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No Kerr-like exact solution has yet been found in Chern-Simons modified gravity. Intrigued by this
absence, we study stationary and axisymmetric metrics that could represent the exterior field of spinning
black holes. For the standard choice of the background scalar, the modified field equations decouple into
the Einstein equations and additional constraints. These constraints eliminate essentially all solutions
except for Schwarzschild. For noncanonical choices of the background scalar, we find several exact
solutions of the modified field equations, including mathematical black holes and pp-waves. We show
that the ultrarelativistically boosted Kerr metric can satisfy the modified field equations, and we argue that
physical spinning black holes may exist in Chern-Simons modified gravity only if the metric breaks
stationarity, axisymmetry, or energy-momentum conservation.
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I. INTRODUCTION

General relativity (GR) is one of physics’ most success-
ful theories, passing all experimental tests so far with ever
increasing accuracy [1]. Nevertheless, modifications to GR
are pursued vigorously for two main reasons: from a
theoretical standpoint, we search for an ultraviolet (UV)
completion of GR, such as string theory, that would lead to
corrections in the action proportional to higher powers of
scalar invariants of the Riemann tensor; from an experi-
mental standpoint, observations in the deep infrared (IR)
regime suggest the existence of some form of dark energy
[2–4]. One possibility to accommodate dark energy is to
consider an action with nonlinear couplings to the Ricci
scalar [5,6], similar in spirit to the corrections that we
expect from a UV completion of GR.

UV and IR corrections entail higher derivatives of the
fundamental degrees of freedom in the equations of mo-
tion, which on general grounds tend to have disastrous
consequences on the stability of the solutions of the theory
[7]: the so-called Ostrogradski instability (for a review see
e.g. [8]). A few loopholes exist, however, that allow one to
bypass this theorem (for example, if the nonlinear correc-
tions can be converted into a representation of a scalar-
tensor theory). Along these lines, special combinations of
scalar invariants that play the role of a topological term,
such as the Euler or Pontryagin term, can in general be
added safely to the action.

In this paper, we study Chern-Simons (CS) modified
gravity [9], where the Einstein-Hilbert action is modified
by the addition of a parity-violating Pontryagin term. As
described by Jackiw and Pi [9], this correction arises
through the embedding of the 3-dimensional CS topologi-
cal current into a 4-dimensional spacetime manifold. CS
gravity is not a random extension of GR, but it has physical
roots in particle physics. Namely, if there is an imbalance

between left-handed (NL) and right-handed (NR) fermions,
then the fermion number current j� has a well-known
gravitational anomaly [10], @�j� / �NL � NR��RR,
analogous to the original triangle anomaly [11]. Here
�RR is the Pontryagin term (also known as the gravitational
instanton density or Chern-Pontryagin term) to be defined
in the next section. CS gravity is also motivated by string
theory: it emerges as an anomaly-canceling term through
the Green-Schwarz mechanism [12]. Such a correction to
the action is indispensable, since it arises as a requirement
of all 4-dimensional compactifications of string theory in
order to preserve unitarity [13].

CS gravity has been studied in the context of cosmology,
gravitational waves, solar system tests, and Lorentz invari-
ance. In particular, this framework has been used to explain
the anisotropies in the cosmic microwave background [14–
16] and the leptogenesis problem [13,17] (essentially using
the gravitational anomaly described above in the other
direction). CS gravity has also been shown to lead to
amplitude birefringent gravitational waves [9,18–20], pos-
sibly allowing for a test of this theory with gravitational-
wave detectors [21]. Moreover, CS gravity has been inves-
tigated in the far-field of a spinning binary system, leading
to a prediction of gyromagnetic precession [19,20] that
differs from GR. This prediction was later improved on
and led to a constraint on the magnitude of the CS coupling
[22]. Finally, CS gravity has been studied in the context of
Lorentz invariance and violation [23] and the theory has
been found to preserve this symmetry, provided the CS
coupling is treated as a dynamical field. For further studies
of these and related issues, see e.g. [9,16,18,20,22–36].

CS gravity introduces the following modification to the
action [9]: S � SEH � Smat � SCS, where SEH is the
Einstein-Hilbert action, Smat is some matter action, and
the new term is given by
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 SCS �
Z
dV��RR: (1)

In Eq. (1), dV is a 4-dimensional volume element, �RR is
the Pontryagin term, and � is a background scalar field (we
shall define this action in more detail in the next section).
This scalar field, sometimes called a gravitational axion,
acts as a CS coupling function that can be interpreted either
as an external or a dynamical quantity. In the former case,
CS gravity is an effective theory that derives from some
other, more fundamental gravity theory that physically
defines the scalar field. In the latter case, the scalar field
possesses its own equation of motion, which could in
principle contain a potential and a kinetic term [22].

The strength of the CS correction clearly depends on the
CS coupling function. If we consider CS gravity as an
effective theory, the coupling function is suppressed by
some mass scale, which could lie between the electroweak
and the Planck scale, but it is mostly unconstrained [22]. In
the context of string theory, the coupling constant has been
computed in very conservative scenarios, leading to a
Planck mass suppression [17]. In less conservative scenar-
ios, there could exist enhancements that elevate the cou-
pling function to the realm of the observable. Some of
these scenarios are cosmologies where the string coupling
vanishes at late times [37–47], or where the field that
generates � couples to spacetime regions with large curva-
ture [48,49] or stress-energy density [21].

The CS correction is encoded in the modified field
equations, which can be obtained by varying the modified
action with respect to the metric. The divergence of the
modified field equations establishes the Pontryagin con-
straint �RR � 0, through the Bianchi identities for a vac-
uum or conserved stress-energy tensor. Not only does this
constraint have important consequences on the conserva-
tion of energy, but it also restricts the space of solutions of
the modified theory. For example, although this restriction
is not strong enough to eliminate the Schwarzschild solu-
tion, it does eliminate the Kerr solution. Since astrophys-
ical observations suggest that supermassive black holes
(BHs) at the center of galaxies do have a substantial spin
(see e.g. [50] and references therein), this raises the inter-
esting question of what replaces the Kerr solution in CS
gravity.

In this paper, we search for solutions to the CS modified
field equations that could represent the exterior gravita-
tional field of a spinning star or BH. We find that solutions
cluster into two different classes: GR solutions that inde-
pendently satisfy both the vacuum Einstein equations and
the modified field equations; non-GR solutions that satisfy
the modified field equations but not the vacuum Einstein
equations. We carry out an extensive study of solutions by
looking at three groups of line elements: spherically sym-
metric metrics; static and axisymmetric metrics; and sta-
tionary and axisymmetric metrics. The first group contains
GR solutions only, independently of the choice of the CS

scalar field. The second group leads to a decoupling of the
modified field equations for ‘‘natural’’ choices of the scalar
field, which again reduces to trivial GR solutions. In fact,
we show here that static and axisymmetric line elements
are forced to be spatially conformally flat if such a decou-
pling occurs. The third group also leads to the same decou-
pling for the canonical choice of the scalar field, and we
argue against the existence of nontrivial solutions.

This paper suggests that stationary and axisymmetric
line elements in CS gravity probably do not admit solutions
of the field equations for the canonical choice of the CS
scalar field. However, solutions do exist when more general
scalar fields are considered, albeit not representing physi-
cal BH configurations [51]. We find two types of solutions,
mathematical BHs and ultrarelativistically boosted BHs,
which, to our knowledge, are the first examples of BH and
BH-like solutions in CS gravity, besides Schwarzschild
and Reissner-Nordström. The first type arises when we
consider a subclass of stationary and axisymmetric line
elements (the so-called van Stockum class), for which we
find both GR and non-GR solutions for noncanonical scalar
fields. For instance, we shall demonstrate that the line
element

 ds2 � ��
�

1�
2m����
�
p

�
dt2 � 2�dtd��

1����
�
p �d�2 � dz2�;

(2)

together with the CS scalar field � � 2
����
�
p

z=3, satisfies the
modified field equations but does not arise in GR as a
vacuum solution. The metric in Eq. (2) represents BHs in
the mathematical sense only: it exhibits a Killing horizon
at

����
�
p
� 2m � const, but it contains unphysical features,

such as closed timelike curves that are not screened by a
horizon. The second type of solutions with a noncanonical
scalar field arises when we consider scalar fields whose
divergence is a Killing vector. These fields lead to exact
gravitational pp-wave solutions of GR and non-GR type.
One particular example that we shall discuss in this paper
is the ultrarelativistically boosted Kerr BH,

 ds2 � �2dudv� h0��u� ln�x
2 � y2�du2 � dx2 � dy2;

(3)

with the CS scalar field � � �v, where h0 and � are
constants.

Although we did not find a Kerr analogue by searching
for stationary and axisymmetric solutions, spinning BHs
do seem to exist in the theory. This suggestion is fueled by
the existence of two different limits of the Kerr spacetime
that are still preserved: the Schwarzschild limit and the
Aichelburg-Sexl limit, Eq. (3), which we shall show per-
sists in CS gravity. These limits, together with the exis-
tence of a nonaxisymmetric far-field solution [20], indicate
that a spinning BH solution must exist, albeit not with the
standard symmetries of the Kerr spacetime. Unfortunately,
spacetimes with only one or no Killing vector are prohibi-
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tively general and their study goes beyond the scope of this
work. Nonetheless, the possibility of constructing such
solutions by breaking stationarity or axisymmetry is dis-
cussed and a better understanding of solutions in CS grav-
ity is developed. Finally, we show how to recover the Kerr
solution by postulating, in an ad hoc manner, a noncon-
served energy momentum tensor and deduce that it violates
the classical energy conditions.

This paper is organized as follows: Sec. II reviews some
basic features of CS modified gravity and exploits two
alternative formulations of the Pontryagin constraint, one
based upon the spinorial decomposition of the Weyl tensor
and one based upon its electromagnetic decomposition, to
reveal some physical consequences of this constraint;
Sec. III revisits the Schwarzschild, Friedmann-
Robertson-Walker, and Reissner-Nordström solutions in
CS modified gravity and addresses the sensitivity of these
solutions to the choice of CS coupling function; Sec. IV
studies static, axisymmetric line elements in great detail,
while Sec. V investigates stationary, axisymmetric metrics
and provides the first nontrivial exact solutions to CS
modified gravity, including mathematical BH solutions;
Sec. VI addresses metrics that break axisymmetry or sta-
tionarity and concentrates on nontrivial solutions for
pp-waves and the Aichelburg-Sexl boosted Kerr metric;
Sec. VII concludes and points to future research.

We use the following conventions in this paper: we work
exclusively in four spacetime dimensions with signature
��;�;�;�� [52], with Latin letters �a; b; . . . ; h� ranging
over all spacetime indices; curvature quantities are defined
as given in the MAPLE GRTENSORII package [53]; round and
square brackets around indices denote symmetrization and
antisymmetrization, respectively, namely T�ab� :� 1

2 �Tab �
Tba� and T�ab	 :� 1

2 �Tab � Tba�; partial derivatives are
sometimes denoted by commas, e.g. @�=@r � @r� � �;r.
The Einstein summation convention is employed unless
otherwise specified, and we use geometrized units where
G � c � 1.

II. CS MODIFIED GRAVITY

A. ABC of CS

In this section, we summarize the basics of CS modified
gravity, following the formulation of [9]. Let us begin by
defining the full action of the theory [54]:

 S � �
Z
d4x

�������
�g
p

�
R�

1

4
��RR

�
� Smat; (4)

where � � 1=�16��, g is the determinant of the metric, the
integral extends over all spacetime, R is the Ricci scalar,
Smat is some unspecified matter action, and �RR is the
Pontryagin term. The latter is defined via

 

�RR :� �Rab
cdRbacd; (5)

where the dual Riemann tensor is given by

 

�Rab
cd :� 1

2	
cdefRabef; (6)

with 	cdef the 4-dimensional Levi-Civita tensor [55]. The
Pontryagin term [Eq. (5)] can be expressed as the diver-
gence

 raKa � 1
4
�RR (7)

of the Chern-Simons topological current (� is the
Christoffel connection),

 Ka :� 	abcd��nbm@c�
m
dn �

2
3�

n
bm�mcl�

l
dn�; (8)

thus the name ‘‘Chern-Simons modified gravity’’ [56].
The modified field equations can be obtained by varying

the action with respect to the metric. Exploiting the well-
known relations

 �Rbacd � rc��bad �rd��bac (9)

and

 ��bac �
1
2g
bd�ra�gdc �rc�gad �rd�gac�; (10)

the variation of the geometric part of the action leads to

 �S� �Smat � �
Z
d4x

�������
�g
p

�
Rab �

1

2
gabR� Cab

�
�gab

�
�
4

Z
d4x

�������
�g
p �RR��� �EH � �CS:

(11)

Here, the tensorCab stands for a 4-dimensional Cotton-like
tensor, which we shall refer to as the C-tensor [57], given
by

 Cab :� vc	
cde�areR

b�
d � vcd

�Rd�ab�c; (12)

where

 va :� ra�; vab :� rarb� � r�arb�� (13)

are the velocity and covariant acceleration of �, respec-
tively [58]. We shall always assume that va does not vanish
identically, because otherwise the model reduces to GR
[59].

Surface terms are collected in the third line of Eq. (11)
and arise due to repeated integration by parts and applica-
tion of Stokes’ theorem. In particular, �EH and �CS arise
from variation of the Einstein-Hilbert and CS sector of the
action, respectively. The former expression is well known,
while the latter contains a term with ��,

 �CS � �
Z
d4x

�������
�g
p

rd��
�Rabcd��bac� � 
 
 
 : (14)

It is worthwhile pointing out that one cannot just impose
Dirichlet boundary conditions on the induced metric at the
boundary by adding the Gibbons-Hawking-York term, as it
is the case in GR [60,61]. There is no obvious way to
cancel the term containing the variation of the connection,
��, in Eq. (14), except by imposing suitable falloff con-
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ditions on the scalar field � or Dirichlet boundary condi-
tions on the connection. Even though we shall neglect
boundary issues henceforth, we emphasize that these con-
siderations are relevant in many applications, such as BH
thermodynamics.

The modified field equations are then given by the first
line of Eq. (11), provided the second line vanishes. The
vanishing of �RR is the so-called Pontryagin constraint and
we shall study it in Sec. II B. The modified field equations
in the presence of matter sources are then given by

 Gab � Cab � 8�Tab; (15)

whereGab � Rab �
1
2gabR is the Einstein tensor and Tab is

the stress-energy tensor of the source. In this paper, we are
primarily concerned with the vacuum case, Tab � 0, for
which the modified field equations reduce to

 Rab � Cab � 0; (16)

due to the tracelessness of the C-tensor, Caa � 0. Like in
GR, vacuum solutions in CS gravity satisfy

 R � 0: (17)

B. Pontryagin constraint

Let us now discuss the Pontryagin constraint

 

�RR � 0; (18)

which then forces the second line in Eq. (11) to vanish. One
route to obtain the Pontryagin constraint is to treat � as a
dynamical field (or rather a Lagrange multiplier). By vary-
ing the action with respect to �, we obtain the equations of
motion for the scalar field that dynamically enforce the
Pontryagin constraint.

Another route to obtain the Pontryagin constraint is to
treat � as an external quantity. In this case, there are no
equations of motion for the scalar field. Nonetheless, by
taking the covariant divergence of the equations of motion
and using the contracted Bianchi identities, one obtains

 raC
ab � 1

8v
b�RR � 8�raT

ab: (19)

Usually, it is desirable to require that the stress energy be
covariantly conserved. However, in CS modified gravity
this need not be the case because a nonvanishing covariant
divergence raTab � 0 could be balanced by a nonvanish-
ing Pontryagin term—this is, in fact, how the term arises in
some approaches in the first place, cf. [28]. We shall come
back to this issue at the end of Sec. VI, but for the time
being we shall set Tab � 0, which then leads to the
Pontryagin constraint.

The Pontryagin constraint is a necessary condition for
any vacuum spacetime that solves the modified field equa-
tions, but what does it mean physically? We shall attempt
to answer this question by providing two alternative for-
mulations of this constraint, but before doing so, let us
discuss some general properties and consequences of

Eq. (18). First, notice that setting the �RR term to zero
leads to the conserved current Ka [Eqs. (7) and (8)], which
is topological in nature, and thus implies this quantity is
intrinsically different from typical conserved quantities,
such as energy or angular momentum. Second, when the
CS action is studied on-shell [Eq. (4) with �RR � 0] it
reduces to the GR action, an issue that is of relevance for
stability considerations, e.g. thermodynamic stability in
BH mechanics.

The first physical interpretation of the Pontryagin con-
straint can be obtained by considering a spinorial decom-
position. Let us then consider the useful relation

 

�RR � �CC; (20)

which we prove in Appendix A. In Eq. (20), C is the Weyl
tensor defined in (A2) and �C its dual, defined in (A3). This
identity allows us to use powerful spinorial methods to map
the Weyl tensor into the Weyl spinor [62], which in turn
can be characterized by the Newman-Penrose (NP) scalars
��0;�1;�2;�3;�4�. In the notation of [63], the
Pontryagin constraint translates into a reality condition
on a quadratic invariant of the Weyl spinor, I ,

 =�I� � =��0�4 � 3�2
2 � 3�1�3� � 0: (21)

Such a reality condition is particularly useful for the
consideration of algebraically special spacetimes. For in-
stance, it follows immediately from Eq. (21) that space-
times of Petrov types III, N and O obey the Pontryagin
constraint, since in the latter case all NP scalars vanish,
while in the former cases (in an adapted frame) only �3 or
�4 are nonvanishing. Moreover, all spacetimes of Petrov
types D, II and I are capable of violating Eq. (21). For
example, for spacetimes of Petrov type II one can choose
an adapted tetrad such that �0 � �1 � �3 � 0, which
then reduces Eq. (21) to the condition that either the real
part or the imaginary part of �2 has to vanish.

The reality condition of Eq. (21) can also be useful in
applications of BH perturbation theory. For instance, in the
metric reconstruction of the perturbed Kerr spacetime [64],
the NP scalars �1 � �3 � 0 vanish. In this context gravi-
tational waves are characterized by �4;0, while �2 is in
general nonvanishing. In a tetrad that represents a
transverse-traceless frame, these scalars are given by

 �4;0 � �h� � i �h�; (22)

where h�;� are the plus/cross polarization of the wave-
form, and the overhead dot stands for partial time deriva-
tive [65]. Obviously, �0�4 � � �h��2 � � �h��2 is real,
which again reduces Eq. (21) to the condition that either
the real part or the imaginary part of �2 has to vanish.
Neither of these possibilities is the case for the Kerr BH or
perturbations of it [64].

Another interpretation of the Pontryagin constraint can
be obtained by exploiting the split of the Weyl tensor into
electric and magnetic parts (see e.g. [66]). Given some

DANIEL GRUMILLER AND NICOLÁS YUNES PHYSICAL REVIEW D 77, 044015 (2008)

044015-4



timelike vector field ua, normalized so that uaua � �1,
one can define the electric and magnetic parts of the Weyl
tensor as

 

�
Cabcd �

i
2
	abefCefcd

�
ubud � Eac � iBac: (23)

Then, the Pontryagin constraint is equivalent to the condi-
tion [67]

 EabBab � 0: (24)

This leads to three possibilities: either the spacetime is
purely electric (Bab � 0) or purely magnetic (Eab � 0) or
orthogonal, in the sense that Eq. (24) holds. Equation (24)
is a perfect analogue to the condition �FF / E 
 B � 0,
which holds for specific configurations in electrodynamics,
including purely electric (B � 0), purely magnetic (E �
0), and electromagnetic wave configurations (E � 0 � B,
E 
B � 0). This suggests that there could be single shock-
wave solutions in CS gravity compatible with Eq. (24),
which we shall indeed encounter in Sec. VI. In light of this
electromagnetic analogy, the Pontryagin constraint can be
rephrased as ‘‘the gravitational instanton density must
vanish,’’ since the quantity �FF is sometimes referred to
as the ‘‘instanton density.’’

The electromagnetic decomposition of the Pontryagin
constraint also allows for a physical interpretation in terms
of perturbations of the Schwarzschild solution. In BH
perturbation theory (see e.g. [68]), the metric perturbation
is also decomposed through the electromagnetic Weyl
tensor. The electric and magnetic parts can then be related
to the flux of mass and angular momentum across the
horizon. Suffice it to say that, for a binary BH system in
the slow-motion/small-hole approximation [68], these ten-
sors are of order Eab �O��� and Bab �O�v��, where the
Newtonian potential � is of O�v2� via the Virial theorem,
with v
 1 the orbital velocity. In this case, the Pontryagin
constraint is satisfied automatically up to terms of O�v5�.
Within the post-Newtonian (PN) approximation [69], these
conclusions imply that the PN metric for nonspinning point
particles in the quasicircular approximation violates the
Pontryagin constraint at 2.5 PN order [O�v=c�5], which
is precisely the order at which gravitational waves appear.

Even for noncanonical choices of the scalar field, such as
� � z proposed in [34], the far-field expansion of the Kerr
metric does not satisfy the Pontryagin constraint to all
orders. This is so because obviously �RR is independent
of �. In fact, one can show that violations of the constraint
for the metric considered in [34] occur already at second
order in the metric perturbation, which renders this metric
hopeless as an exact CS solution. This observation is
concurrent with the role the Pontryagin constraint may
play for gravitational waves [70].

Finally, we can employ the electromagnetic analogy to
anticipate the answer to the question we pose in the title of
this paper. Namely, we are looking for a ‘‘rotating charge’’

configuration (where E � 0 � B), which simultaneously
is an ‘‘electromagnetic wave’’ configuration (where E 

B � 0). We know that no such solutions exist in electro-
dynamics, except for two limits [71]: if the rotation (and
thus B) approaches zero or if the charge is infinitely
boosted (and thus B becomes orthogonal to E). The first
case corresponds to a static configuration, while the second
one to an ultrarelativistic limit. We shall indeed find below
both analogues as solutions of CS modified gravity, but we
stress that the naive analogy with electrodynamics does not
yet rule out other possible spinning configurations in CS
modified gravity.

C. Space of solutions

Before discussing some specific solutions to the CS
modified field equations, let us classify the space of solu-
tions. Figure 1 presents a 2-dimensional depiction of this
space. The set E denotes the Einstein space of solutions,
whose members have a vanishing Ricci tensor, while CS
denotes the CS space of solutions, whose members satisfy
the CS modified field equations [Eq. (16)], without neces-
sarily being Ricci flat. The intersection of the Einstein and
the CS space defines the Pontryagin space, denoted by
P :� E \ CS, whose members satisfy both the Einstein
and the modified field equations independently.
Therefore, solutions that live in P possess a vanishing C-
tensor and automatically satisfy the Pontryagin constraint,
while those living in EnP satisfy the vaccum Einstein
equations but not the Pontryagin constraint. Moreover,
solutions that live in CSnP are not Ricci flat but do satisfy
the Pontryagin constraint because they solve the modified
field equations. Solutions of class P shall be referred to as
GR solutions, while solutions of class CSnP shall be
referred to as non-GR solutions.

To date, only one non-GR solution has been found
perturbatively [20] by assuming a far-field expansion for
point-particle sources in the PN weak-field/slow-motion

abR   = 0

abC   = 0

R   + C   = 0ab ab

FIG. 1. Space of solutions of Einstein gravity E and CS modi-
fied gravity CS.
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approximation. We shall show in the next sections that
non-GR solutions exist only in scenarios with a sufficient
degree of generality, but not in highly symmetric cases. In
the language of dynamical systems theory, the P space acts
as an ‘‘attractor’’ of highly symmetric solutions, emptying
out the CS space.

In view of this, let us discuss some properties of solu-
tions that live in the P space. In this space, the C-tensor
simplifies to

 CabjRab�0 � vcd
�Rd�ab�c � vcd

�Cd�ab�c � 0; (25)

where Cabcd is the Weyl tensor and �C its dual, defined in
Eqs. (A2) and (A3). Equation (25) leads to three distinct
possibilities:

(1) The (dual) Weyl tensor vanishes. However, since
class P members also have a vanishing Ricci tensor,
this condition reduces all possible solutions to
Minkowski space.

(2) The covariant acceleration of � vanishes. This con-
dition imposes a strong restriction on the geometry
(see e.g. [63]), which leads to spacetimes that are
either flat or exhibit a null Killing vector.

(3) Only the contraction of the covariant acceleration
with the dual Weyl tensor vanishes.

Moreover, for solutions in P , the vanishing of the Ricci
tensor forces the Weyl tensor to be divergenceless, via the
contracted Bianchi identities. These observations are a
clear indication that the solutions inhabiting P must be
special—for instance, exhibit a certain number of Killing
vectors. Conversely, one may expect that solutions inhab-
iting CSnP cannot be ‘‘too special.’’ We shall put these
expectations on a solid basis and confirm them in the next
sections.

III. PERSISTENCE OF GR SOLUTIONS

In this section, we study some solutions of GR that are
known to persist in CS gravity [9,23], using the insight on
the Pontryagin constraint gained so far. In the language of
Sec. II C we look for solutions that inhabit P , cf. Fig. 1.

A. Schwarzschild solution

The Schwarzschild solution,
 

ds2 � �

�
1�

2M
r

�
dt2 �

�
1�

2M
r

�
�1
dr2

� r2�d�2 � sin2���d�2�; (26)

is also a solution of the CS modified field equations if [9]

 � �
t
�
! v� � �1=�; 0; 0; 0	: (27)

We refer to Eq. (27) as the canonical choice of the CS
scalar field [9]. In that case, the C-tensor can be interpreted
as a 4-dimensional generalization of the ordinary 3-

dimensional Cotton tensor. Moreover, spacetime-
dependent reparametrization of the spatial variables and
time translation remain symmetries of the modified action
[9].

We investigate now the most general form of � �
��t; r;�; �� that will leave the Schwarzschild metric a
solution of the modified theory. The Pontryagin constraint
always holds, regardless of �, because the spacetime is
spherically symmetric, but Cab � 0 yields nontrivial equa-
tions. Since we have chosen the Schwarzschild line ele-
ment, we cannot force the (dual) Weyl tensor to vanish
(option 1 in Sec. II C), where the only linearly independent
component is

 

�Ctr�� � 2�Ct�r� �
2M
r

sin�: (28)

Another possibility is to force the scalar field to have a
vanishing covariant acceleration (option 2 in Sec. II C).
This condition then yields an overconstrained system of
partial differential equations (PDEs), whose only solution
for M � 0 is the trivial one: constant �. We are thus left
with the remaining possibility (option 3 in Sec. II C),
namely, that only the contraction of the covariant accel-
eration with the dual Weyl tensor vanishes. This possibility
yields the following set of PDEs:

 �;t� � �;t� �
@
@r

�
�;�
r

�
�

@
@r

��;�
r

�
� 0; (29)

the solution of which is given by

 � � F�t; r� � rG��; ��: (30)

Note that this scalar field possesses a nonvanishing cova-
riant acceleration, namely vtt, vtr, vrr, v��, v��, and v��
are nonvanishing, e.g.

 vtt � @rrF�
M

r2

�
1�

2M
r

�
�@rF�G�: (31)

For the choice of � given in Eq. (30) the Schwarzschild
solution is always a solution of the modified theory. Note
that Eq. (30) reduces to the canonical choice forG � 0 and
F � t=�, for which the only nonvanishing component of
the covariant acceleration is vtr � �M=�r2f��.

This simple calculation of the most general form of the
scalar field that respects the Schwarzschild solution leads
to two important consequences:

(i) The existence of specific solutions depends sensi-
tively on the choice of the scalar field.

(ii) The satisfaction of the Pontryagin constraint is a
necessary but not a sufficient condition for the C-
tensor to vanish.

In order to illustrate the second point, let us consider the
scalar field � � mCS sin�, with mCS a constant. Then the
Pontryagin constraint is still satisfied, but the C-tensor has
one nonvanishing component,
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 Ct� �
3MmCS

r4 sin2�
�
1�

2M
r

�
; (32)

and the Schwarzschild line element [Eq. (26)] is no longer
a solution to the modified field equations [Eq. (16)].

B. Spherically symmetric metrics

Let us now pose the question whether there can be non-
GR solutions in CS modified gravity that preserve spheri-
cal symmetry. Any line element respecting this symmetry
must be diffeomorphic to (see e.g. [72])

 ds2 � g
��x
��dx
dx� ��2�x��d�2

S2 ; (33)

where g
��x�� is a Lorentzian 2-dimensional metric with
some coordinates x�, ��x�� is a scalar field (often called
‘‘dilaton’’ or ‘‘surface radius’’), and d�2

S2 is a line element
of the round 2-sphere, with some coordinates xi. For such a
line element, one can show straightforwardly that the
Pontryagin constraint is always satisfied (see e.g.
Appendix A of [73]), and that the only nonvanishing
components of the Ricci tensor are R
� and Rij. On the
other hand, for the most general scalar field �, the only
nonvanishing components of the C-tensor are of the form
C
i. Remarkably, the C-tensor and the Ricci tensor de-
couple and both have to vanish independently as a conse-
quence of the modified field equations. In other words, for
spherically symmetric line elements there cannot be solu-
tions that live in CSnP . Instead all solutions are pushed to
P , which then uniquely leads to the Schwarzschild solu-
tion by virtue of the Birkhoff theorem [74].

We have just shown that for all spherically symmetric
situations the vacuum solutions to the CS modified field
equations live in P , and therefore are given uniquely by the
Schwarzschild solution. For nonvacuum solutions with the
same symmetries, similar conclusions hold, since the field
equations still decouple into nonvacuum Einstein equa-
tions and the vanishing of the C-tensor. Therefore, all
solutions are again pushed to P and spherically symmetric
solutions of GR (such as the Reissner-Nordström BH or
Friedmann-Robertson-Walker spacetimes) persist in CS
modified gravity, provided � is of the form

 � � F�x�� ���x��G�xi�: (34)

This result is completely analog to Eq. (30). In all spheri-
cally symmetric scenarios, the solutions to the CS modified
field equations live in P and the expectations of Sec. II C
hold.

C. Losing the Kerr solution

As an example of a relevant GR solution that does not
persist in the modified theory we consider the Kerr solu-
tion. The Kerr metric yields a nonvanishing Pontryagin
term [75], which in Boyer-Lindquist coordinates

 

ds2 � �
�� a2sin2�

�
dt2 �

4aMrsin2�

�
dtd�

�
�r2 � a2�2 � a2�sin2�

�
sin2�d�2 �

�

�
dr2

��d�2 (35)

can be written as

 

�RR � 96
aM2r

�6
cos��r2 � 3a2cos2���3r2 � a2cos2��;

(36)

with � � r2 � a2cos2� and � � r2 � a2 � 2Mr. In light
of the physical interpretations of Sec. II B, one would
expect this result since the Kerr spacetime possesses a
complex Newman-Penrose scalar �2.

The Pontryagin constraint is satisfied in certain limits.
For example, as the Kerr parameter goes to zero, a! 0,
the Schwarzschild solution is recovered and the right-hand
side of Eq. (36) vanishes. Similarly, in the limit as the mass
goes to zero, M ! 0, the right-hand side of Eq. (36) also
vanishes. However, for any finite a and M the Pontryagin
term is nonvanishing and, thus, the Kerr spacetime cannot
be a solution to the CS modified field equations [34].

What line element then replaces the Kerr solution in the
modified theory? A reasonable attempt to construct a spin-
ning BH in CS gravity is to consider axisymmetric and
either static or stationary line elements, which we shall
investigate in the next sections.

IV. STATIC, AXISYMMETRIC SOLUTIONS

Before embarking on a tour de force through stationary
and axisymmetric [76] solutions, we shall first consider the
simpler case of static and axisymmetric solutions.
Following [77], the most general static and axisymmetric
line element is diffeomorphic to

 ds2 � �Vdt2 � V�1�2d�2 ��2�d�2 �	dz2�; (37)

where we have three undetermined functions of two coor-
dinates: V��; z�, ���; z�, and 	��; z�. The two commuting
Killing fields, 
a � �@t�a and  a � �@��a, are associated
with stationarity and axisymmetry, respectively. However,
since there is no cross term dtd�, the line element of
Eq. (37) is not just stationary but also static. The compo-
nents of its Ricci tensor are given by

 Rt� � Rt� � Rtz � R�� � R�z � 0; (38)

 

Rtt �
1

2�2

�
V;�� �

V;zz
	
�
V;�
�
�
V2
;�

V
�
V2
;z

V	

�
V;�	;�

2	
�
V;z	;z

2	2

�
; (39)
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R�� �
1

2�2

��2V;��
V2 �

�2V;zz
V2	

�
�V;�
V2 �

�2V2
;�

V3

�
�2V2

;z

V3	
�
�	;�

V	
�
�2	;�V;�

2V2	
�
�2	;zV;z

2V2

�
; (40)

 

R�� �
V;�
�V
�
V2
;�

2V2 �
�;��

�
�

�;zz

	�
�

�;�

��
�

�2
;�

�2 �
�2
;z

	�2

�
	;��

2	
�

	2
;�

4	2 �
�;�	;�

2	�
�

�;z	;z

2	2�
; (41)

 

Rzz � �
V2
;z

2V2 �
	�;��

�
�

�;zz

�
�

�;�	

��
�

�2
;�	

�2 �
�2
;z

�2

�
	;��

2
�

	;�

2�
�

	2
;�

4	
�

�;�	;�

2�
�

�;z	;z

2�	
; (42)

 R�z � �
V;zV;�
2V2 �

V;z
2�V

�
�;z

��
; (43)

and exhibit only five nonvanishing components. With the
canonical choice of the CS scalar field [Eq. (27)], it is now
straightforward to check that the five corresponding com-
ponents of the C-tensor vanish,

 Ctt � C�� � C�� � Czz � C�z � 0: (44)

As in the spherically symmetric case, we are faced with the
remarkable consequence that the field equations [Eq. (16)]
decouple into the vacuum Einstein equations plus the
vanishing of the C-tensor, viz.

 Rab � 0; Cab � 0: (45)

In other words, using the classification of Sec. II C, all
static and axisymmetric solutions live in P , which again
confirms previous expectations.

With these considerations in mind, we can now simplify
the line element of Eq. (37). From [77], the function 	 can
be chosen to be constant, e.g. 	 � 1, and therefore the line
element reduces to the Weyl class,

 ds2 � �e2Udt2 � e�2U�e2k�d�2 � dz2� � �2d�2	: (46)

The vacuum Einstein equations then simplify to

 �U � 0; k;� � ��U2
;� �U2

;z�; k;z � 2�U;�U;z;

(47)

where � � @2=@�2 � 1=�@=@� � @2=@z2 is the flat space
Laplacian in cylindrical coordinates. The function U thus
solves a Laplace equation, and for any such solution the
function k can be determined by a line integral [63].

The Pontryagin constraint is fulfilled automatically for
all line elements diffeomorphic to Eq. (46), but as we have
seen in the previous sections, this is not sufficient to
achieve Cab � 0. For example, with the choices [78,79]
(m is constant)

 U � �
m����������������

�2 � z2
p ; k � �

m2�2

2��2 � z2�2
; (48)

the vacuum Einstein equations hold and the Pontryagin
constraint is fulfilled, but the C-tensor has the nonvanish-
ing components
 

C�� �
2m4�3z

���2 � z2�5
exp

�
m2�2

��2 � z2�2

�
;

Cz� �
1

2�z
C��:

(49)

Since the C-tensor must vanish independently from the
Einstein equations, once more we are faced with three
distinct possibilities, identical to those described in
Sec. II C. The first possibility (option 1 in Sec. II C) is to
demand that the Weyl tensor vanishes, but since also the
Ricci tensor vanishes, the spacetime would have to be flat.
The second possibility (option 2 in Sec. II C) is to demand
that the covariant acceleration of � vanishes, i.e., ra� is a
covariantly constant vector. However, as we have men-
tioned already, a vacuum solution with a covariantly con-
stant vector field must be either flat, or the vector must be a
null vector. The first alternative is trivial, while the second
one is not particularly interesting in the context of static-
axisymmetric spacetimes. We shall discuss the latter pos-
sibility further in Sec. VI A.

The only remaining possibility (option 3 in Sec. II C) is
for the contraction of the covariant acceleration and the
dual Weyl tensor to vanish. The C-tensor can then be
simplified to

 Cab / �t�t
�Ct�ab�� � �tzt

�Ct�ab�z � 0; (50)

which has only two nonvanishing components. Using the
Einstein equations to simplify these expressions we obtain
a set of nonlinear PDEs,
 

U;�zU;� �U;zzU;z � 2��U3
;zU;� �U3

;�U;z� �
2

�
U;�U;z;

U;�zU;z �U;zzU;� � ��U4
;� �U4

;z� �
1

�
U2
;�: (51)

We used MAPLE to obtain some solutions to these PDEs.
The Schwarzschild solution

 U �
1

2
ln

�������������������������������
�2 � �z�M�2

p
�

�������������������������������
�2 � �z�M�2

p
� 2M�������������������������������

�2 � �z�M�2
p

�
�������������������������������
�2 � �z�M�2

p
� 2M

(52)

of course solves these PDEs. Some other simple solutions

are U � U0, U � U0 � ln�, and U � U0 �

ln�
����������������
�2 � z2

p
� z�=2, where U0 is a constant. Not only do

these solutions yield a vanishing Ricci tensor, but they also
yield a vanishing Riemann tensor, which shows they are
Minkowski spacetime in disguise. In addition to these
trivial solutions, there exist exactly two more:
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 ds2 � �
1

z
dt2 � zdz2 � z2�d�2 � �2d�2� (53)

and
 

ds2 � �

�
2m
z
� 1

�
dt2 �

�
2m
z
� 1

�
�1
dz2

� z2�d�2 � sinh2�d�2�: (54)

While these solutions certainly are nontrivial, neither the
first [Eq. (53)] nor the second [Eq. (54)] solution is physi-
cally relevant. The former has a naked singularity at z � 0,
while the latter, whose singularity at z � 0 is screened by a
Killing horizon at z � 2m � const, possesses a Killing
vector ka � �@t�a that is spacelike in the ‘‘outside’’ region
z > 2m, i.e. gabkakb � 1� 2m=z > 0.

Let us now prove that these are the only solutions to the
modified field equations. The crucial observation is that the
spatial part of the C-tensor for static, axisymmetric space-
times reduces to the 3-dimensional Cotton tensor [9]. This
tensor vanishes if and only if the corresponding 3-
dimensional space (spatial sector of the 4-dimensional
metric) is conformally flat, i.e. gij � ��ij, where the
conformal factor � is a function of the coordinates and
�ij is the spatial part of the Minkowski metric. We may
then exploit a result by Lukács and Perjés [80] that the line
elements of Eqs. (26), (53), and (54) are the only static and
axisymmetric solutions that are spatially conformally flat.
Therefore, it follows that these equations are the only
solutions to the modified field equations.

The above considerations also apply to more general CS
scalar fields. All simplifications hinge on the decoupling of
the modified field equations, which occurs if and only if
�;t� � 0. We can solve this PDE to obtain

 � � �1�t; �; z� � �2��; z; ��: (55)

For all scalar fields of this form, the modified field equa-
tions decouple and the C-tensor has five nonvanishing
components, which define a system of PDEs for one of
the two arbitrary functions k or U. However, we do not
expect more solutions to arise in this way, since this case
leads to the same constraints as the canonical one, plus
three extra PDEs, which essentially compensate the free-
dom to tinker with the two arbitrary functions in Eq. (55).

The most general CS scalar field, however, does not
allow for a decoupling of the type described above. If the
scalar field has �;t� � 0, then the ��; ��, ��; z�, and �z; z�
components of the modified field equations do not de-
couple. However, the �t; t� and ��;�� components still
do decouple because the corresponding C-tensor compo-
nents vanish. The equation

 Rtt � R�� � �
1

2

	;�

	�2�2 � 0 (56)

forces 	 to be a function of z alone. Through a diffeo-

morphism, this function can be set to unity, as argued in
[77].

The modified field equations are too difficult to solve
analytically with MAPLE, so in order to study solutions that
do not lead to a decoupling of the modified field equations,
we shall assume for simplicity � � ~��t; ��. From the Ricci
sector of the field equations (Rtt � 0 � R��), we find that
U is again a solution of �U � 0. We can use this relation
to simplify the C-tensor, and the ensuing equations Ct� �
Ct� � Ctz � C�� � C�z � 0 lead to a system of second
order PDEs for � and k. We investigated this system with
MAPLE and found that solutions exist if and only if � is a
function of only one variable, i.e. � � ��t� or � � ����.
These results indicate that there are no solutions of the
modified field equations if � is bivariate.

In summary, we have shown in this section that the field
equations decouple if the CS scalar field solves �;t� � 0,
and their solution is the Schwarzschild BH and two addi-
tional (unphysical) solutions [Eqs. (53) and (54)]. For CS
fields that satisfy �;t� � 0, the modified field equations do
not seem to have a solution. Therefore, there are no static
and axisymmetric solutions in CS gravity, apart from the
Schwarzschild BH and some unphysical solutions, irre-
spective of the CS scalar field.

V. STATIONARY, AXISYMMETRIC SOLUTIONS

A. General line elements

Equipped with the tools from the previous section, we
drop the requirement of staticity and replace it by the
weaker one of stationarity. In essence, this means that we
shall allow the gravitomagnetic sector of the metric to be
different from zero. The most general, stationary and axi-
symmetric line element is diffeomorphic to [63]

 

ds2 � �V�dt� wd��2 � V�1�2d�2 ��2�d�2 �	dz2�;

(57)

where the functions V, w, �, and 	 depend on � and z,
only. This line element is identical to Eq. (37) as w! 0. In
GR, the function w can be identified with the angular
velocity. The Ricci tensor for this line element is similar
to Rstatic

ab [Eqs. (38)–(43)] and its components are

 Rt� � Rtz � R�� � R�z � 0; (58)

 Rtt � Rstatic
tt �

�
w2
;� �

w2
;z

	

�
V3

2�2�2 ; (59)
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Rt� �
w

2�2

�
�V;�� �

V;zz
	
�
V;�
�
�
V2
;�

V
�
V2
;z

V	
� 2

V;�w;�
w

� 2
V;zw;z
w	

�
w;��V

w
�
w;zzV
w	

�
w;�V

�w
�
w2
;�V3

�2

�
w2
;zV

3

�2	
�

	;�V;�
2	

�
	;zV;z
2	2 �

	;�w;�V

2w	

�
	;zw;zV

2w	2

�
; (60)

 R�� � Rstatic
�� � w2

;�
V2

2�2 ; (61)

 Rzz � Rstatic
zz � w2

;z
V2

2�2 ; (62)

 R�z � Rstatic
�z � w;�w;z

V2

2�2 ; (63)

 R � Rstatic �

�
w2
;� �

1

	
w2
;z

�
V2

2�2�2 : (64)

The somewhat lengthy component R�� can be deduced
from R and the other components. The quantity Rstatic,
 

Rstatic �
1

2�2

�
2
V�
V	
�
V2
�

V2 �
V2
z

V2	
� 4

���

�
� 4

�zz

	�

� 4
�2
�

�2 � 4
�2
z

	�2 � 2
	��

	
� 2

	�

�	
�

	2
�

	2

� 2
	���

	�
� 2

	z�z

	2�

�
; (65)

is the trace of Eqs. (38)–(43).
As before, let us begin with the canonical choice for the

CS scalar field, namely, Eq. (27). Then the only nonzero
components of the C-tensor are C�t, Czt, C��, and Cz�. As
in the previous cases, there is a decoupling of the field
equations that allows us to set 	 � 1 and to consider the
slightly simpler line element (Lewis-Papapetrou-Weyl
metric)
 

ds2 � �e2U�dt� wd��2

� e�2U�e2k�d�2 � dz2� � �2d�2	; (66)

where again the functions U, k, and w depend on the
coordinates � and z only. With this line element, the last
lines vanish in the multiline expressions for the Ricci
tensor, Eqs. (39)–(42), (60), and (65), because 	 � 1.
The vacuum Einstein equations simplify considerably
with 	 � 1. Essentially, they are similar to Eq. (47) but
with a complicated source and an additional equation for
w. Even within GR, the explicit solution to this set of PDEs
can only be found in certain special cases [63].

The Pontryagin constraint for the line element of
Eq. (66) is not satisfied in general. This constraint yields
a complicated second order PDE forw,U, and k, presented
in Appendix B, which of course is trivially satisfied asw!
0. Certain solutions to the PDE in Appendix B can be
obtained, e.g. ( 
w :� e2Uw)
 

k� k��;z� 
w� c1e
2U; U�U��;z�; (67a)

k� k��;z� 
w���; U�U��;z�; (67b)

k� ln���� ~k�z�; 
w� ~w�z��; U� 1
2 ln��=c1�; (67c)

k� k���; 
w� 
w���; U�U���; (67d)

where c1 is a constant. The first line reduces to static
solutions upon redefining t0 � t� c1�. The second line
leads to metrics of Petrov type II, the so-called van
Stockum class, which we shall discuss in Sec. V B. The
third line of Eq. (67) cannot be made to solve the modified
field equations. The last line implies cylindrical symmetry,
which again via the field equations leads to flat spacetime.
We have thus been unable to find nontrivial solutions either
by hand or using symbolic manipulation software [81].

Unlike the previous section, we cannot provide here a
truly exhaustive discussion of all solutions of the de-
coupled field equations. This is because Cab � 0 does
not necessarily imply spatial conformal flatness for the
stationary case. Based on the evidence found so far, it
seems unlikely that there are other nontrivial and physi-
cally interesting solutions besides the static ones. This is
because the vacuum Einstein equations [Rab � 0] already
determine the function k uniquely up to an integration
constant, and also impose strong restrictions on the func-
tions U and w [63]. The constraints Cab � 0 impose four
additional conditions on these functions that can be found
in [82]. Since the system of partial differential equations is
overconstrained, it is unlikely that additional solutions
exist. Therefore, whenever the field equations decouple
into Rab � 0 � Cab, we do not expect physically relevant
solutions besides the Schwarzschild one and its flat space
limit.

The decoupling exhibited by the modified field equa-
tions does not occur only for the canonical choice of the CS
scalar field. In order for such a decoupling to occur, the
following system of PDEs must be satisfied:

 �;tt � �;�� � �;t� � �;� � �;z � 0; (68)

which yields the solution

 � �
t
�
�
�
�
; (69)

with constant �, �. The canonical choice is recovered as
�!1.

But what if the scalar field is not of the form of Eq. (69)?
In this case, the field equations do not decouple and solving
the entire system is much more complicated. However, we
can deduce from Eq. (58) that still the 4 C-tensor compo-
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nents C�t, Czt, C��, and Cz� have to vanish. Therefore,
even though no decoupling occurs, the same issue of an
overconstrained system of equations does arise, analogous
to the one in Sec. VA. Even with this generalization, it is
still quite difficult to find solutions to the coupled system.
In general, one might be able to find solutions both of class
P and class CSnP because noncanonical CS fields allow
for general �, which entails a new degree of freedom. We
shall see in Sec. V B that, for a simplified subclass of
stationary and axisymmetric line elements, which auto-
matically satisfy the Pontryagin constraint, solutions can
indeed be found, including mathematical BHs.

B. Van Stockum line element

We study now a slightly less general line element that
still is stationary and axisymmetric, namely, the van
Stockum line element [63]

 ds2 � ��dt2 � 2�dtd��
1����
�
p �d�2 � dz2�; (70)

where the only arbitrary function is � � ���; z�. The
metric is different from that considered in Eq. (66) since
it does not possess a d�2 component. The only nonvanish-
ing component of the Ricci tensor for such a spacetime is

 Rtt � �
�3=2

2
��; (71)

where again � is the flat space Laplacian in cylindrical
coordinates.

The Pontryagin constraint is automatically satisfied for
the van Stockum line element even though it is of Petrov
type II, precisely because of the vanishing d�2 term. The
tt component of the modified equations then determines �,
and this forces all other components of the C-tensor to
vanish, except forCt� and C�� that are automatically zero.
These constraints act as a system of PDEs for the scalar
field, whose unique solution is � � ���; z�. Note that the
canonical choice for � is not compatible with the van
Stockum line element. The remaining PDE Rtt � Ctt � 0
can be solved for � and �, where Ctt now simplifies to
 

Ctt �
�2

2

�
��;�� � �;zz�

�
�;�z �

3

4�
�;z

�

� �;�

�
�;zzz ��;��z �

3

2�
�;�z �

3

8�2 �;z

�

� �;z

�
�;��� ��;�zz �

9

4�
�;�� �

3

4�
�;zz

�
3

8�2 �;�

�
� �;�z

�
�;�� ��;zz �

3

2�
�;�

��
: (72)

Combining this with Rtt from Eq. (71), we find two simple
solutions of Eq. (16):

 � � c; � � ���; z�; (73)

where c is a constant and

 � � c�
d����
�
p ; � �

2

3

����
�
p

z� ~����; (74)

where c and d are constants [83]. Equation (73) leads to
zero Ricci and C-tensor separately and it is thus a GR
solution that belongs to the subspace P . The ensuing
metric is exceptional in that it has a third Killing vector,
t@t ��@� � ct@�. Some of the nonvanishing Riemann-
tensor components for this geometry are

 Rt�t� �
c

8�
; Rt��� �

1

8�
; Rt�t� �

1

4

����
�
p

: (75)

On the other hand, Eq. (74) is perhaps even more interest-
ing since it is not Ricci flat, but has one nonvanishing
component of the Ricci tensor,

 Rtt � �
d

8�
� �Ctt: (76)

This solution is thus a non-GR solution and it belongs to
the subspace CSnP . Some of the nonvanishing compo-
nents of the Riemann tensor for this solution are

 Rt�t� �
d� 2c

����
�
p

16�3=2
; Rt��� �

1

8�
;

Rt�t� �
1

4

����
�
p

:

(77)

Notice that such a solution can represent a mathematical
BH, provided � vanishes for some �, i.e. a Killing horizon
emerges. We call these configurations ‘‘mathematical
BHs’’ because they are physically not very relevant: the
Killing vector generating axial symmetry is lightlike, as
evident from (70), and the spacetime admits closed time-
like curves which are not screened by a horizon [63]. For
c � 1 and d � �2m we recover (2).

Let us then summarize the most important conclusions
of this section. We have investigated stationary and axi-
symmetric solutions to the modified field equations. We
found that, for the canonical choice of �, it is unlikely that
solutions can be found that differ from Minkowski and
Schwarzschild. Nonetheless, for noncanonical choices of
this scalar, solutions must exist. This conclusion derives
from the investigation of a slightly less general stationary
and axisymmetric metric, namely, that of van Stockum. For
this line element we found a solution to the modified field
equations that lives in P and a family of solutions that live
in CSnP , both with noncanonical CS scalar fields. To our
knowledge, this is the first time an exact non-GR solution is
found for CS modified gravity, which, in particular, can
represent mathematical BH configurations.

VI. BEYOND THE CANON

We have failed in finding an exact, stationary and axi-
symmetric solution to the CS modified field equations
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representing a physical spinning BH. A solution, however,
already exists for a similar line element, albeit in a pertur-
bative sense. In [20] and later in [22], a far-field solution to
the CS modified field equations with a canonical CS scalar
field was found in the weak-field/slow-motion approxima-
tion. This solution is identical to the far-field expansion of
the Kerr solution, except for the addition of two new
components in the gravitomagnetic sector of the metric
g0i. These components vanish in GR, since only one com-
ponent is required and it is aligned with the angular mo-
mentum of the spinning source. In CS gravity, the
remaining components of g0i are proportional to the curl
of the spin angular momentum, thus breaking axisymmetry
but preserving stationarity. Such a stationary, but nonax-
isymmetric BH will not emit gravitational waves, but it
might possess a nontrivial multipolar structure, with proba-
bly more than just two nonvanishing multipoles. Such a
far-field structure suggests that perhaps the only way to
obtain an analog to the Kerr solution in CS gravity is to
relax either the assumption of axisymmetry or stationarity
or to drop the integrability conditions mentioned in
Ref. [76].

Alternatively, the van Stockum example suggests that
another possibility is to allow for a general CS scalar field.
In this case, however, the line element must significantly
differ from the Kerr metric such that it satisfies the
Pontryagin constraint [84]. We shall explore these possi-
bilities in this section.

A. Killing embedding

We study now the possibility that the ‘‘embedding co-
ordinate,’’ i.e., the velocity of the CS scalar field �, is a
Killing vector. Then, va is covariantly conserved because
of the Killing equation (r�avb� � 0) and the fact that the
connection is torsion free (r�avb	 � r�arb	� � 0). This
puts a strong restriction on spacetime, which for a timelike
va yields line elements that are diffeomorphic to

 ds2 � �dt2 � gij�x
k�dxidxj; (78)

where i and j range over all coordinates except time.
Actually, Eq. (78) describes a special class of static space-
times. When studying static solutions to the CS modified
field equations with timelike va in Sec. IV, we found no
physically relevant solution besides Schwarzschild. The
same conclusions hold here, except that we do not even
recover Schwarzschild, so this route is not a promising one.
A similar discussion applies to spacelike Killing vectors.

A more interesting situation arises if the vector field va

is a null Killing vector, vava � r�avb� � 0. In this case,
we get in an adapted coordinate system the line element

 ds2 � �2dvdx1 � gij�x
k�dxidxj: (79)

Once again, the Pontryagin constraint is immediately sat-
isfied, the Ricci tensor has nonvanishing Rij components,
but no components of the C-tensor vanish. Even when we

pick a simple null Killing embedding, e.g. va � �0; �; 0; 0�
with � � const, the C-tensor has complicated spatial non-
vanishing components and the modified field equations are
too difficult to solve in full generality. Therefore, we focus
instead on an interesting special case in the next
subsection.

B. pp-waves and boosted black holes

As suggested at the end of Sec. II B, it might be possible
to find solutions to the modified field equations if one
considers line elements that represent exact gravitational-
wave solutions (pp-waves [85]). The line element for these
waves is

 ds2 � �2dvdu�H�u; x; y�du2 � dx2 � dy2; (80)

which is simply a special case of the line elements consid-
ered in the previous subsection [Eq. (79)]. Particular ex-
amples of physical scenarios that are well-represented by
Eq. (80) are the Aichelburg-Sexl limits [86] of various
BHs. In essence, this limit is an ultrarelativistic boost
that keeps the energy of the BH finite by taking a limit
where its mass vanishes while the boost velocity ap-
proaches the speed of light. In particular, Eq. (80) can be
used to represent ultrarelativistic boosts of the Kerr BH
[87,88].

Is it conceivable that a Kerr BH that moves ultrarelativ-
istically solves the modified field equations, even though
the Kerr BH does not? One of the main problems with the
Kerr metric is that it does not satisfy the Pontryagin con-
straint, cf. Eq. (36), but that constraint is trivially satisfied
as M ! 0. Nonetheless, the satisfaction of the Pontryagin
constraint is only a necessary condition, but not a sufficient
one, to guarantee that the modified field equations are also
satisfied.

In order to study this issue, let us find the appropriate
expressions for the Ricci and C-tensors. The only non-
vanishing component of the Ricci tensor for the line ele-
ment of Eq. (80) is given by

 Ruu � �H; � :�
@2

@x2 �
@2

@y2 : (81)

In general, the components Cux, Cuy, Cxx, Cyy, Cxy are all
nonvanishing and form a system of PDEs for H and �. The
Cxx, Cyy, and Cxy components are given by

 Cyy � �Cxx � �;vvH;xy; Cxy �
1
2�;vv�H;xx �H;yy�:

(82)

Let us first look for GR-solutions of class P , such that
Rab � 0 and Cab � 0 independently. Since Cab � 0, there
are two possibilities here: either �;vv � 0 or H;xy � 0 �
H;xx �H;yy. In the latter case, H is constrained to

 H � 1
2�x

2 � y2�A�u� � xB�u� � yC�u� �D�u�; (83)

which also forces Cux and Cuy to vanish. The only compo-
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nent of the field equations left is �u; u�, which upon sim-
plification with Eq. (83) yields Cuu � 0 and Ruu � 2A�u�,
so that A�u� � 0. We have then found the solution

 H � xB�u� � yC�u� �D�u�; � � ��u; v; x; y�; (84)

to the modified field equations. However, this solution is
nothing but flat space in disguise.

Another possibility to find GR-solutions is to pick � such
that Cxx, Cyy, and Cxy vanish, i.e. �;vv � 0. This condition
leads to

 � � ��u; x; y�v� ~��u; x; y�: (85)

The remaining non-�u; u� components of the C-tensor lead
to

 Cux � 0! �;xH;xy � �;yH;yy (86)

 Cuy � 0! �;xH;yy � �;yH;xx; (87)

where we have used Ruu � 0. The solution to this system
of PDEs leads either to flat spacetime or to

 ��u; x; y� � ��u�: (88)

Choosing Eq. (88), the remaining modified field equation
[the �u; u� component] becomes

 �H � 0; (89)

 2H;yy
~�;xy � H;xy�~�;yy � ~�;xx�: (90)

For some H that solves the Einstein equations [i.e. the
Laplace equation in Eq. (89)], the C-tensor yields a PDE
for ~� [Eq. (90)]. Thus we conclude that we can lift any
pp-wave solution of the vacuum Einstein equations to a
pp-wave solution of CS modified gravity (of class P ) by
choosing � such that Eqs. (85) and (88)–(90) hold.

Let us give an example of this method to generate CS
solutions by studying ultrarelativistically boosted Kerr
BHs, for which

 H � h0��u� ln�x2 � y2� (91)

satisfies Eq. (89). In Eq. (91), ��u� is the Dirac delta
function and h0 is a constant. Inserting this H into
Eq. (90) we find

 

~� � x

�
y
x

�
� ��x2 � y2�; (92)

where 
 and � are arbitrary functions of their respective
arguments �y=x� and �x2 � y2�. Equation (92), together
with Eqs. (85) and (88), give the full solution for the CS
scalar field. We have therefore lifted the boosted Kerr BH
to a solution of the modified field equations of class P by
choosing the CS scalar field appropriately. For � � �v we
recover Eq. (3).

Let us now search for non-GR solutions to the
modified field equations. Since all equations decouple

except for the �u; u� component, we must enforce that the
non-�u; u�-components of the C-tensor vanish, i.e. �;v � 0,
which leads to

 � � ~��u; x; y�: (93)

With Eq. (93), the only component of the modified field
equations left is again the �u; u� one, which simplifies to a
linear third order PDE:
 

�1� ~�;y@;x � ~�;x@;y��H � �~�;xx � ~�;yy�H;xy

� �H;xx �H;yy�~�;xy: (94)

For simplicity, we choose

 

~� � a�u�x� b�u�y� c�u�; (95)

and Eq. (94) reduces to the Poisson equation

 �H � f: (96)

The source term f solves a linear first order PDE

 bf;x � af;y � f � 0; (97)

whose general solution [assuming b�u� � 0]

 f�u; x; y� � ex=b�u���a�u�x� b�u�y	 (98)

contains one arbitrary function � of the argument a�u�x�
b�u�y. We shall assume this function to be nonvanishing so
that Rab � 0. We can now insert Eq. (98) into the Poisson
equation and solve for H�x; y; u�. We need two boundary
conditions to determine H from the Poisson equation
[Eq. (96)] and another one to determine the arbitrary
function � in Eq. (98). Let us then provide an example
by assuming that b�u�< 0 and � remains bounded. In this
case, we must restrict the range of the coordinates to the
half-plane, 0 � x <1, �1< y<1. We impose a
boundary condition H0�u; y� :� H�u; 0; y� and appropriate
falloff behavior for jyj ! 1. We then obtain the particular
solution
 

H�u; x; y� �
1

�

Z 1
�1

xH0�u; ��d�

x2 � �y� ��2

�
1

4�

Z 1
0

Z 1
�1

e�
=jb�u�j��a�u�
� b�u��	

� ln
�
�x� 
�2 � �y� ��2

�x� 
�2 � �y� ��2

�
d
d�; (99)

where the double integral extends over the half-plane.
The exponential behavior in Eq. (98) is particularly

interesting, since it resembles the gravitational-wave solu-
tions found in Refs. [9,18,19,21]. Moreover, as x! �1
[depending on the sign of b�u�] the source term in Eq. (96)
diverges, indicating a possible instability. Since we were
mainly concerned with the existence of solutions we have
not attempted to construct solutions for more general �
than Eq. (95).
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C. Weakening axisymmetry/stationarity

From the analysis so far, it is clear that stationary and
axisymmetric solutions in CS gravity do not seem to be
capable of describing physical spinning BHs. The far-field
solution has guided us to weaken some of the requirements
necessary for axisymmetry and stationarity. One possibil-
ity is to keep two Killing vectors (one timelike and one
spacelike), but to drop all additional requirements (in
particular the integrability conditions mentioned in
Ref. [76]). The most general line element compatible
with two Killing vectors

 ds2 � g
�dx

dx� � A
idx


dxi � gijdx
idxj (100)

contains two 2-metrics, g
��xk� and gij�x
k�, and cross

terms parametrized by A
i�xk�. Here f
;�g � f0; 1g are
the Killing coordinates and fi; j; kg � f2; 3g are the non-
Killing coordinates. Alternatively, we could conceive of
losing stationarity or axisymmetry by dropping the �@t�a or
@�

a Killing vector, respectively. The general idea is then
that by losing one Killing vector we gain new undeter-
mined metric components that could allow for a physical
spinning BH solution in CS gravity. However, our attempts
have not revealed any interesting exact solution corre-
sponding to a spinning BH, so we confine ourselves to a
couple of general remarks.

Spinning BHs that break axisymmetry or stationarity
would be radically different from those considered in
GR. On the one hand, nonaxisymmetric spinning objects
would have an intrinsic precession rate that would not
allow the identification of an axis of rotation. Such pre-
cession would possibly also lead to solutions with more
than two nonzero multipole moments, thus violating the
no-hair theorem. On the other hand, nonstationary spinning
objects would unavoidably lead to the emission of gravi-
tational radiation, even if the BH is isolated. These con-
siderations could be flipped if we take them as predictions
of the theory, thus leading to new possible tests of CS
gravity. Work along these lines is currently underway.
The results of [89] for the Pontryagin constraint may be
helpful here.

D. Adding matter

The inclusion of matter sources is of relevance in the
present context for several reasons. First, the Kerr BH has a
distributional energy momentum tensor [90], so we need
not set the stress-energy tensor strictly to zero to construct
a Kerr-like solution. Second, in Ref. [17] the Pontryagin
term in the action arises from matter currents, so the
inclusion of the latter would actually be mandatory within
that framework.

Two conceptually different approaches are possible to
the problem of finding exact solutions of the modified field
equations in the presence of matter. These approaches
essentially depend on whether we require the energy-

momentum tensor to be covariantly conserved, raTab �
0, or not. If this tensor is conserved, then the Pontryagin
constraint must be satisfied and the Kerr BH cannot be a
solution. Basically, this route leads to only a slight general-
ization of the discussion presented so far, with solutions of
class P ,

 Rab �
1
2gabR � 8�Tab; Cab � 0; (101)

and solutions of class CSnP that solve Eq. (15). Relaxing
covariant conservation of the stress-energy tensor, we can
promote the Kerr BH to a solution of the modified field
equations, provided that

 Rab �
1
2gabR � 8�Tdist

ab ; Cab � 8�Tind
ab : (102)

Here Tdist
ab � 0 except for the usual distributional contribu-

tions for Kerr [90], while Tind
ab provides the nonconserved

matter flux. The induced matter fluxes for the Kerr BH are
given by
 

Tind
tr �

am2

4���5�
cos��r2 � a2cos2��

� �a2cos2��11r2 � a2� � r2�3r2 � 9a2�	; (103)

 Tind
t� � �

am2r

4���5
sin��3r4 � 12r2a2cos2�� a4cos4�	;

(104)

 Tind
�r � �

a2m2

4���5�
sin2� cos��cos4�a4�a2 � r2�

� cos2�r2a2�8a2 � 12r2� � 9r4a2 � 3r6	;

(105)

 T ind
�� � �asin2�Tind

t� : (106)

Of course, with such a method any GR solution can be
promoted to a solution of the modified field equations.

The crucial issue here is whether or not the induced
matter flux can be regarded as physically acceptable. In
order to shed light on this issue, we analyzed if the induced
stress energy given by Eqs. (103)–(106) obeys the energy
conditions of GR [91]. Because Tind

ab is always traceless, the
strong and weak energy conditions are equivalent and
reduce to the statement that Tind

ab 

a
b � 0 for any timelike

vector 
a. This, however, is not the case, as we can show by
considering for instance 
t �

���
2
p

, 
r � 1, which is time-
like for sufficiently large r: 
a
bgab � �1� 6m=r�
O�m=r�2. The only relevant component of Tind

ab is given
by Eq. (103), but since Tind

tr is proportional to cos�, this
quantity is negative in half of the spacetime, and thus the
weak energy condition is violated. While this might be
tolerated close to the horizon, we stress that this violation
arises also in the asymptotic region. This violation is
somewhat attenuated by the falloff behavior of Tind

ab , where
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its components decay at least as 1=r5 and the scalar invari-
ant Tind

ab T
abind as 1=r12 as r! 1. Thus, if ordinary matter

is added then the induced exotic fluxes might not be
detectable after all for a far-field observer.

There is another approach capable of circumventing the
Pontryagin constraint that also relies on new matter
sources. Namely, if the field � is considered a dynamical
field, instead of an external field, it is natural to study more
general actions than Eq. (4) with Smat � 0, such as [22]

 S � �
Z
d4x

�������
�g
p

�
R�

1

2
�r��2 � V��� �

1



��RR

�
:

(107)

Then the Pontryagin constraint (18) is replaced by

 

�RR � �
���� V0���	; (108)

where 
 is a constant. This provides a natural general-
ization of the model considered in our paper. However, it
also introduces an amount of arbitrariness, since V is a free
function and, in fact, more general couplings between �
and curvature might be considered.

We conclude that allowing GR solutions to be also CS
solutions by inducing a stress-energy tensor via Eq. (102)
can lead to unphysical energy distributions. In particular,
the Kerr solution induces an energy momentum tensor
given by Eqs. (103)–(106), which violates all energy con-
ditions, even in the asymptotic region. The alternative
approach described above lifts � to a genuine dynamical
field with a kinetic term and possibly self-interactions, at
the cost of introducing an arbitrary potential.

VII. CONCLUSIONS AND DISCUSSION

No exact solution has yet been found that could possibly
represent a spinning BH in CS modified gravity. In par-
ticular, the Kerr solution is found to be incompatible with
the constraints imposed by the modified field equations.
Previously, only perturbative solutions of CS gravity had
been considered, which might represent the exterior of a
BH. The first study was carried out by Alexander and
Yunes [19,20], who performed a weak-field parametrized
post-Newtonian analysis to find a nonaxisymmetric Kerr-
like solution. This study was later extended by Smith et al.
[22] to nonpoint like sources, finding that the Israel junc-
tion conditions are effectively modified by the C-tensor.
Another study was carried out by Konno et al. [34], but this
analysis was restricted to a limited class of perturbations
that did not allow for the breakage of stationarity or
axisymmetry. Within that restricted perturbative frame-
work, a Kerr-like solution was found only for noncanonical
choices of �, concluding that BHs cannot rotate in the
modified theory for canonical �. This conclusion of
Konno et al. is at odds with both the results of Alexander
and Yunes and Smith et al.

In order to address these issues, in the current paper we
attempted to determine what replaces the Kerr solution in
CS modified gravity. We thus studied exact solutions of the
modified theory, comprising spherically symmetric, static-
axisymmetric, and stationary-axisymmetric vacuum con-
figurations, as well as some generalizations thereof.

We began our analysis in Sec. II A by considering the CS
action in detail and rederiving the equations of motion,
together with the resultant surface integral terms. We con-
tinued in Sec. II B by rederiving the Pontryagin constraint
from the equations of motion and providing two alternative
interpretations of it. One of them [Eq. (21)] is a reality
condition on a quadratic curvature invariant of the Weyl
tensor, while the other [Eq. (24)] is a null condition on the
contraction of the electric and magnetic parts of the Weyl
tensor. Before considering specific line elements, in
Sec. II C we classified all solutions into two groups: GR-
type (class P ), which contains solutions of both the vac-
uum Einstein equations and the modified field equations;
non-GR type (class CSnP ), which contains solutions of CS
gravity that are not solutions of the vacuum Einstein equa-
tions (cf. Fig. 1).

After these general considerations, we began a system-
atic study of line elements, starting with general spheri-
cally symmetric metrics in Sec. III. This class of line
elements [Eq. (33)] is particularly important since it con-
tains the Schwarzschild, Friedmann-Robertson-Walker,
and Reissner-Nordström solutions. We showed that, for
the canonical choice of the CS scalar field [Eq. (27)] and
more general choices [Eq. (34)], the modified field equa-
tions decouple and any possible solution is forced to be of
class P .

We continued in Sec. IV with an analysis of static and
axisymmetric metrics [Eq. (37)]. We showed that, for the
canonical choice of the CS scalar field and more general
choices [Eq. (55)], the modified equations decouple once
more. We also showed that any static and axisymmetric
line element is forced to become spatially conformally flat,
provided the field equations decouple. Exploiting this re-
sult, we found three different solutions [Eqs. (26), (53), and
(54)], only one of which was physically relevant, namely,
the Schwarzschild solution. For the most general CS scalar
field, however, the field equations do not decouple, but we
have shown that fields with such generality do not seem to
allow for a solution to the field equations apart from trivial
ones. Thus, we may conclude that CS gravity does not
allow for static and axisymmetric solutions, apart from flat
space, the Schwarzschild solution and two additional (un-
physical) solutions, irrespective of the choice of the CS
scalar field.

Static line elements then gave way to the central point of
this paper: stationary and axisymmetric solutions of CS
gravity, discussed in Sec. V. As in the previous cases, we
showed that, for the canonical choice of the CS scalar field
and slightly more general choices [Eq. (69)], the field
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equations again decouple. In this case, however, the
Pontryagin constraint does not hold automatically and we
used it to constrain the class of possible metric functions,
cf. Appendix B. In essence, the decoupling requires not
only that solutions must obey the Einstein equations, but
also the fulfillment of additional constraints (cf. Ref. [82]),
which leads to an overdetermined system of PDEs.
Therefore, we concluded that nontrivial stationary and
axisymmetric solutions do not seem to exist for canonical
CS fields.

When a completely generic CS scalar field is considered,
the modified field equations do not decouple and solutions
are not easy to find, even with the simplifications derived
from the Pontryagin constraint. However, generic CS fields
increase the degrees of freedom of the problem and thus
might allow for stationary and axisymmetric solutions. We
proved this statement by providing an example in Sec. V B,
through a subclass of stationary and axisymmetric metrics
[Eq. (70)], belonging to the van Stockum class. In that case,
we showed that the only possible CS field compatible with
the field equations excludes the canonical choice.
Moreover, we found both, nonflat solutions of class P
[Eq. (73)] as well as nonflat solutions of class CSnP
[Eq. (74)] To the best of our knowledge, this is the first
time an exact solution in CS modified gravity is con-
structed that is not also a solution of GR. One of these
solutions [Eq. (74)] represents mathematical BHs, in the
sense that, although they exhibit a Killing horizon, they are
not physically relevant, because the Killing vector gener-
ating the ‘‘axial’’ symmetry is lightlike and closed timelike
curves arise. We concluded that it is unlikely that station-
ary, axisymmetric solutions exist that represent a spinning
physical BH.

Finally, in Sec. VI we considered the possibility of
constructing solutions beyond the set of stationary and
axisymmetric spacetimes. We began in Sec. VI A by con-
sidering CS scalar fields whose velocity is a Killing vector
of the spacetime and found that the only interesting case
arises if that vector is null. Naturally, such considerations
led to exact gravitational shock-wave spacetimes
[Eq. (80)]. Within this pp-wave scenario, in Sec. VI B
we constructed a generating method through which any
pp-wave solution of GR can be lifted to a solution of CS
modified gravity with an appropriate choice of the CS
scalar field. We also built a solution of class CSnP
[Eq. (99)] that is not a GR pp-wave solution but does
satisfy the CS modified field equations.

Through this detailed study of solutions in CS gravity
we have ascertained that at least two different limits of the
Kerr BH are solutions to the modified field equations, even
though the Kerr BH is not: the Schwarzschild limit and the
Aichelburg-Sexl limit. The former was already known to
be a solution to the CS modified field equations, but the
latter, which includes ultrarelativistically boosted BHs,
was not. The existence of these solutions concurs with

the naive expectations expressed at the end of Sec. II B.
Moreover, such expectations, together with the input from
the far-field solution, point to the existence of a physical
spinning BH solution in CS gravity, provided the condi-
tions of stationarity and/or axisymmetry are weakened. We
addressed this possibility briefly in Sec. VI C, but unfortu-
nately such spacetimes are so general that the modified
field equations become prohibitively difficult, even with
the use of symbolic manipulation software.

Other possibilities of bypassing the Pontryagin con-
straint were discussed in Sec. VI D, since this constraint
is in essence responsible for the absence of interesting
stationary and axisymmetric solutions. First, we stated
that obviously any (GR or non-GR) solution formally can
be lifted to a solution of the modified field equations by
allowing for arbitrary matter sources, and we demonstrated
the nature of these matter sources for the Kerr BH. We
found that the induced energy momentum tensor
[Eqs. (103)–(106)] is exotic even in the asymptotic region,
but drops off rapidly with the radial coordinate. Second, we
mentioned the possibility that the CS scalar field � might
acquire a kinetic term and self-interactions. In this case, the
Pontryagin constraint ceases to hold and is replaced by a
dynamical condition [Eq. (108)], relating the gravitational
instanton density to the (generalized) Klein-Gordon opera-
tor acting on �.

We now conclude with a list of possible directions for
future research to which our current work may provide the
basis.

(i) The number of physical degrees of freedom in CS
modified gravity is not known yet. Various consid-
erations appear to lead to contradictory expectations.
On the one hand, the appearance of higher order
derivatives in the action [Eq. (1)] suggests that addi-
tional degrees of freedom should emerge. On the
other hand, the appearance of an additional con-
straint [Eq. (67)] suggests that fewer degrees of free-
dom should arise. Actually, the linearization
procedure suggests that these competing effects can-
cel each other and that there are two polarizations of
gravitons, just like in GR, albeit with properties that
differ from GR [9,21].

(ii) The role of boundary terms induced in CS gravity
for BH thermodynamics could be investigated more
thoroughly. Also, here general considerations lead
to contradictory expectations. On the one hand, new
boundary terms that arise in CS gravity [Eq. (14)]
differ qualitatively from those that arise in GR or in
scalar-tensor theories. Such boundary terms suggest
modifications of BH thermodynamics, even for
solutions whose line elements coincide with GR
solutions, like the Schwarzschild spacetime. On
the other hand, the Pontryagin constraint eliminates
the CS contribution [Eq. (1)] to the on-shell action,
which suggests that BH thermodynamics is left
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unchanged, at least in the classical approximation.
(iii) Both previous issues can be addressed by a thor-

ough Hamiltonian analysis, which is also of interest
by itself and for exhibiting the canonical structure
as well as the classical constraint algebra. Such a
study would also be useful for numerical evolutions
of BH binary spacetimes in CS gravity, which is
currently being carried out.

(iv) While our discussion of stationary and axisymmet-
ric solutions was quite comprehensive, a few issues
are still open, which may be an interesting topic for
mathematical relativists. For instance, while we
were able to provide a proof that there are only
three types of solutions for static and axisymmetric
spacetimes (with the canonical choice for the CS
scalar field), we could only provide good evidence,
but no mathematical proof, that no further solutions
exist for spacetimes that are stationary and
axisymmetric.

(v) Combining the evidence found in this paper with the
far-field solutions found previously, we concluded
that spinning BHs should weaken the requirements
of stationarity and/or axisymmetry in CS modified
gravity. Perturbations away from axisymmetry were
neglected in [34], although nonaxisymmetric solu-
tions can still represent spinning BHs, albeit with an
inherent precession induced by the CS modification.
Therefore, future work could focus on finding exact
spacetimes with a smaller amount of symmetries or
dropping the integrability conditions starting from
(100).

(vi) A manageable implementation of the Pontryagin
constraint could be useful in many CS gravity
applications. The brute force methods that led us
to the formulas in Appendix B will render any
generalization unintelligible. The considerations
presented in Ref. [89] provide such an implemen-
tation, but it has not been exploited so far in the
construction of explicit solutions.

(vii) Far-field solutions of CS gravity that break statio-
narity could also be studied. These solutions could
then be used as tests of the modified theory,
through comparisons with gravitational-wave and
astrophysical observations.

(viii) Perhaps it is feasible to apply the method of
matched asymptotic expansion for caged BHs
[92,93] to the construction of spinning BH solu-
tions in the present context. To this end, one would
need an asymptotic expansion and a near horizon
expansion of that BH. The former exists already,
so it remains to construct the latter and perform
the asymptotic matching.

(ix) Finally, it is worthwhile to consider not just vacuum
solutions, but also solutions with matter sources, as
outlined briefly in Sec. VI D.

Certainly the range of issues that can be addressed has been
extended in a non-negligible way. Only through a better
understanding of the consequences and predictions of CS
gravity will we be able to determine the viability of the
modified theory.
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APPENDIX A: PROOF OF �RR � �CC

The equality

 

�RR � �CC (A1)

relates the Pontryagin term expressed as in Eq. (5) to the
Weyl tensor

 Cabcd :� Rabcd � 2��a
�cR

b	
d	 �

1
3�

a
�c�

b
d	R (A2)

and its dual

 

�Cab
cd :� 1

2	
cdefCabef: (A3)

Equation (A1) is quite simple to prove, but not entirely
obvious. Indeed, we were not able to find it in any of the
standard textbooks, review articles, or papers on CS modi-
fied gravity. Therefore, we provide here a proof by straight-
forward calculation.

Proof.—Let us begin by inserting the definitions (5),
(A2) and (A3) into (A1),

 

�RR � �Rab
cdRbacd �

�Cab
cdCbacd � �; (A4)

where � is precisely the violation of Eq. (A1). Thus, if we
can show that � vanishes in Eq. (A4) we have proven
Eq. (A1). The quantity � contains eight terms. Four of
them are linear in the Weyl tensor. Two of these terms are
proportional to Ccdef and two are proportional to Ccdeb.
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Since

 	cdefCcdef � 	cdefCcdeb � 0; (A5)

these terms vanish. Each of the remaining four terms
contains at least two Kronecker �. These terms always
lead to a contraction of the Levi-Civita tensor, e.g. of the
form 	cdc

f � 0. Therefore, also these four terms vanish
and establish

 � � 0: (A6)

APPENDIX B: PONTRYAGIN CONSTRAINT

For the line element Eq. (66) the Pontryagin constraint
Eq. (18) is given by ( 
w :� e�2Uw)
 

0 � A0 
w� A1 
w3 � A2 
w;� � A3 
w2 
w;� � A4 
w2
;� � A5 
w;z

� A6 
w2 
w;z � A7 
w2
;z � A8 
w;� 
w;z � A9 
w;�z

� A10� 
w;�� � 
w;zz� (B1)

with
 

A0 � ��2A1 � 2�2�2U;�zk;� � �U;�� �U;zz�k;z

� 2U;��U;z � 2U;�zU;� � 4U;z�U2
;� �U2

;z�

�U;z�k;�� � k;zz� � 8U;�U;zk;� � 6U2
;�k;z � 2U2

;zk;z

� 2U;z�k2
;� � k2

;z�� � 2��U;�k;z �U;zk;� � 2U;zU;��

(B2)

 

A1 � 8��U;�U;z�Uzz �U��� �U;�z�U
2
;� �U

2
;z� �U

3
;�k;z

�U3
;zk;� �U;�U;z�U;�k;� �U;zk;z��

� 8U;z�U
2
;� �U

2
;z� (B3)

 

A2 � 2�3�2U;zzU;z � 2U;�zU;� � 4U2
;�U;z � 4U3

;z � �U;��

�U;zz�k;z �U;z�k;�� � k;zz� � 2U;�zk;�

� 4U;�U;zk;� � 2U;zk2
;� � 2U;zk2

;z � 4U2
;zk;z�

� 2�2�U;�z � 4U;zU;� � 2U;�k;z� � �k;z (B4)

 A3 � 4��3U2
;�k;z �U

2
;zk;z � 2U;�U;zk;� � 4U2

;�U;z

� �U;�� �U;zz�U;z � 2U;�U;�z � 4U3
;z� � 8U;�U;z

(B5)

 A4 � 2 
w��U;zk;� � 3�U;�k;z �U;z � 6�U;�U;z

� �U;�z� � 
w;���2U;z � k;z� (B6)

 

A5 � 2�3��2U;��U;� � 2U;�zU;z � 4U2
;zU;� � 4U3

;�

� �U;�� �U;zz�k;� �U;��k;zz � k;��� � 2U;�zk;z

� 4U;zU;�k;z � 2U;��k2
;� � k2

;z� � 4U2
;�k;��

� 2�2�U;�� � 4U2
;� � 2U;�k;��

� �2�2k2
;� � 2k2

;z � k;�� � k;zz� � ��2U;� � k;��

(B7)

 

A6 � 4�U;��U;�� �U;zz� � 8�U;zU;�z � 4U2
;� � 12U2

;z

� 4��4U;��U
2
;� �U

2
;z� �U

2
;�k;� � 2U;zU;�k;z

� 3U2
;zk;�� (B8)

 A7 � 
w�6U;z � 2�U;�z � 12�U;zU;� � 2�U;�k;z

� 6�U;zk;�� � 
w;z��2U;� � k;�� � 
w;z (B9)

 

A8 � 2 
w��U;zz �U;�� � 6U2
;z � 6U2
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� 2U;�k;�� � 4 
wU;� � 
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� 
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 A9 � 2�3�U;zz �U;�� � 2U2
;z � 2U2
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� 4 
w�� 
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