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The increasing sophistication and accuracy of numerical simulations of compact binaries (especially
binary black holes) presents the opportunity to test the regime in which post-Newtonian (PN) predictions
for the emitted gravitational waves are accurate. In order to confront numerical results with those of post-
Newtonian theory, it is convenient to compare multipolar decompositions of the two waveforms. It is
pointed out here that the individual modes can be computed to higher post-Newtonian order by examining
the radiative multipole moments of the system, rather than by decomposing the 2.5PN polarization
waveforms. In particular, the dominant (l � 2, m � �2) mode can be computed to 3PN order. Individual
modes are computed to as high a post-Newtonian order as possible given previous post-Newtonian results.
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I. INTRODUCTION

The first generation of laser interferometric gravitational
wave detectors is now operating at or near their design
sensitivities [1–5]. One of the most promising sources that
they may detect is the inspiral and merger of compact
binary systems with black holes or neutron stars. One of
the primary means of detecting and interpreting the signals
from such systems will be the use of a matched filtering
technique, which requires accurate templates with which to
match a theoretical model to a noisy signal. Until the last
several orbits prior to merger, the post-Newtonian (PN)
approximation is expected to be sufficient to generate
accurate templates, while numerical relativity will be
needed to help construct accurate templates covering the
late inspiral and merger phases.

Estimates of the accuracy of post-Newtonian templates
and the effect of this accuracy on detecting gravitational
waves have led the post-Newtonian expansion to be pushed
to high order [6–9]. Currently the equations of motion and
the gravitational wave energy flux are known through
3.5PN order [10,11], and the polarization waveform am-
plitudes are known through 2.5PN order [12,13]. As the
post-Newtonian expansion is a slow-motion, weak-field
approximation to general relativity, and the motion is not
so slow and the fields not so weak during the last orbits
prior to merger, it is legitimate to ask where the post-
Newtonian expansion breaks down.

Recent breakthroughs in numerical relativity [14–17]
have finally provided the possibility of testing the validity
of the post-Newtonian expansion in the late inspiral. Initial
studies focused on qualitative comparisons between post-
Newtonian generated waveforms and numerical simula-
tions of the final two to four orbits prior to merger [18–
20]. More recently, attempts have been made to quantify
the difference between post-Newtonian generated wave-
forms and numerical simulations of a nonspinning equal-

mass binary inspiral lasting more than eight orbits [21–23].
As long inspiral simulations are computationally expensive
to perform, it is important to quantify the errors in the post-
Newtonian generated waveforms and determine how they
influence the detection of gravitational waves. One would
also like to know the accuracy with which the parameters
such as the individual masses and spins of the binary can be
determined from the observed waveform.

One of the principal ways of quantifying the accuracy of
the post-Newtonian approximation is to compare the am-
plitude and phase of the gravitational waveform with that
from numerical simulations. Unlike gravitational wave
detection which is sensitive only to the waveform in one
particular direction, comparisons between numerical simu-
lations and post-Newtonian waveforms can be performed
over the entire sphere. Therefore it is convenient to project
the waveforms onto spin-weighted spherical harmonics
and compare the individual components. Previous studies
[18,19], however, have computed the spin-weighted
spherical harmonic components of the post-Newtonian
amplitude in such a way that has not made full use of
current post-Newtonian results.

This situation has arisen primarily because of how the
post-Newtonian gravitational wave amplitude is presented.
Often the final result of the post-Newtonian computation of
the waveform is given as the polarization waveforms as a
function of the direction to the observer (as this is most
useful when constructing templates). Currently the polar-
ization waveforms are known to 2.5PN order in amplitude
[12,13]. In previous comparisons between post-Newtonian
and numerical waveforms, it was the polarization wave-
forms that were projected into spin-weighted spherical
harmonics in order to determine the post-Newtonian com-
ponents. The post-Newtonian polarization waveforms are
computed by truncating an infinite sum of radiative multi-
pole moments at a given post-Newtonian order [24]. As
will be demonstrated in this paper, it makes more sense to
project the waveform onto spin-weighted spherical har-
monics prior to truncating the series as this retains the*kidder@astro.cornell.edu
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full information currently known. In particular, the domi-
nant (l � 2, m � 2) component of the waveform can be
computed to 3PN order.1

While knowledge of particular spin-weighted compo-
nents of a gravitational waveform is of limited value for
computing templates for detection and characterization of
gravitational waves, it can be used to quantify the differ-
ence between post-Newtonian and numerical waveforms.
In addition, if the 3PN correction to the amplitude of the
�l � 2; m � 2� component significantly improves the
agreement between the post-Newtonian and numerical
waveforms, this would suggest it might be worth the effort
needed to compute the polarization waveforms to 3PN
order. It has been shown that higher post-Newtonian cor-
rections in the amplitude can improve detection rates [27–
29] as well as improve parameter extraction [30–36].

The relationship between the gravitational waveform
and radiative multipole moments is reviewed in Sec. II. It
is pointed out that the spin-weighted spherical harmonic
components of the waveform can be computed directly
from the radiative mulitpole moments of the system in
Sec. II B. Current post-Newtonian results that affect the
computation of the radiative multipole moments are sum-
marized in Sec. III. The radiative multipole moments are
computed to as high a post-Newtonian order as possible in
Sec. IV. Conclusions are presented in Sec. V.

II. GRAVITATIONAL WAVEFORM AND SPIN-
WEIGHTED SPHERICAL HARMONICS

A. Notation

Let X� � �cT; X; Y; Z� be coordinates in an asymptoti-
cally flat radiative coordinate system, with ~eT the unit
timelike normal and � ~eX; ~eY; ~eZ� the spatial orthonormal
coordinate basis vectors. Let �cT; R;�;�� be the corre-
sponding spherical coordinate system with corresponding
basis vectors � ~eR; ~e�; ~e��. Let TR � T � R=c denote re-
tarded time in radiative coordinates.

Greek letters are used for spacetime indices, Latin letters
for spatial indices. As indices can be raised or lowered
using the Minkowski metric, components of tensors will
typically have down indices. Let Ni be a component of the
unit radial vector ~eR. A capital letter for an index denotes
a multi-index (i.e. TL � Ti1i2���i‘). For a vector V, let VL be
a product of components of the vector (i.e. VL �
Vi1Vi2 � � �Vi‘). Repeated spatial indices (including multi-
indices) are to be summed over. Tensors that are fully
symmetric and trace-free (STF) will be denoted with capi-
tal script letters (e.g. I ij). Symmetrization, antisymmetri-
zation, and STF projection of indices are denoted by (), [],
and hi, respectively, with underlined indices between the

delimiters to be excluded from the operation (e.g.
2T�abc� � Tabc � Tcba).

Let � ~k; ~l; ~m� be a set of null vectors defined2 by

 

~k �
1���
2
p � ~eT � ~eR�; (1)

 

~l �
1���
2
p � ~eT � ~eR�; (2)

 ~m �
1���
2
p � ~e� � i ~e��: (3)

The spin-weighted spherical harmonics are defined in
terms of the Wigner d functions by

 �sY‘m��;�� � ��1�s

���������������
2‘� 1

4�

s
d‘ms���eim�; (4)

where
 

d‘ms��� �
�������������������������������������������������������������������
�‘�m�!�‘�m�!�‘� s�!�‘� s�!

p
�
Xkf
k�ki

��1�k�sin�
2 �

2k�s�m�cos�
2 �

2‘�m�s�2k

k!�‘�m� k�!�‘� s� k�!�s�m� k�!
;

(5)

where ki � max�0; m� s� and kf � min�‘�m; ‘� s�.

B. Polarization waveforms and modes

The asymptotic waveform hTTij can be decomposed into
two sets of STF radiative multipole moments as [24]

 hTTij �
4G

c2R
�ijmn

X1
‘�2

�
1

c‘‘!
UmnL�2�TR�NL�2

�
2‘

c‘�1�‘� 1�!
�pq�mV n�pL�2�TR�NqL�2

�
: (6)

Here UL�TR� are the mass-type moments and V L�TR� are
the current-type moments. In Sec. III A these radiative
multipole moments will be related to multipole moments
describing the source in the near zone. Note that higher
multipole moments contribute to the waveform at higher
post-Newtonian order, so that at any finite post-Newtonian
order, only a finite number of multipoles contribute. The
transverse-traceless (TT) projection operator �ijmn is
given by

 �ijmn � PimPjn �
1
2PijPmn; (7)

where Pij � �ij � NiNj.

1This was independently recognized by Damour and Nagar
[25,26] who have derived a resummed 3PN quadrupolar wave-
form within the effective-one-body approach.

2The reader is hereby warned that different conventions exist
in the literature for the definitions of null vectors, (spin-
weighted) spherical harmonics, polarization triads, etc. I have
attempted to be explicit in the definitions used here so that the
results may be converted to the reader’s favorite conventions.
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Given an orthonormal triad � ~N; ~P; ~Q�, the polarization
waveforms can be given by

 h� �
1
2�PmPn �QmQn�h

TT
mn; (8)

 h� �
1
2�PmQn � PnQm�h

TT
mn: (9)

A natural (but by no means unique3) choice for the triad is
~P � ~e� and ~Q � ~e�. It is then straightforward to show that

 h� � ih� � m	mm
	
nh

TT
mn; (10)

where 	 denotes complex conjugation. It will now be
shown how h� � ih� can be decomposed into modes
using spin-weighted spherical harmonics of weight �2,

 h� � ih� �
X1
‘�2

X‘
m��‘

h‘m�2Y
‘m��;��: (11)

An alternative expression for the waveform is given by
[24]

 hTTij �
G

c2R

X1
‘�2

X‘
m��‘

�
1

c‘
U‘m�TR�T

E2;‘m
ij

�
1

c‘�1
V‘m�TR�T

B2;‘m
ij

�
; (12)

where TE2;‘m
ij and TB2;‘m

ij are pure-spin tensor harmonics,
and where the mass multipole moments U‘m�TR� and
current multipole moments V‘m�TR� are related to their
STF counterparts by [24]

 U‘m �
16�

�2‘� 1�!!

������������������������������
�‘� 1��‘� 2�

2‘�‘� 1�

s
ULY

‘m	
L ; (13)

 V‘m �
�32�‘
�2‘� 1�!!

�����������������������������������
�‘� 2�

2‘�‘� 1��‘� 1�

s
V LY

‘m	
L ; (14)

where Y‘m
L are the STF spherical harmonics which are

related to the scalar spherical harmonics by

 Y‘m��;�� � Y‘m
L NL: (15)

The pure-spin tensor harmonics are related to the spin-
weighted spherical harmonics by [24]

 TE2;‘m
ij �

1���
2
p ��2Y

‘mmimj � 2Y
‘mm	i m

	
j �; (16)

 TB2;‘m
ij �

�i���
2
p ��2Y

‘mmimj � 2Y
‘mm	i m

	
j �: (17)

Combining Eqs. (10), (12), and (16) yields

 h� � ih� �
G

c2R

X1
‘�2

X‘
m��‘

�
1

c‘
���
2
p U‘m�TR�

�
i

c‘�1
���
2
p V‘m�TR�

�
�2Y

‘m��;��: (18)

Thus the spin-weighted spherical harmonic components of
the waveform are given by

 h‘m �
G���

2
p
Rc‘�2

�
U‘m�TR� �

i
c
V‘m�TR�

�
: (19)

Note that the spin-weighted spherical harmonic compo-
nents can be computed directly from the radiative multi-
pole moments. It is not necessary to compute the waveform
as a function of position and then project out the compo-
nents as is commonly done in the recent literature. In fact,
not only are these extra steps unnecessary, they cause
individual components to be truncated at a lower post-
Newtonian order than they need to be. In particular, the
dominant h22 component is truncated to 2.5PN order, when
it can be computed (as will be shown below) to 3PN order
directly from the radiative mass quadrupole moment.

This situation arises as the complete polarization wave-
forms h� and h� are known only through 2.5PN order. But
as discussed in [12], the computation of the 3PN waveform
is not limited by the post-Newtonian order of the dominant
mass quadrupole contribution, but by the order of higher

TABLE I. The post-Newtonian order to which each radiative
multipole moment must be computed to obtain the full 2.5PN
polarization waveforms h� and h�, and the order to which they
are known.

Radiative multipole PN order for h�;� Known PN order

I ij 2.5 3
J ij 2 2
I ijk 2 2
J ijk 1.5 1.5a

I ijkl 1.5 2
J ijkl 1 1
I ijklm 1 1
J ijklm 0.5 1
I ijklmn 0.5 1
J ijklmn 0 1
I ijklmno 0 1
IL�‘ > 7� � � � 1
J L�‘ > 6� � � � 1

aThe radiative current octupole could be computed to 2PN order
by a computation of the 2PN correction to the source current
octupole.

3The 2.5PN polarization waveforms in [12] are defined with
~P � � ~e� and ~Q � ~e� evaluated at � � i, � � �=2.
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multipoles. Therefore to obtain the spin-weighted spherical
harmonic components of the waveform to as high a post-
Newtonian order as possible, they should be computed
directly from the radiative multipole moments. As dis-
cussed in Sec. V below, this will allow post-Newtonian
results to be probed to a higher order when comparing with
numerical simulations. Table I summarizes the post-
Newtonian order to which each radiative multipole mo-
ment needs to computed to obtain the full 2.5PN order
polarization waveforms, and the post-Newtonian order to
which they are currently known.

III. SUMMARY OF CURRENT POST-NEWTONIAN
RESULTS

The post-Newtonian approximation is a slow-motion,
weak-field approximation to general relativity with an
expansion parameter �
 �v=c�2 
 �Gm=rc2�. For a binary
system of two point masses m1 and m2, v is the magnitude
of the relative velocity, m � m1 �m2, and r is the sepa-
ration. In order to produce a post-Newtonian waveform, it
is necessary to solve both the post-Newtonian equations of
motion describing the binary, and the post-Newtonian
equations describing the generation of gravitational waves.
For a complete review of post-Newtonian methods applied
to inspiralling compact binaries, see [37].

A. Post-Newtonian computation of radiative multipoles

In Sec. II B the spin-weighted spherical harmonic com-
ponents have been related to the radiative multipole mo-
ments. In order to use Eq. (19) it is necessary to relate the
radiative moments to a description of the compact binary
system. The post-Newtonian wave generation formalism

has been developed [38–47] in a systematic manner to
relate the radiative multipole moments fUL;V Lg to a set
of six STF source moments fIL;J L;W L;XL;YL;ZLg,
which can be computed from the stress-energy pseudoten-
sor of the material and gravitational fields of the source. A
set of two canonical source moments fML;SLg can be
computed as a nonlinear functional of the source moments
as an intermediate step between the source moments and
the radiative moments. The radiative moments are then
given as nonlinear (and even nonlocal) functionals of the
canonical moments. It turns out that two of the source
moments, the source mass moments IL and the source
current moments J L, are dominant, while the other four
parametrize a gauge transformation and only make a con-
tribution to the canonical source moments starting at 2.5PN
order. To the post-Newtonian order needed in this paper,
only the canonical mass quadrupole moment contains a
correction from its corresponding source moment [48,49]

 M ij � I ij �
4G

c5
�W �2�I ij �W �1�I �1�ij � �O��

7=2�;

(20)

where T �p�
L denotes the pth time derivative of T L and

O��k� denotes the kth order and higher post-Newtonian
corrections that are unknown. The other canonical source
moments are simply related to the source moments

 M L � IL �O��
5=2�; (21)

 S L � J L �O��5=2�: (22)

The radiative mass quadrupole is given by

 

Uij�TR� �M�2�
ij �TR� �

2GM

c3

Z 1
0
d�M�4�

ij �TR � ��
�

ln
�
c�
2r0

�
�

11

12

�
�

2

7

G

c5

Z 1
0
d�M�3�

ahi�TR � ��M
�3�
jia�TR � ��

�
G

c5

�
1

7
M�5�

ahiMjia �
5

7
M�4�

ahiM
�1�
jia �

2

7
M�3�

ahiM
�2�
jia �

1

3
�abhiM

�4�
jiaSb

�

�
2G2M2

c6

Z 1
0
d�M�5�

ij �TR � ��
�

ln2

�
c�
2r0

�
�

57

70
ln
�
c�
2r0

�
�

124 627

44 100

�
�O��7=2�: (23)

The first integral in the above expression is the dominant
radiation tail at 1.5PN order obtained in [43]. The 2.5PN
nonlinear memory integral has been obtained in
[43,45,50–52]. The other nonlinear interactions at 2.5PN
order were obtained in [45]. Finally the 3PN ‘‘tail of tail’’
integral was derived in [46]. The tail integrals involve
nonlinear interactions with the mass monopole M (equiva-
lent to the Arnowitt-Deser-Misner mass) of the system.
The tail integrals also contain a freely specifiable constant
r0 that corresponds to the choice of the origin of radiative
time T with respect to harmonic time t, and enters the
relation between the retarded time in radiative coordinates
and the retarded time t� r=c in harmonic coordinates (the

coordinates in which the equations of motion are given)
[53,54]:

 TR � t�
r
c
�

2GM

c3 ln
�
r
r0

�
: (24)

The remaining radiative multipole moments are given by
[43,45,46]
 

Uijk�TR� �M�3�
ijk�TR� �

2GM

c3

Z 1
0
d�M�5�

ijk�TR � ��

�

�
ln
�
c�
2r0

�
�

97

60

�
�O��5=2�; (25)
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Uijkl�TR� �M�4�
ijkl�TR� �

2GM

c3

Z 1
0
d�M�6�

ijkl�TR � ��

�

�
ln
�
c�
2r0

�
�

59

30

�

�
2

5

G

c3

Z 1
0
d�M�3�

hij �TR � ��M
�3�
kli�TR � ��

�
G

c3

�
21

5
M�5�
hijMkli �

63

5
M�4�
hijM

�1�
kli

�
102

5
M�3�
hijM

�2�
kli

�
�O��5=2�; (26)

 U L �M�‘�
L �TR� �O��

3=2�; (27)

 V ij�TR� � S�2�ij �TR� �
2GM

c3

Z 1
0
d�S�4�ij �TR � ��

�

�
ln
�
c�
2r0

�
�

7

6

�
�O��5=2�; (28)

 

V ijk�TR� � S�3�ijk�TR� �
2GM

c3

Z 1
0
d�S�5�ijk�TR � ��

�

�
ln
�
c�
2r0

�
�

5

3

�
�
G

c3

�
1

10
�abhiM

�5�
jaMkib

�
1

2
�abhiM

�4�
jaM

�1�
kib � 2ShiM

�4�
jki

�
�O��5=2�;

(29)

 V L � S�‘�L �TR� �O��
3=2�: (30)

B. Adiabatic inspiral of quasicircular orbits

Solving the equations of motion yields explicit expres-
sions for the accelerations of each body in terms of the
positions and velocities of the two bodies [55–65]. The
two-body equations of motion can then be reduced to
relative equations of motion in the center-of-mass frame
in terms of the relative position ~x and velocity ~v [66]. The
relative acceleration ~a is currently known through 3.5PN
order [10,11]. The effects of radiation reaction (due to the
emission of gravitational waves) enter the relative accel-
eration starting at 2.5PN order.

The emission of gravitational radiation causes the orbits
of an isolated binary system to circularize [67]. Thus, for
the remainder of this paper the orbital evolution of the
binary will be modeled as a slow adiabatic inspiral of a
quasicircular orbit. In addition, it will be assumed that the
individual compact objects are nonspinning.

The orbital plane is chosen to be the X-Y plane with the
orbital phase � defining the direction of the unit vector
~n � ~x=r along the relative separation vector by

 n � cos�~eX � sin�~eY: (31)

Then the motion of the binary can be described using the
rotating orthonormal triad � ~n; ~�; ~eZ� with ~� � ~eZ � ~n.

The relative position, velocity, and acceleration are
given by

 ~x � r ~n; (32)

 ~v � _r ~n�r! ~�; (33)

 ~a � � �r� r!2� ~n� �r _!� 2 _r!� ~�; (34)

where the orbital frequency ! � _�. Through 2PN order, it
is possible to model the motion of the binary as a circular
orbit with the solution �r � _r � _! � 0 and r!2 � � ~n � ~a.

At 2.5PN order, however, the inspiral motion must be
taken into account. The leading order contribution to the
inspiral of a quasicircular orbit can be obtained by exam-
ining the Newtonian orbital energy of a circular orbit,

 E � �
1

2
�
Gm2

r
�O���; (35)

where � � m1m2=m
2, and the leading order gravitational

luminosity from a circular orbit,

 L �
32

5
�2 G

4m5

r5c5
�O���; (36)

and assuming that the energy radiated by the gravitational
waves is balanced by the change in the orbital energy (i.e.
dE=dt � �L). Then

 _r �
�
dE
dt

�
dE
dr

�
� �

64

5
�
G3m3

r3c5
�O��7=2�; (37)

and similarly the orbital frequency changes by

 _! �
�
d!
dr

�
dr
dt

�
�

96

5
�
�
G7m7

c10r11

�
1=2
�O��7=2�: (38)

Substituting (37) and (38) into Eqs. (33) and (34) and
noting that �r � O��5�, the following expressions for the
3PN inspiral relative velocity and relative acceleration are
obtained:

 ~v � r! ~��
64

5
�
G3m3

r3c5
~n�O��7=2�; (39)

 ~a � �!2 ~x�
32

5
�
G3m3

c5r4
~v�O��7=2�; (40)

where the 3PN orbital angular frequency is [59,60]
 

!2 �
Gm

r3

�
1� 	��3� �� � 	2

�
6�

41

4
�� �2

�

� 	3

�
�10�

�
�

75 707

840
�

41

64
�2 � 22 ln

�
r
r00

��
�

�
19

2
�2 � �3

��
�O��4�; (41)
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where the post-Newtonian parameter

 	 �
Gm

rc2 ; (42)

and r00 is a gauge constant.
As 	 is defined with respect to the harmonic-coordinate

separation r, it is convenient to introduce the frequency-
related post-Newtonian parameter

 x �
�
Gm!

c3

�
2=3
: (43)

Inverting (41) order by order yields

 

	 � x
�
1� x

�
1�

1

3
�
�
� x2

�
1�

65

12
�
�

� x3

�
1�

�
�

2203

2520
�

41

192
�2 �

22

3
ln
�
r
r00

��
�

�
229

36
�2 �

1

81
�3

��
�O��4�: (44)

C. Source multipole moments

Defining �m � m1 �m2, the source mass multipole
moments for circular orbits are given by [40,49,68]

 I � mf1� 1
2�	�

1
8��7� ��	

2g �O��3�; (45)

 I i � 0; (46)

 

I ij � �m
��

1� 	
�

1

42
�

13

14
�
�
� 	2

�
461

1512
�

18 395

1512
��

241

1512
�2

�

� 	3

�
395 899

13 200
�

428

105
ln
�
r
r0

�
�

�
3 304 319

166 320
�

44

3
ln
�
r
r00

��
��

162 539

16 632
�2 �

2351

33 264
�3

��
xhiji

�

�
11

21
�1� 3�� � 	

�
1607

378
�

1681

378
��

229

378
�2

�
� 	2

�
428

105
ln
�
r
r0

�
�

357 761

19 800
�

92 339

5544
��

35 759
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through ‘ � 8. In Appendix A an expression is given for
the source mass moments to 1PN order for arbitrary ‘.

The source current multipole moments for circular orbits
are [42,44,49]

 J i � Li �O���; (54)
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 J ijklmn � �
�m
m
f1� 4�� 3�2gLhixjklmni �O���; (59)

 J ijklmno � f1� 7�� 14�2 � 7�3gLhixjklmnoi �O���;

(60)

 

J ijklmnop � �
�m
m
f1� 6�� 10�2 � 4�3gLhixjklmnopi

�O���; (61)

where Li � �m�iabxavb. In Appendix B an expression is
given for the source current moments to leading order for
arbitrary ‘.

Finally, the gauge monopolar moment W for a circular
orbit is

 W � 1
3�xava; (62)

which is proportional to _r
O��5=2�. As W is already a
2.5PN correction to the source mass quadrupole, it gives no
contribution in the present case, and the canonical mo-
ments will simply be given by the source moments.

IV. RESULTS

The computation of the spin-weighted spherical har-
monic components is now an exercise in algebra. The
evaluation of the tail, memory, and tail of tail integrals
requires special treatment that is described in Sec. IVA.
The spin-weighted spherical harmonic components are
listed in Sec. IV B. They will contain terms that depend
upon the freely specifiable constant r0 [see the discussion
between Eqs. (23) and (24)]. These terms can be absorbed
into a redefinition of the phase as will be discussed in
Sec. IV C.

A. Evaluation of hereditary terms

The hereditary terms in the radiative multipole moments
involve integrals over the entire past history of the binary.
These integrals fall into two types, the tail integrals (in-
cluding the tail of tail term) that have logarithmic terms
and physically correspond to the backscattering of the
gravitational waves off the background curvature [43];
and the memory integrals that can physically be thought
of as the reradiation of the stress energy of the propagating
waves [50–52].

Inserting the canonical multipole moments into the tail
integrals of the radiative multipole moments yields expres-
sions of the form

 I1�TR� �
Z 1

0
d�F�TR � ��e

�ik!�TR���
�

ln
�
c�
2r0

�
� b

�
;

(63)

where k is an integer (the index m of the h‘m being
computed), b is a rational number, and F�TR � �� repre-
sents a function whose time dependence enters only
through its dependence on the orbital frequency. In
[12,54], it has been shown that the oscillatory term in the
integrand combined with the slow adiabatic evolution of
the orbital frequency allow the integral to be approximated
by using the orbital frequency of a fixed circular orbit at the
current value of TR, so that

USING FULL INFORMATION WHEN COMPUTING MODES . . . PHYSICAL REVIEW D 77, 044016 (2008)

044016-7



 I1�TR� � F�TR�e
�ik�

�Z 1
0
d�eik!�

�
ln
�
c�
2r0

�
� b

�

�O�
 ln
�
�
; (64)

where 

 _!=!2 is the adiabatic parameter describing the
decay of the orbit which is O��5=2�. Equation (64) can be
evaluated using the identity

 

Z 1
0
d� ln�e��� � �

1

�
�	E � ln��; (65)

where 	E is Euler’s constant. Using (65) to evaluate (64)
yields
 

I1�TR� ��
1

k!
F�TR�e

�ik�
�
�
2
� i

�
	E� ln

�
2k!r0

c

�
� b

��
:

(66)

For reasons that will be explained in Sec. IV C, it is
convenient to express the above result as
 

I1�TR� � �
1

k!
F�TR�e�ik�

�
�
2
� i

�
3

2
ln
�
x
x0

�
� ln

k
2

�
11

12
� b

��
; (67)

where

 lnx0 �
11

18
�

2

3
	E �

4

3
ln2�

2

3
ln
�
Gm

c2r0

�
: (68)

A similar argument holds for the tail of tail integral in
Eq. (23) where a term of the form

 I2�TR� �
Z 1

0
d�F�TR � ��e�ik!�TR���

�
ln
�
c�
2r0

��
2

(69)

is found. In this case the integral can be evaluated with the
aid of the identity

 

Z 1
0
d��ln��2e��� �

1

�

�
�2

6
� �	E � ln��2

�
; (70)

to yield
 

I2�TR� �
1

k!
F�TR�e�ik�

�
�
�

3

2
ln
�
x
x0

�
� ln

k
2
�

11

12

�

� i
�

3

2
ln
�
x
x0

�
� ln

k
2
�

11

12

�
2
�
: (71)

The memory integral in Eq. (26) leads to an integral of
the form

 I3�TR� �
Z 1

0
F�TR � ��e�ik!�TR���d�: (72)

Using similar arguments as for the tail integrals, Ref. [12]
has shown that this integral can be approximated by

 I3�TR� �
i
k!

F�TR�e�ik��1�O�
�: (73)

The memory integrals also lead to an integral of the form

 I4�TR� �
Z 1

0
x5�TR � ��d�: (74)

Unlike the other integrals, it does not depend upon the
orbital phase, and thus is much more sensitive to the past
history of the binary. This is the nonlinear memory effect
described in [50–52]. This integral has been evaluated by
[12,51] using the evolution of the frequency parameter x
found by integrating Eq. (38),

 x�t� �
1

4

��
�c3

5Gm

�
�tc � t�

�
�1=4
�1�O��� (75)

where tc denotes the time of coalescence. With this model,

 I4�TR� �
5

64

Gm

�c3 x�1�O���: (76)

As discussed in [12,43,51], this contribution to the wave-
form will be very difficult to detect as it is essentially DC in
character, corresponding to a steadily growing part of the
waveform with no dependence on the orbital phase. It does,
however, build up during the entire inspiral which leads to
its magnitude being comparable with the 0PN quadrupolar
term despite arising formally as a 2.5PN contribution. See
[52] for a discussion on strategies for detecting the memory
piece of the waveform.

B. Spin-weighted spherical harmonic components

Examining Eq. (19) seems to show that the individual
spin-weighted spherical harmonic components could ob-
tain contributions from both mass and current radiative
multipoles. It turns out for the nonspinning case, however,
that the mass (current) multipoles only contribute to com-
ponents with ‘�m even (odd). Because of this separation,
and since [24] U‘m	 � ��1�mU‘;�m and V‘m	 �
��1�mV‘;�m, it follows from Eq. (19) that

 h‘;�m �
�
��1�mh‘m	 �‘�m even�;
��1�m�1h‘m	 �‘�m odd�;

(77)

which simply reduces to

 h‘;�m � ��1�‘h‘m	 (78)

Substituting the source mass quadrupole (47) into the
expression for the radiative mass quadrupole (23), taking
the appropriate time derivatives, substituting the equations
of motion (40), and evaluating the hereditary integrals
using the techniques described in Sec. IVA, the dominant
component of the waveform is given to 3PN order as
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where the constant r0 has been eliminating from the expression by using Eq. (68). The remaining components are given by
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 h81 � �
i

92 664

�����������
�

1190

r
G��m

c2R
e�i�x9=2f1� 6�� 10�2 � 4�3 �O���g: (116)

In Appendix C, spin-weighted harmonic components for
even (odd) ‘�m are given to 1PN (0PN) order for arbi-
trary ‘. Again, the m< 0 components are given by (80).

C. Absorbing amplitude terms into the phase

The ln�x=x0� terms that appear in the spin-weighted
spherical harmonic components can be absorbed into a
redefinition of the phase by introducing an auxiliary phase
variable  � �� �. Since the ln�x=x0� terms first enter at
1.5PN order, it is straightforward to show that choosing
[12,48]

 � � �3
M
m
x3=2 ln

�
x
x0

�
; (117)

where M � I (the mass monopole of the source), will
eliminate the ln�x=x0� terms from the components. This
follows from

 h‘m � ~h‘me�im � ~h‘me�im�e�im�

� ~h‘me�im��1� im�� 1
2m

2�2 �O�x9=2�;

where ~h‘m is h‘m omitting the ln�x=x0� terms.4

Furthermore, since the orbital phase as a function of fre-
quency goes as

 � � �
1

32�
x�5=2 �O��� (118)

at leading order, the ln�x=x0� terms, which were 1.5PN,
2.5PN, and 3PN order in the amplitude terms, now appear
as phase corrections at relative order 4PN, 5PN, and 5.5PN.
As these terms are beyond the order to which the orbital
phase evolution is known (3.5PN order), it can be argued
that these terms can be ignored. Note that the choices of x0

in Eq. (68) and � in Eq. (117) are not unique, as other
amplitude terms can be absorbed into the phase (e.g. see
[13]); these choices were made to gather all logarithmic
terms (dependent upon x0) into one term, as well as to
simplify the waveform [48].

In order to recover the 2.5PN polarization waveforms in
[12,13] from the components listed above, it is necessary to
substitute ln�x=x0� ! 0. After substituting the coefficients
into Eq. (11) and truncating the sum at 2.5PN order, the
result must be evaluated at � � i, � � �=2. Furthermore,
there is an overall sign difference due to a different choice
of the polarization triad � ~N; ~P; ~Q�.

The polarization waveforms have been computed in the
limit �! 0 in [7] using black hole perturbation theory. In
order to compare with their results, it is necessary to

substitute

 ln
�
x
x0

�
! �

17

18
�

2

3
ln2

into the h‘m listed above, as [7] makes a different choice in
redefining the phase variable (and works in Schwarzschild
coordinates as opposed to harmonic coordinates). After
this substitution, and setting � � 0 and �m=m � �1, it
is found that the h‘m above agree with the results of [7,69].5

V. CONCLUSIONS

It has been shown that the spin-weighted spherical har-
monic components of the waveform can be computed to
higher post-Newtonian order by computing them directly
from the radiative multipole moments rather than by pro-
jecting them from the full polarization waveforms. In
particular, this allows the dominant h22 component to be
computed to 3PN order. Since numerical simulations can
compute the waveform over the entire sphere, it is possible
to compare the spin-weighted spherical harmonic compo-
nents of the waveform from the simulation with those
predicted by a quasiadiabatic post-Newtonian inspiral.
Thus, by examining the h22 component, it can be deter-
mined whether or not the 3PN contribution improves the
agreement between the post-Newtonian waveform and the
numerical waveform. If significant improvement is found,
this would suggest that it would be worth the effort of
computing the full 3PN waveform in order to improve
detection of marginal signals [27–29] as well as improve
parameter extraction [30–36].

In [23] a high-accuracy comparison is made between
post-Newtonian generated waveforms and waveforms
from a numerical simulation of 15 orbits of an inspiral of
an equal-mass nonspinning binary black hole system. For
this case, [23] finds that the 3PN contributions to the
amplitude of the h22 mode improve the accuracy with
respect to the numerical waveforms. This suggests that,
for accurate parameter estimation, it may be desirable to
compute the full 3PN amplitude for the polarization
waveforms.

For an equal-mass, nonspinning binary, only the source
current octupole needs to be computed to have the full
polarization waveform. For a nonspinning binary with an
arbitrary mass ratio, much more effort is required as ex-
plained at the end of [12]. But for comparison with nu-
merical simulations, post-Newtonian theorists should keep
in mind that extending the PN order of a given radiative
multipole moment will result in corresponding improve-

4Note that there remains one logarithmic term, � 428
105 x

3 lnx, in
Eq. (81) that is not absorbed into the phase.

5There is a sign difference in �‘;m� between [7,69]. The results
presented here agree with the sign of [69].
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ments in the spin-weighted spherical harmonic compo-
nents of the waveform, and these corrections will be of
interest even if all the corrections needed to improve the
polarization waveforms to the next order have yet to be
computed.
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APPENDIX A: 1PN SOURCE MASS MOMENTS

The source mass multipole moments for a system of N
(nonrotating) compact point masses to 1PN order are given
by [40,49,68]

 I L �
XN
A�1

�
~�Ay

hLi
A �

1

2�2‘� 3�c2

d2

dt2
�mAy2

Ay
hLi
A 

�
4�2‘� 1�

�‘� 1��2‘� 3�c2

d
dt
�mAv

a
Ay
haLi
A  �O��2�

�
;

(A1)

where mA, ~yA, and ~vA are the mass, position, and velocity,
respectively, of the Ath point mass, and

 ~�A � mA

�
1�

3

2

v2
A

c2 �
G

c2

X
B�A

mB

j ~yA � ~yBj
�O��2�

�
:

(A2)

Restricting to the case of two bodies in a quasicircular
orbit, transforming to the center-of-mass frame using

 ~y 1 �
m2

m
~x�1�O��2�; (A3)

 ~y 2 � �
m1

m
~x�1�O��2�; (A4)

and using the relative equation of motion (34) to eliminate
the relative acceleration from the derivatives yields

 I L � � ~m
��
f‘�1��� � 	f‘���

� 	
5‘2 � 6‘� 9

2�‘� 1��2‘� 3�
f‘�1���

�
xhLi

�
‘�‘� 1��‘� 9�

2�‘� 1��2‘� 3�
f‘�1���

r2

c2 xhL�2vi‘�1i‘i

�O��2�

�
(A5)

where

 f ~m; fk���g �
�
fm; sk���g for ‘ even;
f��m; dk���g for ‘ odd;

(A6)

where s‘ � �m
‘
1 �m

‘
2�=m

‘ and d‘ � �m
‘
1 �m

‘
2�=m

‘,
which themselves can be rewritten as polynomials in � as

 s‘��� � 1�
X‘=2

k�1

��
‘� k� 1

k� 1

�
�

�
‘� k
k

��
����k; (A7)

 d‘��� �
X‘=2

k�0

�
‘� k� 1

k

�
����k: (A8)

APPENDIX B: 0PN SOURCE CURRENT MOMENTS

The source current multipole moments for a system of N
(nonspinning) compact point masses is given to 0PN order
by [42,49]

 J L �
XN
A�1

mA�abhi‘y
L�1ia
A vbA �O���: (B1)

Restricting to the case of two bodies in a quasicircular
orbit, and transforming to the center-of-mass frame as for
the mass moments in Appendix A, it is straightforward to
show that the source current multipole moments to leading
order are given by

 J L �
m̂
m
g‘���Lhi‘xL�1i �O���; (B2)

where

 fm̂; gk���g �
�
f��m; dk���g for ‘ even;
fm; sk���g for ‘ odd:

(B3)

APPENDIX C: 1PN SPIN-WEIGHTED SPHERICAL
HARMONIC COMPONENTS

1. ‘�m even

For even ‘�m (for nonspinning binaries), the spin-
weighted spherical harmonic components are due to con-
tributions from the radiative mass multipoles. To 1PN
order, the radiative moments are given simply by ‘ time
derivatives of the source moments. For arbitrary ‘, the
mass moment is given by Eq. (A5). In evaluating the
spin-weighted spherical harmonic components from the
source mass moments, the following identity is useful:

 xLY
‘m
L � r‘nLY

‘m
L � r‘Y‘m

�
�
2
; �
�
; (C1)

where � is the orbital phase (as opposed to an angle on the
sphere). Since � � !t,

 

dk

dtk
Y‘m

�
�
2
; �
�
� ��im!�kY‘m

�
�
2
; �
�
: (C2)

Therefore, it can be shown that
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 xL�2vi‘�1i‘Y
‘m
L �

‘�m2

‘�‘� 1�
!2r‘Y‘m

�
�
2
; �
�
; (C3)

using that _r and _! are of 2.5 order. Finally, using that

 

�
r!
c

�
‘
� x‘=2

�
1� x‘

�
1�

1

3
�
��
; (C4)

it can be shown that
 

h‘m � �im�‘
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�2‘� 1�!!

������������������������������
�‘� 1��‘� 2�

‘�‘� 1�

s
G� ~m

c2R
x‘=2Y‘;�m

�
�
2
; �
��
f‘�1���

�
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1
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2�‘� 1��2‘� 3�
f‘�1��� �O��

3=2�

�
�for ‘�m even�; (C5)

where ~m and fk��� are given by (A6)
.

2. ‘�m odd

For odd ‘�m (for nonspinning binaries), the spin-weighted spherical harmonic components are due to contributions
from the radiative current multipoles. To 0PN order, the radiative moments are given simply by ‘ time derivatives of the
source moments. For arbitrary ‘, the current moment is given by Eq. (B2). In evaluating the spin-weighted spherical
harmonic components from the source current moments, the following identity is useful:

 �zi‘nL�1Y
‘m
L �

1

‘

��������������������������������������
�2‘� 1��‘2 �m2�

2‘� 1

s
Y‘�1;m

�
�
2
; �
�
: (C6)

Following the same steps as above, it can be shown that

 h‘m � ��im�‘
16�i

�2‘� 1�!!

�����������������������������������������������������
�2‘� 1��‘� 2��‘2 �m2�

‘�2‘� 1��‘� 1��‘� 1�

s
G�m̂

c2R
x�‘�1�=2Y‘�1;�m

�
�
2
; �
�
�g‘��� �O��� �for ‘�m odd�;

(C7)

where m̂ and gk��� are given by (B3).
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