac{1}{2 p} R_{(p)} e_{\mu}^{m} \tag{A3}
\end{equation*}
$$

in terms of the p th order Einstein tensor $G_{(p) \mu}{ }^{m}$, with $R_{(p)}$ and $R_{(p) \mu}{ }^{m}$ being the p th order Ricci scalar and the p th order Ricci tensor defined, respectively, by

$$
\begin{align*}
& R_{(p)}=R_{\mu_{1} \mu_{2} \ldots \mu_{2 p}}^{m_{1} m_{2} \ldots m_{2 p}} e_{m_{1}}^{\mu_{1}} e_{m_{2}}^{\mu_{1}} \ldots e_{m_{2 p}}^{\mu_{2 p}}, \tag{A4}\\
& R_{(p) \mu}^{m}=R_{\mu \mu_{2} \ldots . \mu_{2 p}}^{m m_{2} \ldots m_{2 p}} e_{m_{2}}^{\mu_{2}} \ldots e_{m_{2 p}}^{\mu_{2 p}} . \tag{A5}
\end{align*}
$$

Let us first consider the special case of $p=q$, namely, of a $4 p$-dimensional spacetime. The double-self-duality condition in that case is

$$
\begin{align*}
R_{\mu_{1} \mu_{2} \ldots \mu_{2 p}}^{m_{1} m_{2} \ldots m_{2 p}}= & \pm \frac{e}{[(2 p)!]^{2}} \varepsilon_{\mu_{1} \mu_{2} \ldots \mu_{2 p} \nu_{1} \nu_{2} \ldots \nu_{2 p}} \\
& \times R_{n_{1} n_{2} \ldots n_{2 p}}^{\nu_{1} \nu_{2} \ldots \nu_{2 p}} \varepsilon^{m_{1} m_{2} \ldots m_{2 p} n_{1} n_{2} \ldots n_{2 p}} . \tag{A6}
\end{align*}
$$

The \pm sign in (A6) pertains to Euclidean and Minkowskian signatures, respectively, which is in order to impose in this case unlike in the case of single self-duality in which case the Hodge dual for Minkowskian signature would introduce an undesirable factor of $i=\sqrt{-1}$. We shall soon see that it is gainful to keep only to Euclidean signature.

Contracting the left-hand side of (A6) with $e_{m_{2}}^{\mu_{2}} e_{m_{2}}^{\mu_{2}} \ldots e_{m_{2 p}}^{\mu_{2 p}}$, and relabeling the free indices $\left(\mu_{1}, m_{1}\right)$
as (μ, m), we get the p th order Ricci tensor defined by (A5). After applying the usual tensor identities this results in the constraint

$$
\begin{equation*}
R_{(p) \mu}^{m}=\mp\left(R_{(p) \mu}^{m}-\frac{1}{2 p} R_{(p)} e_{\mu}^{m}\right) \tag{A7}
\end{equation*}
$$

It is now obvious that in the case of Minkowskian signature (the lower sign) (A7) leads to

$$
\begin{equation*}
R_{(p)}=0 \tag{A8}
\end{equation*}
$$

which is too weak a constraint to satisfy any p-Einstein equation arising from the variation with respect to e_{m}^{μ}. Accordingly, we restrict to Euclidean spaces, whence (A7) reads

$$
\begin{equation*}
G_{(p) \mu}^{m}=-\frac{1}{4 p} R_{(p)} e_{\mu}^{m} \tag{A9}
\end{equation*}
$$

The most general Lagrangian whose field equations are solved by the constraint (A9) is the following special case of (A1) augmented with a cosmological constant Λ,

$$
\begin{equation*}
\mathcal{L}_{\text {grav }}=e\left(\kappa^{2 p} R_{(p, p)}+d!\Lambda\right) \tag{A10}
\end{equation*}
$$

where κ is a constant with the dimension of a length. The Einstein equations of (A10) are

$$
\begin{equation*}
\kappa^{2 p} G_{(p) \mu}^{m}=\frac{(4 p)!}{(2 p)((2 p)!)^{2}} \Lambda e_{\mu}^{m} \tag{A11}
\end{equation*}
$$

The consistency condition of the double-self-duality condition (A6) and the field Eq. (A11) is

$$
\begin{equation*}
\kappa^{2 p} R_{(p)}=-2 \frac{(4 p)!}{((2 p)!)^{2}} \Lambda \tag{A12}
\end{equation*}
$$

implying that if the p th order Ricci scalar is in this way related to the cosmological constant Λ, then such a solution of the double-self-duality equation satisfies also the Einstein equation. This is independent of the sign of Λ, and is of course true also for the particular case of vanishing cosmological constant $\Lambda=0$.

Next we consider a spacetime of dimension $d=2(p+$ q), with $q>p$. The double-self-duality condition in this case is

$$
\begin{align*}
R_{\mu_{1} \mu_{2} \ldots \mu_{2 p}}^{m_{1} m_{2} \ldots m_{2 p}}= & \pm \kappa^{2(q-p)} \frac{e}{[(2 q)!]^{2}} \varepsilon_{\mu_{1} \mu_{2} \ldots \mu_{2 p} \nu_{1} \nu_{2} \ldots \nu_{2 q}} \\
& \times R_{n_{1} n_{2} \ldots \nu_{2 q}}^{\nu_{1} \nu_{2} \ldots \nu_{2 p}} \varepsilon^{m_{1} m_{2} \ldots m_{2 p} n_{1} n_{2} \ldots n_{2 q}}, \tag{A13}
\end{align*}
$$

where κ is a constant with dimensions of a length.
Let us contract the left-hand side of (A13) with $e_{m_{2}}^{\mu_{2}} e_{m_{2}}^{\mu_{2}} \ldots e_{m_{2 p}}^{\mu_{2 p}}$, and let us relabel the free indices $\left(\mu_{1}, m_{1}\right)$ as (μ, m). This yields the p th order Ricci tensor defined by (A5), which after applying the usual tensor identities results in the constraint

$$
\begin{equation*}
R_{(p) \mu}^{m}=\mp \kappa^{2(q-p)} \frac{(2 p-1)!}{(2 q-1)!} G_{(q) \mu}^{m} . \tag{A14}
\end{equation*}
$$

Before comparing this constraint with the Einstein equations of the appropriate gravitational system [a subsystem of (A1) plus a cosmological constant], it is convenient to state the corresponding constraint arising from the inverse of the double-self-duality constraint (A13), namely, of

$$
\begin{align*}
R_{\mu_{1} \mu_{2} \ldots \mu_{2 q}}^{m_{1} m_{2} \ldots m_{2 q}}= & \pm \kappa^{2(p-q)} \frac{e}{[(2 p)!]^{2}} \varepsilon_{\mu_{1} \mu_{2} \ldots \mu_{2 q} \nu_{1} \nu_{2} \ldots \nu_{2 p}} \\
& \times R_{n_{1} n_{2} \ldots n_{2 p}}^{\nu_{1} \nu_{2} \ldots \nu_{2 q}} \varepsilon^{m_{1} m_{2} \ldots m_{2 q} n_{1} n_{2} \ldots n_{2 p}} . \tag{A15}
\end{align*}
$$

This is

$$
\begin{equation*}
R_{(q) \mu}^{m}=\mp \kappa^{2(p-q)} \frac{(2 q-1)!}{(2 p-1)!} G_{(p) \mu}^{m} . \tag{A16}
\end{equation*}
$$

Again we consider the case of Minkowskian signature (the lower sign) first, to dispose of it as above. In this case (A14) and (A16) simply yield

$$
\begin{equation*}
(2 q)!\kappa^{2 p} R_{(p)}+(2 p)!\kappa^{2 q} R_{(q)}=0 \tag{A17}
\end{equation*}
$$

which is too weak to solve an Einstein equation. Hence, again we restrict to the Euclidean signature case.

Now the gravitational system in Euclidean space appropriate to (A14) and (A16) is

$$
\begin{equation*}
\mathcal{L}_{\text {grav }}=e\left(\frac{1}{2} \kappa_{1}^{2 p} R_{(p, q)}+\frac{1}{2} \kappa_{2}^{2 q} R_{(q, p)}+d!\Lambda\right) \tag{A18}
\end{equation*}
$$

whose Einstein equations are

$$
\begin{equation*}
\kappa_{1}^{2 p}(2 p) G_{(p) \mu}+\kappa_{2}^{2 q}(2 q) G_{(q) \mu}^{m}=\frac{(2(p+q))!}{(2 p)!(2 q)!} \Lambda e_{\mu}^{m} \tag{A19}
\end{equation*}
$$

The consistency conditions arising from the identification of (A14) with (A19), and (A16) with (A19) are

$$
\begin{equation*}
\kappa_{1}^{2 p} R_{(p)}=\kappa_{2}^{2 q} R_{(q)}=-2 \frac{(2(p+q))!}{(2 p)!(2 q)!} \Lambda \tag{A20}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa^{2(q-p)}=\frac{(2 q)!}{(2 p)!} \frac{\kappa_{2}^{2 q}}{\kappa_{1}^{2 p}} \tag{A21}
\end{equation*}
$$

Condition (A20) is the analogue of (A12), to which it reduces when one sets $p=q$, while (A21) is an additional condition in this case constraining the relative values of the three constants κ_{1}, κ_{2}, and κ, with dimensions of length.

Again, provided (A21) is satisfied, the two conditions (A20) imply that the Einstein equation is satisfied by the solutions of the double-self-duality equations. This completes our discussion of double-self-dual spaces.
[1] J. M. Charap and M. J. Duff, Phys. Lett. 69B, 445 (1977).
[2] A. Chakrabarti, Fortschr. Phys. 35, 1 (1987).
[3] T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66, 213 (1980).
[4] Y. Brihaye and E. Radu, Europhys. Lett. 75, 730 (2006).
[5] M. K. Prasad and C. M. Sommerfield, Phys. Rev. Lett. 35, 760 (1975).
[6] A. A. Belavin, A. M. Polyakov, A.S. Shvarts, and Y. S. Tyupkin, Phys. Lett. 59B, 85 (1975).
[7] R. Jackiw and C. Rebbi, Phys. Rev. D 14, 517 (1976).
[8] G. W. Gibbons and C. N. Pope, Commun. Math. Phys. 61, 239 (1978).
[9] J. M. Maldacena and L. Maoz, J. High Energy Phys. 02 (2004) 053.
[10] A. Hosoya and W. Ogura, Phys. Lett. B 225, 117 (1989).
[11] D. O'Se and D. H. Tchrakian, Lett. Math. Phys. 13, 211 (1987).
[12] G. M. O'Brien and D. H. Tchrakian, J. Math. Phys. (N.Y.) 29, 1212 (1988).
[13] H. Kihara and M. Nitta, arXiv:hep-th/0703166.
[14] Z. Ma and D. H. Tchrakian, J. Math. Phys. (N.Y.) 31, 1506 (1990).
[15] D. H. Tchrakian, Phys. Lett. 150B, 360 (1985).
[16] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory (Cambridge University Press, Cambridge, England, 1987).
[17] J. Polchinski, String theory (Cambridge University Press, Cambridge, England, 1998).
[18] A. Strominger, Nucl. Phys. B343, 167 (1990); B353, 565(E) (1991).
[19] G. W. Gibbons, D. Kastor, L. A. J. London, P.K. Townsend, and J.H. Traschen, Nucl. Phys. B416, 850 (1994).
[20] H. Kihara and M. Nitta, Phys. Rev. D 76085001 (2007).
[21] D.H. Tchrakian, in Differential Geometric Methods in Theoretical Physics, special issue, edited by C. N. Yang, M. L. Ge, and X. W. Zhou [Int. J. Mod. Phys. A, 3A, 584 (1993).
[22] E. Witten, Phys. Rev. Lett. 38, 121 (1977).
[23] J. Spruck, D. H. Tchrakian, and Y. Yang, Commun. Math. Phys. 188, 737 (1997).
[24] L. Sibner, R. Sibner, and Y. Yang, Commun. Math. Phys. 241, 47 (2003).
[25] B. Grossman, T. W. Kephart, and J. D. Stasheff, Commun. Math. Phys. 96, 431 (1984).
[26] C. Saclioglu, Nucl. Phys. B277, 487 (1986).
[27] K. Fujii, Lett. Math. Phys. 12, 363 (1986).
[28] K. Fujii, Lett. Math. Phys. 12, 371 (1986).
[29] A. A. Tseytlin, in Yuri A. Golfand Memorial Vol., edited by M. Shifman (World Scientific, Singapore, 2000).
[30] E. Bergshoeff, M. de Roo, and A. Sevrin, Fortschr. Phys. 49433 (2001); Nucl. Phys. B, Proc. Suppl. 10250 (2001); E. A. Bergshoeff, M. de Roo, and A. Sevrin, Fortschr. Phys. 49, 433 (2001); Nucl. Phys. B, Proc. Suppl. 102, 50 (2001).
[31] M. Cederwall, B.E. W. Nilsson, and D. Tsimpis, J. High Energy Phys. 06 (2001) 034.
[32] A. Chakrabarti and D.H. Tchrakian, Phys. Rev. D 65, 024029 (2001).
[33] B. Julia, J. Levie, and S. Ray, J. High Energy Phys. 11 (2005) 025.
[34] E. Radu and D. H. Tchrakian, Phys. Rev. D 71, 125013 (2005).
[35] Y. Yang, Lett. Math. Phys. 19, 257 (1990).
[36] Y. Yang, Lett. Math. Phys. 20, 285 (1990).
[37] X. Wang and Y. Yang, Lett. Math. Phys. 77, 249 (2006).
[38] Y. Brihaye, B. Hartmann, and J. Kunz, Phys. Lett. B 441, 77 (1998).
[39] J. Bjoraker and Y. Hosotani, Phys. Rev. D 62, 043513 (2000).
[40] Y. Brihaye, A. Chakrabarti, and D. H. Tchrakian, Classical Quantum Gravity 20, 2765 (2003).
[41] B. Tekin, Phys. Rev. D 65, 084035 (2002).

[^0]: ${ }^{1}$ Restriction to even dimensions is because of our requirement of self-duality, without including Higgs or other scalar matter fields.

[^1]: ${ }^{2}$ Self-dual instantons on compact symmetric backgrounds, as opposed to ones on the noncompact space AdS_{4}, were known. For example, YM instantons on S^{4} were constructed by Jackiw and Rebbi [7], and those on $\mathbb{C P}^{2}$, by Gibbons and Pope [8] a long time ago.
 ${ }^{3}$ In [9] also wormhole solutions to the second order equations, where the matter field curves the geometry, are given, which in the dS_{4} case were already known [10]. Here we have restricted to self-dual instantons.
 ${ }^{4}$ These are the instantons on noncompact symmetric spaces, corresponding to the already known ones on the compact spaces, namely, on $S^{4 p}$ in [11], on $S^{2 n}$ in [12,13], and on $\mathbb{C} \mathbb{P}^{n}$ in [14].

[^2]: ${ }^{5}$ For most of this section we are not interested in the precise form of the functions N and σ, the considered YM instantons presenting some generic features for any choice of the background compatible with this behavior.

[^3]: ${ }^{6}$ It is worth noting that for the $p=1$ case only, a generalization of the CD instanton is obtained by replacing the Schwarzschild background employed in III A 1 above, by the Euclideanized Kerr background. Unfortunately, this more general solution cannot be extended to $d>4$ since no higherdimensional counterparts of the Kerr solution are known in p-Einstein gravity for $p \geq 2$.

[^4]: ${ }^{7}$ That for Minkowskian signature double-self-duality of the metric does not lead to the p-Einstein equation is seen from (A7) and (A8) of the appendix.

[^5]: ${ }^{8}$ Note that for the Schwarzschild-like coordinates we use, the slope of $w(r)$ diverges as $r \rightarrow r_{h}$. One can easily verify that this divergence disappears when using instead an isotropic coordinate system.

[^6]: ${ }^{9}$ In Sec. III A 1 above, where $p=q$, we studied numerically the second order equations to find out whether there existed any radial excitations, and the outcome was negative. Here too we inquire whether there might be nonself-dual solutions with the matter field deforming the geometry, and found that no such solutions can exist. We concluded this analytically, by noticing the impossibility to write for $d=2(p+q)$ (with $p \neq q$) a consistent expansion near $r=r_{h}$ of the form (3.5).

